Key words Non-uniform; specific energy; critical; gradually-varied steady flow; water surface profiles

Size: px
Start display at page:

Download "Key words Non-uniform; specific energy; critical; gradually-varied steady flow; water surface profiles"

Transcription

1 Chaptr NON-UNIFORM FLOW 4.. Itroductio 4.. Gradually-varid stady 4.3. Typs of watr surfac profils 4.4. Drawig watr surfac profils Summary Likig up with Chaptr, dalig with uiform i op chals, it may b otd that ay chag i th phomo (i.. rat, vlocity, dpth, ara, bd slop do ot rmai costat) causs th to b o-uiform. This chaptr will discuss th ffct of chag i ay o of th abov quatitis, icludig spcific rgy, critical dpth ad slop, ad typs. How to draw watr surfac profils will also b itroducd. Ky words No-uiform; spcific rgy; critical; gradually-varid stady ; watr surfac profils 4.. INTRODUCTION 4... Gral I th prvious Chaptr, th was uiform udr all circumstacs udr cosidratio. I may situatios th i a op chal is ot of uiform dpth alog thal. I this chaptr th coditios studid rlat to stady, but o-uiform,. This typ of is cratd by, amog othr thigs, th followig major causs: Chags i thal cross-sctio. Chags i thal slop. Crtai obstructios, such as dams or gats, i th stram s path. Chags i th discharg such as i a rivr, whr tributaris tr th mai stram. A o-uiform is charactrizd by a varid dpth ad a varid ma vlocity: V h 0 or 0 (4-) s s If th bottom slop ad th rgy li slop ar ot qual, th dpth will vary alog thal, ithr icrasig or dcrasig i th dirctio. Physically, th diffrc btw tompot of wight ad th shar forcs i th dirctio of producs a chag i th fluid momtum which rquirs a chag i vlocity ad, from cotiuity cosidratios, a chag i dpth. Whthr th dpth icrass or dcrass dpds o various paramtrs of th, with may typs of surfac profil cofiguratios possibl. Fig. 4.. illustrats som typical logitudial fr-surfac profils. Upstram ad dowstram cotrols ca iduc various pattrs. I som cass, a hydraulic jump might tak plac. A jump is a rapid-varid phomo; calculatios wr dvlopd i Chaptr 3. Howvr, it is also a cotrol sctio ad it affcts th fr surfac profils upstram ad dowstram. Chaptr 4: NON-UNIFORM FLOW 70

2 upstram cotrol sluic gat cotrol hydraulic jump dowstram cotrol sharp-crstd wir rapid varid gradually varid rapid varid gradually varid rapid varid upstram cotrol critical dpth suprcritical cotrol hydraulic jump subcritical dowstram cotrol ovr (critical dpth) rapid varid gradually varid rapid varid gradually varid rapid varid 4... Acclratd ad Rtardd Fig. 4.. Exampls of o-uiform A idalizd sctio of a rach of a chal with acclratd ad rtardd coditios is show i Fig. 4.a ad Fig. 4.b, rspctivly. As acclrats, with th rat of costat, th dpth h must dcras form poit to poit, ad a watr surfac profil as show i Fig. 4.a rsults. Rtardd will produc watr surfac profils as show i Fig. 4.b. Sigificat i ach o of th abov cass is th fact that ow th watr surfac is a curvd li ad ot logr paralll to thal bottom ad th rgy li, as was tas for uiform. Th followig poits ar mad i coctio with th abov obsrvatios. Chaptr 4: NON-UNIFORM FLOW 7

3 Th watr surfac, as will b show latr, ca hav a cocav or a covx shap. Th rgy li is ot cssarily a straight li; howvr, it is assumd that th rgy gradit is costat alog th lgth of a rach ad th rgy li will b rprstd ad cosidrd to hav a slop i = H L /L. As was do i tas of uiform, it is hr also accptd that th dpth of, h, is qual to th prssur had i th rgy quatio. Obviously, this applis oly wh th slop of thal bottom is small. For vry stp slops, allowacs for this discrpacy must b mad. H L g watr surfac V g V p h rgy-had li hydraulic grad li z L z i p h Fig. 4.a. Acclratd datum rgy-had li V g p h watr surfac hydraulic grad li i H L V g p h z L z Fig. 4.b. Rtardd datum Chaptr 4: NON-UNIFORM FLOW 7

4 4..3. Equatio of o-uiform i V g h watr surfac h (V+dV) g h+dh z b i b dl Fig No-uiform Cosidr a o-uiform i a op chal btw sctio - ad sctio -, i which th watr surfac has a risig trd (i.. th rgy-had gradit is lss tha th bd slop) as show i Fig Lt V = vlocity of watr at sctio -; h = dpth of watr at sctio -; V+dV = vlocity of watr at sctio -; h+dh = dpth of watr at sctio -; i b = slop of chal bd; i = slop of th rgy grad li; dl = distac btw sctio - ad sctio -; b Q z b = avrag width of thal, = discharg through thal, = chag of bottom lvatio btw sctio - ad sctio -, ad h = H L, chag of rgy grad li btw sctio - ad sctio -. Sic th dpth of watr at sctio - is largr tha at sctio -, th vlocity of watr at sctio - will b smallr tha that at sctio -. Applyig Broulli s quatio at sctio - ad sctio -: V (V dv) zb h (h dh) h (4-) g g V V dv i b.dl h h dh i.dl (4-3) g g V.dV i.dl dh i.dl, glctig g b i or b (dv) g (small of scod ordr) (4-4) dh V.dV i dl g.dl (dividig by dl) (4-5) Chaptr 4: NON-UNIFORM FLOW 73

5 dh V.dV ib i (4-6) dl g.dl W kow that th quatity of watr ig pr uit width is costat, thrfor or q = V.h = costat (4-7) dq 0 dl (4-8) d(vh) 0 (4-9) dl Diffrtiatig th abov quatio (tratig both V ad h as variabls), V.dh h.dv 0 (4-0) dl dl dv V dh (4-) dl h dl Substitutig th abov valu of dv dl dh V dh ib i Eq. (4-6), yilds i (4-) dl gh dl dh V ib i dl gh dh i i dl V gh b (4-3) (4-4) Nots: Th abov rlatio givs th slop of th watr surfac with rspct to th bottom of thal. Or i othr words, it givs th variatio of watr dpth with rspct to th distac alog th bottom of thal. Th valu of dh/dl (i.. zro, positiv or gativ) givs th followig importat iformatio: If dh/dl is qual to zro, it idicats that th slop of th watr surfac is qual to th bottom slop. Or i othr words, th watr surfac is paralll to thal bd. If dh/dl is positiv, it idicats that th watr surfac riss i th dirctio of. Th profil of watr, so obtaid, is calld backwatr curv. If dh/dl is gativ, it idicats that th watr surfac falls i th dirctio of. Th profil of watr, so obtaid, is calld dowward curv. Chaptr 4: NON-UNIFORM FLOW 74

6 Exampl 4.: A rctagular chal, 0 m wid ad havig a bd slop of 0.006, is dischargig watr with a vlocity of.5 m/s. Th is rgulatd i such a way that th slop of th watr rgy gradit is Fid th rat at which th dpth of watr will b chagig at a poit whr th watr is ig m dp. Solutio: Giv: width of thal: b = 0 m bd slop: i b = Lt dh dl vlocity of watr: V =.5 m/s slop of rgy li: i = dpth of watr: h = m b th rat of chag of watr dpth. Usig quatio i (4-4): dh dl ib i V gh = As. 4.. GRADUALLY-VARIED STEADY FLOW 4... Backwatr calculatio cocpt Gradually varid is a stady, o-uiform i which th dpth variatio i th dirctio of motio is gradual ough to cosidr th trasvrs prssur distributio as big hydrostatic. This allows th to b tratd as o-dimsioal with o trasvrs prssur gradits othr tha thos du to gravity. For subcritical s th situatio is cotrolld by th dowstram coditios. A dowstram hydraulic structur (.g. bridg pirs, gat) will icras th upstram dpth ad crat a backwatr ffct. This cocpt has b itroducd shortly i sctio Th trm backwatr calculatio rfrs mor grally to talculatio of th logitudial fr-surfac profil for both subcritical ad suprcritical s. Th backwatr calculatio is dvlopd assumig: a o-uiform a stady that th is gradually varid, ad that, at a giv sctio, th rsistac is th sam as for a uiform with th sam dpth ad discharg, rgardlss of trds of th dpth Equatio of gradually-varid I additio to th basic gradually-varid assumptio, w furthr assum that th occurs i a prismatic chal, or o that is approximatly so, ad that th slop of th rgy grad li ca b valuatd from uiform formulas with uiform rsistac cofficits, usig th local dpth as though th wr locally uiform. Rfrrig to Fig. 4.4., th total rgy had at ay cross-sctio is Chaptr 4: NON-UNIFORM FLOW 75

7 V H z h (4-5) g i which z = chal bd lvatio; h = watr dpth, = kitic-rgy corrctio cofficit as itroducd i Chaptr, ad V = ma vlocity. V g slop of rgy grad li, i dh H h bd bd slop i b z dx datum Fig 4.4. Dfiitio sktch for gradually-varid If this xprssio for H is diffrtiatd with rspct to x, toordiat i th dirctio, th followig quatio is obtaid: dh de V i i b with E h (4-6) dx dx g i which i is dfid as th slop of th rgy grad li; i b is th bd slop (= - dz/dx); ad E is th spcific-rgy had (i.. th rgy had with rspct to th bottom). Solvig for de/dx givs th first form of th quatio of gradually varid : de i b i (4-7) dx It appars from this quatio that th spcific-rgy had ca ithr icras or dcras i th dowstram dirctio, dpdig o th rlativ magituds of th bd slop ad th slop of th rgy grad li. Y (973) showd that, i th gral cas, i is ot th sam as th frictio slop i f (= 0 /R, this quatio will b itroducd agai i Chaptr 7) or th rgy dissipatio gradit. Nthrlss, w hav o bttr way of valuatig this slop tha applyig uiform- formulas such as thos of Maig or Chzy. It is icorrct, howvr, to mix th frictio slop, whiclarly coms from a momtum aalysis, with trms ivolvig, th kitic-rgy corrctio (Marti ad Wiggrt, 975). Not: Th bd slop i ad th frictio slop i f ar dfid as: z H o i = si ta ad if x x R rspctivly, whr H is th ma total rgy-had, z is th bd lvatio, is thal slop ad o is th bottom shar strss. Chaptr 4: NON-UNIFORM FLOW 76

8 Th scod form of th quatio of gradually-varid ca b drivd if it is rcogizd de de dh de that ad that, applyig quatio (4-), Fr dx dh dx dh, providd that th Froud umbr is proprly dfid. Th, quatio (4-7) bcoms: dh i i dx Fr b (4-8) Th dfiitio of th Froud umbr i quatio (4-8) dpds o thal gomtry. For a compoud chal, it should b tompoud-chal Froud-umbr, whil for a rgular, prismatic chal, i which d/dh is gligibl, it assums tovtioal rgy dfiitio giv by Q B/gA 3. Th ratio dh/dx i Eq. (4-8) rprsts th slop or th tagt to th watr surfac at ay poit alog thal. This rlatioship thrfor idicats whthr at ay poit alog thal th watr surfac is risig (backwatr coditio) or droppig (drawdow coditio). Immdiatly th followig dductios ca b mad: Wh dh 0 dx, th slop of th watr surfac is droppig i th dowstram dirctio ad th dpth dcrass dowstram. Wh dh 0 dx, th slop of watr surfac is paralll to thal bottom ad uiform xists. This ca b radily s from Eq. (4-8) sic, for this coditio, i b = i must qual zro. Wh dh 0 dx, th slop of watr surfac riss i th dowstram dirctio ad th dpth h icrass dowstram. Wh dh dx, which rquirs that Fr = 0 or Fr =, th slop of th watr surfac must thortically b vrtical. This occurs wh th chags from subcritical to suprcritical, or vic vrsa, as idicatd by th valu of th Froud umbr. Th formulas drivd do ot actually apply ay logr du to th assumptios mad. A vrtical watr surfac also dos ot occur i rality; howvr, a vry oticabl chag i th watr surfac taks plac. This is spcially so wh th chags from blow to abov. I such istac a phomo kow as th hydraulic jump occurs TYPES OF WATER SURFACE PROFILES Classificatio of profils From th forgoig, it is vidt that th rlatioship xprssd i Eq. (4-8) provids a cosidrabl amout of iformatio as to th shap of th watr surfac profil i a op chal. Ivstigatio of this formula yilds th followig rsults: Chaptr 4: NON-UNIFORM FLOW 77

9 . Th rlatioship btw th slop of thal bottom ad th slop of th rgy grad li dtrmis whthr th umrator of th quatio is positiv or gativ.. Th domiator of th quatio is positiv if Fr <.0 ad vic vrsa. I othr words, if th is subcritical (Fr smallr tha ) th domiator is positiv, ad if th is suprcritical (Fr gratr tha ) th domiator is gativ. Toditios at which i a op chal ca tak plac ad th possibl rlatioships btw th obsrvd dpth h o, th ormal dpth at which is uiform h, ad tritical dpth ar illustratd i Fig It is vidt from this figur that thr ar thr zos of chal dpths at which ca b obsrvd: Zo, with h o gratr tha h ad (i.. h o > h > ) Zo, with h o btw h ad (i.. h > h o > ) Zo 3, with h o lss tha h ad (i.. h > > h o ) h o h h h o h h o h o > h > h > h o > h > > h o Fig.4.5. Thr zos of chal dpths Th rlativ bottom slop dfis whthr uiform is subcritical or suprcritical. Dtrmi th associatd Froud-umbr Fr. Fr V R V gh h gr whr R is th hydraulic radius of th op chal. Subcript dots th quilibrium. Th bottom/wall shar strss is dfid as: c V gr i o f f V i i gr c c Fr f b (th frictio slop i f = th bd slop i b ) f f R i b h cf A P.R W hav: A = B.h h, whr P is th quilibrium wttd primtr. B B Chaptr 4: NON-UNIFORM FLOW 78

10 Fr B i b P cf I cas of turbult :. R B For two-dimsioal : h P So, a propr approximatio for Fr is: Fr i b cf If i b < c f, w hav a mild slop (M typ) Th uiform is subcritical: Fr <, h >. If i b > c f, w hav a stp slop (S typ) Th uiform is suprcritical: Fr >, h <. If i b = c f, w hav a critical slop (C typ) Fr =, h = Not: It ca asily b drivd that is Maig s. c g 3 gr, whr C is Chzy cofficit ad C f Two coditioal chal bottom coditios or slops xist. Ths do ot rally costitut op chal, but gravity ca tak plac alog thm. Thy ar as follows: If i b < 0, w hav a advrs slop (A typ) If i b = 0, w hav a horizotal slop (H typ) It should b oticd that h = h. Not: Th actual dpds o th boudary coditio, i.. mild, stp, tc. dos ot tll us aythig about th actual Sktchig profils I thory, for ach of th fiv slop dscriptios abov thr ar thr zos i which ca b obsrvd. It follows th that a total of 5 thortical watr surfac profils ar possibl, prstd i Tabl 4.. Ths profils, togthr with illustratios of practical applicatios, ar show i Fig Whil this figur is for th most part slf-xplaatory, th followig obsrvatios ad xplaatios ar prstd for furthr clarificatio. Mild slop (i b < c f ). Th M curv is grally vry log ad asymptotic to th horizotal ad th li rprstig h o. Th M- ad M3-curvs d i a sudd drop through th li rprstig ad a hydraulic jump, rspctivly. Critical slop (i b = c f ). Sic = h i this cas, thr is o zo, ad oly two watr surfac profils xist, C ad C3. Th C-curv coicids with th watr surfac that corrspods to uiform at critical dpth. Chaptr 4: NON-UNIFORM FLOW 79

11 Stp slop (i b > c f ). All curvs ar rlativly short. S is asymptotic to th horizotal, whras S ad S3 approach h o. Horizotal slop ad Advrs slop chals. I this cas, h is ifiitly larg ad uiform caot tak plac. Hc thr ar o H- or A-profils. Chal slop Zo Tabl 4.. Typs of profils i prismatic chals Dsigatio Zo Zo 3 Zo Rlatio of h o to h ad Zo Zo 3 Gral typ of curv Typ of Mild M h o > h > Backwatr Subcritical Fr <, M h > h o > Drawdow Subcritical h > M3 h > > h o Backwatr Suprcritical C h o > = h Backwatr Subcritical Critical Fr =, C = h o = h Paralll to chal bottom Uiform critical h = C3 = h > h o Backwatr Suprcritical Stp S h o > > h Backwatr Subcritical Fr >, S > h o > h Drawdow Suprcritical h < S3 > h > h o Backwatr Suprcritical Horizotal i b = 0 Advrs i b < 0 No h o > h > No No H h > h o > Drawdow Subcritical H3 h > > h o Backwatr Suprcritical No h o > (h * ) > No No A (h * ) > h o > Drawdow Subcritical h * i parthss is assumd a possitiv valu. A3 (h * ) > > h o Backwatr Suprcritical S Fig. 4.6.a 4.6.b 4.6.c 4.6.d 4.6. M horizotal M M h M M sctio of largmt M Mild slop M3 CDL M3 M3 CDL = critical-dpth li; Fig.4.6.a. Mild slop (0 < i b < c f ) ad xampls of profils = ormal-dpth li Chaptr 4: NON-UNIFORM FLOW 80

12 horizotal C CDL = C = h C3 critical slop C3 Fig.4.6.b. Critical slop (i b = c f > 0) ad xampls of horizotal S S h S CDL S stp slop S3 sctio of largmt S S S3 Fig.4.6.c. Stp slop (i b > c f > 0) ad xampls of profils S3 horizotal H H H3 CDL H3 horizotal slop Fig.4.6.d. Horizotal slop (i b = 0) ad xampls of profils A A CDL A3 A3 advrs slop Fig Advrs slop (i b < 0) ad xampls of Chaptr 4: NON-UNIFORM FLOW 8

13 Prismatic chal with a chag i slop This chal is quivalt to a pair of coctd prismatic chals of th sam cross sctio but with diffrt slop. Svral typical pattrs alog a prismatic chal with a brak or discotiuity i slop ar show i Fig mild M h h mildr (vry log) M M CDL S S3 h stp (vry log) h S stpr CDL M rsrvoir h mild S CDL H S CDL stp h stp rsrvoir H h M mild (vry log) CDL fr ovrfall rsrvoir H h M mild (short) tailwatr CDL Fig Flow profils with a chag i slop Th profils i Fig. 4.7 ar slf-xplaatory. Howvr, som spcial faturs should b mtiod: Th profil ar or at tritical dptaot b prdictd prcisly by th thory of gradually varid, sic th is grally rapidly varid thr. I passig a critical li, th profil should, thortically, hav a vrtical slop. Sic th is usually rapidly varid wh passig tritical li, th actual slop of th profil caot b prdictd prcisly by th thory. For th sam raso, tritical dpth may ot occur xactly abov th brak of thal bottom ad may b diffrt from th dpth show i th figur. Chaptr 4: NON-UNIFORM FLOW 8

14 Composit profils with various cotrols Chals with a umbr of cotrols will hav profils that ca b composd from th diffrt typs of profils prstd i th prvious sctio. Th ability to sktch tomposit profils is i may cass cssary for udrstadig th i th chal or for dtrmiig th discharg. I all cass it is cssary to idtify firstly th cotrols opratig i thal, ad th to trac th profils upstram ad dowstram of ths cotrols. Two simpl cass ar show i Fig. 4.8; i th first cas th slop is mild, i th scod cas stp. Turvs for th mild-slop situatio ar slf-xplaatory, sic thy icorporat may of th faturs alrady discussd. For th stp-slop situatio w hav alrady s that tritical must occur at th had of th slop i.. at th out from th rsrvoir; thraftr thr must b a S-curv tdig towards th uiform-dpth li. Thr must b a S-curv bhid th gat, ad th trasitio from th S- to th S- curv must b via a hydraulic jump. Dowstram of th sluic gat, th will td to th uiform coditio via a S- or S3-curv; thc it procds ovr th fall at th d of th slop. I this cas thr is othig that impls th to sk tritical coditio. I Fig. 4.8 two profils ar draw i dashd lis abov th M3- ad th S-curv. Ths ar loci of dpths cojugatd to torrspodig dpths o th udrlyig ral surfac profils, ad ar thrfor kow as cojugat curvs. Obviously a hydraulic jump will occur whr such a curv itrscts th ral (subcritical) surfac profil dowstram; th cojugat curv thrfor provids a covit mas of dtrmiig th locatio of a hydraulic jump. M cojugat curv M rsrvoir mild slop h M3 jump ovrfall cojugat curv S jump rsrvoir S S3 ovrfall stp slop h Fig Exampls of composit logitudial profils Chaptr 4: NON-UNIFORM FLOW 83

15 4.4. DRAWING WATER SURFACE PROFILES Dirct-stp mthod Tomputatio of a profil by a stp mthod cosists of dividig thal ito short rachs ad dtrmiig rach by rach thag i dpth for a giv lgth of a rach. I pricipl, th dirct-stp mthod could b applid to ithr Eq.(4-7) or Eq. )4-8), but usually is associatd with th formr. Eq. (4-7) is put ito fiit-diffrc form by approximatig th drivativ de/dx with a forward diffrc ad by takig th ma valu of th slop of th rgy grad li ovr th stp siz x = (x i+ x i ) i which th distac x ad th subscript i icras i th dowstram dirctio. Th rsult is: Ei Ei xi xi (4-9) i i b whr i is th arithmtic ma slop of th rgy grad li btw sctio i ad sctio i +, with th slop valuatd idividually from Maig s quatio at across sctio. Th variabls E i+, E i ad i o th right had sid of Eq. (4-9) all ar fuctios of th dpth h. Th solutio procds i a stpwis fashio i x by assumig valus of dpth h ad thrfor valus of th spcific-rgy had, E. As Eq. (4-9) is writt, x icrass i th dowstram dirctio. I gral, upstram computatios utiliz Eq. (4-9) multiplid by ( ), so that turrt valu of th spcific-rgy had is subtractd from th assumd valu i th upstram dirctio ad x bcoms (x i+ x i ), which is gativ. Thrfor, if th quatio is solvd i upstram dirctio for a M-profil, for xampl, tomputd valus of x should b gativ for icrasig valus of h. Dcrasig valus of h should rsult also i gativ valus of x for a M-profil. For a M3- profil, which is suprcritical, icrasig valus of dpth i th dowstram dirctio corrspod to dcrasig valus of th spcific-rgy had, ad Eq. (4-9) idicats positiv valus of x, sic i > i b. Although th dirct-stp mthod is th asist approach, it rquirs itrpolatio to fid th fial dpth at th d of th profil i a chal of spcifid lgth. Som car must b tak i spcifyig startig dpths ad chckig for dpth limits i a computr program. I a M-profil, for xampl, th startig dpth should b tak slightly gratr tha th computd critical dpth, if it is a cotrol, bcaus of th slight iaccuracy ihrt i th umrical valuatio of critical dpth. I additio, th M-profil approachs th ormal dpth asymptotically i th upstram dirctio, so that som arbitrary stoppig limit must b st, such as 99% of th ormal dpth. Exampl 4.: A trapzoidal chal has a bottom width b of 8.0 m ad a sid slop ratio of :. Th Maig s of thal is 0.05 m -/3 s, ad thal is laid o a slop of If thal ds i a fr ovrfall, comput th watr surfac profil for a discharg of 30 m 3 /s. Solutio: Giv: bottom width: b = 8.0 m sid slop ratio: m: = : Maig s : = 0.05 m -/3 s bd slop: i b = 0.00 discharg: Q = 30 m 3 /s Comput th watr surfac profil. m = h b B Chaptr 4: NON-UNIFORM FLOW 84

16 First, th ormal dpth ad tritical dpth must b dtrmid. Maig s quatio rads as: 3 Q.A.R.i b with trapzoidal chal cross-sctio: A y (b mh ) ad hydraulic radius: A h (b mh ) R P b h m So, th Maig quatio ca b rwritt as: ib A A [h (b mh )] Q. 3 A.R A. P P b h m 5 3 h (8.0 y or, m 3.7 m 8 h From th Froud formula: V Q QB Fr 3 gd A A A g. g B whr B = b+ mh; D = A/B, th hydraulic dpth. I cas of critical : or 3 3 c A c c c 3 c Bc c QB h b h Fr A g b mh 3 h c 8 hc 5 30 m 8 h 9.8 c Chaptr 4: NON-UNIFORM FLOW 85 Q g h =.754 m =.03 m Du to h >, this is a mild slop (i b = 0.00): w hav a M-profil that has a critical dpth at th fr ovrfall as boudary coditio. Th dirct-stp mthod, as applid to Exampl 4., ca b solvd i a spradsht (Microsoft Excl) as formattd i Tabl 4.. Th valus of h ar slctd i th first colum (). Th formulas for dtrmiig th spcific-rgy had E, colum (5), ad th slop of th rgy grad li i, colum (6), for a giv dpth, ar prstd blow. Th arithmtic ma of i (i bar = i ) is computd i colum (7), ad thag i spcificrgy had E, DlE, i th upstram dirctio is show i colum (8). Formulas applid i th spradsht: V E h A y(b mh) g E Dl.E E E (V) Dl.E P b h m i x Dl.x 4 3 Q Q R (ib i bar ) R ; V (i i ) x Dl.E /(i i ) P A i bar (i i ) /

17 Th, th quatio of gradually varid i fiit diffrc form is solvd for th E distac stp x, as x = m i th first stp. i b i Tabl 4.. Watr surfac profil computatio by th dirct-stp mthod. h A R V E i i bar Dl.E Dl.x Sum Dl.x () () (3) (4) (5) (6) (7) (8) (9) (0) E E E-03.6E E E-03.3E E E-03.35E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-03.05E E-03.89E-03.0E E-03.74E-03.4E E-03.60E-03.8E E-03.46E-03.E E-03.34E-03.6E E-03.E-03.30E E-03.E-03.33E E-03.0E-03.36E E-03.9E-03.39E E-03.8E-03.4E E-03.73E-03.44E E-03.65E-03.47E E-03.57E-03.49E E-03.50E-03.5E E-03.43E-03.53E E-03.37E-03.55E E-03.3E-03.57E E-03.5E-03.59E E-03.0E-03.60E E-03.5E-03.6E E-03.0E-03.63E E-03.05E-03.65E E-03.0E E Not that at last thr sigificat figurs should b rtaid i E to avoid larg roud-off rrors wh th diffrcs ar small i compariso to th valus of E. I th last colum, tumulativ valus of x ar giv, ad ths rprst th distac from th startig poit whr th spcifid dpth h is rachd. Aftr th first stp, uiform icrmts i dpth h, with h icrasig i th upstram dirctio, ar utilizd. Th valus of h ar stoppd at th fiit limit of.745 m, which is 99.5% of th ormal dpth. Th lgth rquird to rach this poit is 7 m, which is th lgth rquird for this chal to b Chaptr 4: NON-UNIFORM FLOW 86

18 cosidrd hydraulically log, but that lgth varis, i gral. Th dpth icrmts ca b halvd util thag i profil lgth bcoms accptably small. Altrativly, smallr icrmts i dpta b usd i rgios of rapidly chagig dpth, ad largr icrmts may b appropriat i rgios of vry gradual dpth-chags. A portio of th computd M-profil is show i Fig M watr surfac-profil computd by th dirct-stp mthod,4,8 dpth (m), 0, distac upstram (m) Fig M-curv draw i xampl 4.. Exampl 4.3: A trapzoidal chal with a bottom width of 5 m, a sid slop of :, ad a Maig of 0.03 m -/3 s carris a discharg of 50 m 3 /s at a bd slop of Comput by th dirct-stp mthod th backwatr profil cratd by a dam that backs up th watr to a dpth of 6 m immdiatly i fot of th dam. Th upstram d of th profil is assumd at a dpth qual to % gratr tha th ormal dpth. Solutio: Giv: bottom width: b = 5.0 m sid slop ratio: m: = : Maig s : = 0.03 m -/3 s bd slop: i b = discharg: Q = 50 m 3 /s watr dpth: h = 6.0 m (i frot of dam) Comput th watr surfac profil. A M Dam 6 m CDL h i b = Similar to Exampl 4.: th ormal dpth ad tritical dpth ar: 5 3 [h (b mh )] Q. 3 i b h b m h =.87 m Chaptr 4: NON-UNIFORM FLOW 87

19 c 3 hc b hc Q b mh g =.57 m Bcaus h > thal slop is mild. Th profil lis i zo ad thrfor it is a M curv. Th rag of dpth is 6m at th dowstram d ad (0% x,87) =.90 m at th upstram d. Studts should try to mak a tabl computatio, which is slfxplaatory ad draw a M curv as Fig. 4.0 blow: M watr surfac-profil computd by th dirct-stp mthod watr dpth (m) i frot of dam distac upstram (m) Fig M-curv draw i xampl Dirct umrical itgratio mthod Th dirct itgratio mthod is applicabl to prismatic chals oly. This mthod uss Eq. 4-8 as govrig quatio: dh ib i Fr dx dh (4-0) dx Fr i i I its itgratd form, Eq. 4-0 bcoms: xi hi hi Fr dx xi xi dh g(h)dh i i xi hi b hi b (4-) Th itgrad o th right had sid of Eq. (4-) is a fuctio of h, g(h), whica b itgratd umrically to obtai a solutio for x, as show as i Fig. 4.. g(h) ara = x i+ - x i h o h i h i+ h h Fig. 4.. Watr surfac-profil computatio by dirct umrical itgratio Chaptr 4: NON-UNIFORM FLOW 88

20 A varity of umrical itgratio tchiqus ar availabl, such as th trapzoidal rul ad Simpso s rul, which ar commoly usd to fid tross-sctioal ara of a atural chal, for xampl. Simpso s rul is of highr ordr i accuracy tha th trapzoidal rul, which simply mas that th sam umrical accuracy ca b achivd with fwr itgratio stps. Applicatio of th trapzoidal rul to th right-had sid of Eq. (4-) for a sigl stp producs: g(h i) g(h i) xi xi hi hi (4-) To dtrmi th full lgth of a profil, (x l x o ), multipl applicatio of th trapzoidal rul rsults i l g(h o) g(h l) g(h i) i L x l xo h (4-3) whr L is th profil lgth ad h = (h i+ h i ) is th uiform dpth-icrmt. Bcaus th global trucatio rror i th multipl applicatio of th trapzoidal rul is of ordr (h), halvig th dpth icrmt will rduc th rror i th profil lgth by a factor ¼. By succssivly halvig th dpth itrval, th rlativ chag i th profil lgta b calculatd with th procss cotiuig util th rlativ rror is lss tha som accptabl valu. Chaptr 4: NON-UNIFORM FLOW 89

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

SOLUTIONS TO CHAPTER 2 PROBLEMS

SOLUTIONS TO CHAPTER 2 PROBLEMS SOLUTIONS TO CHAPTER PROBLEMS Problm.1 Th pully of Fig..33 is composd of fiv portios: thr cylidrs (of which two ar idtical) ad two idtical co frustum sgmts. Th mass momt of irtia of a cylidr dfid by a

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

Student s Printed Name:

Student s Printed Name: Studt s Pritd Nam: Istructor: CUID: Sctio: Istructios: You ar ot prmittd to us a calculator o ay portio of this tst. You ar ot allowd to us a txtbook, ots, cll pho, computr, or ay othr tchology o ay portio

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE Ya-Fi Gao ad A. F. Bowr Divisio of Egirig, Brow Uivrsity, Providc, RI 9, USA Appdix A: Approximat xprssios for

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

4. Money cannot be neutral in the short-run the neutrality of money is exclusively a medium run phenomenon.

4. Money cannot be neutral in the short-run the neutrality of money is exclusively a medium run phenomenon. PART I TRUE/FALSE/UNCERTAIN (5 points ach) 1. Lik xpansionary montary policy, xpansionary fiscal policy rturns output in th mdium run to its natural lvl, and incrass prics. Thrfor, fiscal policy is also

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

A Strain-based Non-linear Elastic Model for Geomaterials

A Strain-based Non-linear Elastic Model for Geomaterials A Strai-basd No-liar Elastic Modl for Gomatrials ANDREW HEATH Dpartmt of Architctur ad Civil Egirig Uivrsity of Bath Bath, BA2 7AY UNITED KINGDOM A.Hath@bath.ac.uk http://www.bath.ac.uk/ac Abstract: -

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

SOLVED PROBLEMS IN FOUNDATION ENGINEERING

SOLVED PROBLEMS IN FOUNDATION ENGINEERING Probl # (6) rctagular footig is actd by a vrtical load of 8060 kn ad two horizotal forcs of 500 kn i both th log ad th short dirctios with a distac of 0.6 fro th groud surfac. Dtri:. Th bas prssur at th

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

Lens Design II. Lecture 6: Chromatical correction I Herbert Gross. Winter term

Lens Design II. Lecture 6: Chromatical correction I Herbert Gross. Winter term Ls Dsig II Lctur 6: Chromatical corrctio I 05--4 Hrbrt Gross Witr trm 05 www.iap.ui-a.d Prlimiary Schdul 0.0. Abrratios ad optimizatio Rptitio 7.0. Structural modificatios Zro oprads, ls splittig, ls additio,

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

ECE 340 Lecture 38 : MOS Capacitor I Class Outline:

ECE 340 Lecture 38 : MOS Capacitor I Class Outline: ECE 34 Lctur 38 : MOS Capacitor I Class Outli: Idal MOS Capacitor higs you should ow wh you lav Ky Qustios What ar th diffrt ias rgios i MOS capacitors? What do th lctric fild ad lctrostatic pottial loo

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN WITH APPLICABILITY OF QUASI THEORY

ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN WITH APPLICABILITY OF QUASI THEORY It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Rsarch Papr ISSN 78 0149 www.ijmrr.com Vol., No. 1, Jauary 013 013 IJMERR. All Rights Rsrvd ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN

More information

CHAPTER CHAPTER. Discrete Dynamical Systems. 9.1 Iterative Equations. First-Order Iterative Equations. (b)

CHAPTER CHAPTER. Discrete Dynamical Systems. 9.1 Iterative Equations. First-Order Iterative Equations. (b) CHAPTER CHAPTER 9 Discrt Damical Sstms 9. Itrativ Equatios First-Ordr Itrativ Equatios For Problms - w us th fact that th solutio of = + a + b is a = a + b. a. = + + = (a),(c) Bcaus a=, b=, =, = + = 5

More information

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation Papr 17, CCG Aual Rport 11, 29 ( 29) Compariso of Simpl Idicator rigig, DMPE, Full MV Approach for Catgorical Radom Variabl Simulatio Yupg Li ad Clayto V. Dutsch Ifrc of coditioal probabilitis at usampld

More information

7 Finite element methods for the Timoshenko beam problem

7 Finite element methods for the Timoshenko beam problem 7 Fiit lmt mtods for t Timosko bam problm Rak-54.3 Numrical Mtods i Structural Egirig Cotts. Modllig pricipls ad boudary valu problms i girig scics. Ergy mtods ad basic D fiit lmt mtods - bars/rods bams

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at   Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Availabl oli at www.scicdirct.com Ergy Procdia 4 (01 170 177 Ergy Procdia 00 (010) 000 000 Ergy Procdia www.lsvir.com/locat/procdia www.lsvir.com/locat/xxx GHGT-10 Exprimtal Studis of CO ad CH 4 Diffusio

More information

Principles of Humidity Dalton s law

Principles of Humidity Dalton s law Principls of Humidity Dalton s law Air is a mixtur of diffrnt gass. Th main gas componnts ar: Gas componnt volum [%] wight [%] Nitrogn N 2 78,03 75,47 Oxygn O 2 20,99 23,20 Argon Ar 0,93 1,28 Carbon dioxid

More information

Free Surface Hydrodynamics

Free Surface Hydrodynamics Water Sciece ad Egieerig Free Surface Hydrodyamics y A part of Module : Hydraulics ad Hydrology Water Sciece ad Egieerig Dr. Shreedhar Maskey Seior Lecturer UNESCO-IHE Istitute for Water Educatio S. Maskey

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information