ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN WITH APPLICABILITY OF QUASI THEORY

Size: px
Start display at page:

Download "ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN WITH APPLICABILITY OF QUASI THEORY"

Transcription

1 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Rsarch Papr ISSN Vol., No. 1, Jauary IJMERR. All Rights Rsrvd ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN WITH APPLICABILITY OF QUASI THEORY Tjpratap Sigh 1 *, Sajv Shrivastava 1 ad Harbas Sigh Br *Corrspodig Author: Tjpratap Sigh, tjpratap50@yahoo.com Th papr is basd o th aalysis of ustady hat coductio through short fi with applicability of quasi thory. Th ara xposd to th surroudig is frqutly icrasd by th attachmt of protrusios to th surfacs, ad th arragmt provids a mas by which hat trasfr rat ca b substatially improvd. Th protrusios ar calld fis. Th fis ar commoly usd o small powr dvlopig machi as gi usd for motor cycl as wll as small capacity comprssor. Earlir, Wor udr stady stat coductio had b carrid out xtsivly. Ustady hat coductio aalysis for th fis is big do for calculatio of hat trasfr. Ustady Closd form solutios had b drivd arlir by various rsarchrs. Exact solutios ar giv for th ustady tmpratur i flux-bas fis with th mthod of Gr s Fuctios (GF) i th form of ifiit sris for thr diffrt tip coditios. Th tim of covrgc is improvd by rplacig th sris part by closd form solutio. Th prst study supplis a w approach to calculat th thrmal prformac of th short fi. For th short fi cas, xact fi solutio ad a quasi-stady solutio is prstd. Numrical valus ar prstd ad th coditios udr which th quasi-stady solutio is accurat ar dtrmid. Dimsiolss tmpratur distributio is prstd for both quasi stady thory ad xact fi thory. Kywords: Ustady hat, Gr fuctio, Protrusio, Hat trasfr INTRODUCTION Th laws which ar govrig hat trasmissio ar vry importat to th girs i th dsig, costructio, tstig ad opratio of hat xchag apparatus. Hat trasfr is th study of th rat at which rgy is trasfrrd across a surfac of itrst du to tmpratur gradits at th 1 Dpartmt of Mchaical Egirig (Thrmal Egirig), Shri Sharacharya Collg of Egirig ad Tchology (SSCET, Bhilai), Chhattisgarh, Idia. Dpartmt of Mchaical Egirig (Thrmal Egirig), Natioal Istitut of Tchology (NIT, Raipur), Chhattisgarh, Idia. 69

2 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 surfac, ad tmpratur diffrc btw th diffrt surfacs. This variatio i tmpratur is govrd by th pricipl of rgy cosrvatio which wh applid to a cotrol volum or a cotrol mass, stats that th sum of th flow of rgy ad hat across th systm, th wor do o th systm ad th rgy stord ad covrtd withi th systm is zro. Th mchaical gir dal with problms of hat trasfr i th fild of itral combustio gis, stam gratio, rfrigratio ad hatig ad vtilatio. To stimat th cost, th fasibility ad siz of th quipmt cssary to trasfr a spcifid amout of hat i a giv tim, a dtaild hat trasfr aalysis must b mad. Th dimsios of boilrs, hatrs, rfrigrators ad hat xchagrs dpd ot oly o th amout of hat to b trasmittd but rathr o th rat at which hat is to b trasfrrd udr giv coditios. Thrmal systm cotais mattr or substac ad this substac may chag by trasformatio or by xchag of mass with th surroudigs. To prform a thrmal aalysis of a systm, w d to us thrmodyamics, which allows for quatitativ dscriptio of th substac. This is do by dfiig th boudaris of th systm, applyig th cosrvatio pricipls ad xamiig how th systm participats i thrmal rgy xchag ad covrsio. Th ustady rspos of fis is importat i a wid rag of girig dvics icludig hat xchagrs, clutchs, motors ad so o. Hat coductio is icrasigly importat i various aras, amly i th arth scics, ad i may othr volvig aras of thrmal aalysis. A commo xampl of hat coductio is hatig a objct i a ov or furac. Th matrial rmais statioary throughout, glctig thrmal xpasio as th hat diffuss iward to icras its tmpratur. Th importac of such coditios lads to aalyz th tmpratur fild by mployig sophisticatd mathmatical ad advacd umrical tools. Th sctio cosidrs th various solutio mthodologis usd to obtai th tmpratur fild. Th objctiv of coductio aalysis is to dtrmi th tmpratur fild i a body ad how th tmpratur varis withi th portio of th body. Th tmpratur fild usually dpds o boudary coditios, iitial coditio, matrial proprtis ad gomtry of th body. W hy o d to ow tmpratur fild. To comput th hat flux at ay locatio, comput thrmal strss, xpasio dflctio, dsig isulatio thicss, hat tratmt mthod, ths all aalysis lads to ow th tmpratur fild. Th solutio of coductio problm ivolvs th fuctioal dpdc of tmpratur o spac ad tim coordiat. Obtaiig a solutio mas dtrmiig a tmpratur distributio which is cosistt with th coditios o th boudaris ad also cosistt with ay spcifid costraits itral to th rgio. May rsarchrs hav cotributd i ustady hat coductio through fis. Doaldso ad Shouma (197) studid th trasit tmpratur distributio i a covctig straight fi of costat ara for two distict cass, amly, a stp chag i bas tmpratur, ad a stp chag i bas hat flow rat. Th tip of th fi is isulatd. Th authors dvlopd th quatios for th trasit tmpratur distributio ad th hat 70

3 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 flow rat for th two aformtiod cass, ad prst thir rsults graphically. Also icludd is a summary of thir xprimtal wor to vrify thir rsults for th cas of a stp fuctio i hat flow rat. Chapma (1959) who studid th trasit bhaviour of a aular fi of uiform thicss subjctd to a sudd stp chag i th bas tmpratur. His itrst i circular aular fis tmmd from th umrous applicatios of ths typ of fis, spcially o cylidrs of air coold itral combustio gis. Chapma (1959) dvlopd quatios that giv th tmpratur distributio withi th fi, th hat rmovd from th sourc ad th hat dissipatd to th surroudigs, all as fuctios of tim. Ths quatios i graphical form ar vry usful for th dsig girs. Suryaarayaa (1975 ad 1976) also studid th trasit rspos of straight fis of costat cross-sctioal ara. Howvr, rathr tha usig th sparatio of variabls tchiqu followd by Doaldso ad Shouma, h utilizd th Laplac trasforms i ordr to dvlop th solutios for small ad larg valus of tim, wh th bas of th fi is subjctd to a stp chag i tmpratur or hat flux. Th tip of th fi is isulatd i additio, th us of th Laplac trasforms mad it asir for Suryaarayaa to dvlop solutios for th cas of a fi subjctd to a siusoidal tmpratur or hat flux at its bas. Suryaarayaa (1976) has providd a aalysis of th hat trasfr that tas plac from o fluid to aothr sparatd by a solid boudary with fis o o sid. Aziz ad Na (1980) cosidrd th trasit rspos of a smi-ifiit fi of uiform thicss, iitially at th ambit tmpratur, subjctd to a stp chag i tmpratur at its bas, with fi coolig govrd by a powrlaw typ dpdc o tmpratur diffrc. Th choic of a smi-ifiit gomtry abld th trasformatio of th govrig oliar partial diffrtial quatios ito a squc of similarity typ liar prturbatio quatios. Aziz ad Na also discussd th applicability of th rsults to fiit fis. Mao ad Roo (1994) also usd th Laplac trasform mthod to study straight fis with thr diffrt trasits: a stp chag i bas tmpratur; a stp chag i bas hat flux ad a stp chag i fluid tmpratur. Trasit fis of costat crosssctio hav also b studid with th mthod of Gr s fuctios (Bc t al., 199, pp ), a flxibl ad powrful approach that ar applicabl to ay combiatio of d coditios o th fi. Aziz ad Kraus (1995) prst a varity of aalytical rsults for trasit fis, dvlopd by sparatio of variabl ad Laplac trasform tchiqus. Rsults discussd iclud rctagular fis with thr diffrt bas coditios, rctagular fis with powr law covctiv hat loss ad radial fis, alog with svral spcific xampls. Aziz ad Kraus also prst a comprhsiv litratur rviw. Th matrial o trasit fis of costat cross-sctio is also icludd i a boo by Kraus t al. (001, Chap.16). Kim (1976) dvlopd a approximat solutio to th trasit hat trasfr i straight fis of costat cross-sctioal ara ad costat physical ad thrmal proprtis. 71

4 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Th author utilizd th Katorovich mthod i th variatio formulatio to provid a simpl xprssio of th xact form of th solutio. I som fi applicatios, Nwto s law of coolig is ot applicabl, ad a powr-law typ dpdc of covctiv hat flux o tmpratur bttr dscribs th coolig procss. Such cass iclud coolig of fis du to film boilig, atural covctio, uclat boilig, ad radiatio to spac at absolut zro. Th wor discussd so far has focusd o th trasit rspos of fis of simpl gomtry such as circular aular fis ad straight fis. I additio, svral simplifyig assumptios wr utilizd such as uiform thicss, costat cross-sctioal ara, smi-ifiit lgth, isulatd tip ad small fi thicss-to-lgth ratio to sur o dimsioal hat coductio. Rctly, wor has icludd fis of various shaps ad crosssctios, two ad thr dimsioal hat trasfr, ad practical applicatios of fid hat xchagrs. Campo ad Salazar (1996) xplord th aalogy btw th trasit coductio i a plaar slab for short tims ad th stady stat coductio i a straight fi of uiform crosssctio. Thy mad us of a hybrid computatioal mthod, ow as th Trasvrsal Mthod Of Lis (TMOL), to arriv at approximat aalytical solutios of th ustady-stat hat coductio quatio for short tims i a pla havig a uiform iitial tmpratur ad subjctd to a Drichlt boudary coditio. Th rsultig solutios ar suitabl for obtaiig quality short-tim tmpratur distributios withi th slab wh it is subjctd to a Dirichlt boudary coditio, or a Robi boudary coditio for which th covctiv hat trasfr cofficit is vry larg ad/or th thrmal coductivity of th slab matrial is vry small. I a applicatio typ study, Saha ad Acharya (003) coductd a dtaild paramtric aalysis of th ustady thrdimsioal flow ad hat trasfr i a pi-fi hat xchagr. Th wor was motivatd by th dsir to hac th prform-of compact hat xchagrs, which ar dsigd to provid high hat trasfr surfac ara pr uit volum ad to altr th fluid dyamics to hac mixig. Thr hav b svral umrical studis of trasit fis combid with complicatig factors, such as atural covctio (Hsu ad Ch, 1991; ad Bmadda ad Lacroix, 1996), spatial arrays of fis (Tafti t al., 1999; ad Saha ad Acharya, 004) ad phas chag matrials (Tutar ad Aoca, 004). Thr ar fw publicatios o trasit xprimts for dtrmiig hat trasfr cofficits i fis. Mutlu ad Al-Shmmri (1993) studid a logitudial array of straight fis suddly hatd at th bas. Th istataous hat trasfr cofficit was foud at o poit o th fi as a ratio of th masurd tmpratur to th masur hat flux. Thr ar svral paprs o ivrs tchiqu for dtrmiatio of hat trasfr cofficits from tmpraturs masurd i compact bodis suddly placd i a Covctio viromt (Stolz, 1960; ad Osma ad Bc, 1990). I ths studis, th hat trasfr cofficit is foud from a systmatic compariso btw th trasit data ad a mathmatical modl of th hat coductio i th body of itrst. 7

5 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 EXACT UNSTEADY SOLUTIONS OF FINS FOR THREE DIFFERENT TIP CONDITIONS Cosidr a straight fi iitially i quilibrium with th surroudig fluid viromt at tmpratur T. Th fi has a costat crosssctioal ara, but may b of ay shap (pi, rctagular, tc.). For tim t > 0 a stady hat flux is applid to th bas of th fi. Th tmpratur i th fi satisfis th followig quatios. m T m T T x 1 T x ; 0<x<L...(1) At t = 0, T(x, 0) T = 0...() T x At x = 0, q0...(3) T x At x = L, h T T 0...(4) Quatity m is th fi paramtr giv by hah V. Th boudary coditio at x = L is a gral coditio that rprsts o of thr diffrt tip coditios for th fi. For a tip coditio of th first id, sttig = 0 ad h = 1 rprsts a spcifid d tmpratur (at T = T ). For a tip coditio of th scod id, sttig = ad h = 0 rprsts a isulatd d coditio. For a tip coditio of th third id, sttig = rprsts covctio at x = L. Usually th covctiv cofficit at th d of th fi is ta as sam as that alog th sids of th fi (i.., h = h i gral). Hr, th rsults will b writt out for thr tip coditios. For th tmpraturd coditio (first id), T x, t T q 0 L cos x / L 1 m L 1 xp m L t / L...(5) Whr = ( 1/); For th isulatd d coditio (scod id), T x, t T q m t 1 0 L q0 L cos x / L 1 m L m L 1 xp m L t / L...(6) Whr = ad for covctiv d coditio. T x, t T q 0 L B cos x / L 1 B B m L 1 xp m L t / L...(7) Whr satisfis ta = B Ad whr B = h L/. Each solutio cotais a sris that should b cosidrd i two parts: a trasit part with a xpotial factor ad a stady part with o xpotial factor. Each of th trasit sris cotais a xpotial factor with argumt m L t/l, which dfis th rat of dcay of th ustady. Th dcay rat dpds o fi ffcts (through m L ) ad also o th tip coditio (through ). Th sris solutio for th ustady tmpratur i a flux-bas fi is dvlopd by th mthod of Gr s fuctios. First, a trasformatio (Ozisi, 1993) is usd to rmov th fi trm from th hat coductio quatio. Lt T m t T W...(8) 73

6 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 ad th trasform Equatios (1)-(4) to giv: w x 1 w t ; 0 < x < L...(9) At t = 0, W(x, 0) = 0...(10) At x = 0, W x m t q0...(11) w x At x = L, h W 0...(1) This trasformd problm may b solvd by th mthod of Gr s fuctios i th form (Bc t al., 199, p. 165). W t t 0 0 m t x, t q G x, t x 0, tdt...(13) Th Gr s fuctio associatd with fuctio W is that for a pla wall, giv by Col (008). G x, t x, t 1 x x 0 x N xx x t t / L N...(14) Th first trm (for = 0) is dd oly for a typ (isulatd) boudary at x = L. Eig fuctios X, Eig valus, ad orms N ar dtrmid by th boudary coditios o th fi. For th flux-bas fis of itrst hr, th Eig fuctios ar: X x L cos...(15) Ad th ig valus ad orms ar giv i Tabl 1. Th umbr systm i Tabl 1 for th thr cass listd is XJ whr J = 1,, or 3 to rprst tip coditios of th first id (tmpratur), scod id (isulatd) or third id (covctio), rspctivly. Aftr th tim itgral i Equatio (13) is valuatd, th trasformatio i Equatio (8) ca b rvrsd to fid tmpratur T i th form: T x, t T q m t 1 0 L L q0 L cos x / L 1 N0 m L m L 1 xp m L t / L...(16) Agai, th first trm is oly usd wh th fi tip is isulatd (s Kraus t al., 001, p. 765) for a idpdt drivatio of th isulatd-tip cas). Th abov xprssio, with th ig valus ad orms ar giv i Tabl 1, is limitd to fis with a spcifid hat flux at th bas (x = 0). Howvr, th sam approach could b usd for fis with othr bas coditios with th appropriat pla wall Gr s fuctio. Th pla-wall Gr s fuctios for th tmpratur-bas fi (typ 1 boudary at x = 0) ad th fi with th bas tmpratur applid through a cotact coductac (typ 3 boudary at x = 0) ar availabl lswhr (s Bc t al., 199). Tabl 1: Eig Valus for Thr Diffrt Tip Coditios Cas LN or Eig Coditio X1 1 X ; 0 X3 1; = 0 B B B ta( ) = B Improvmt of Sris Covrgc It has log b ow that classic solutios for th tmpratur i a body hatd o a boudary cotai a slowly covrgig stadystat sris (Ozisi, 1993). I this sctio, th 74

7 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 covrgc of th trasit solutio is improvd by rplacig th stady sris by a fully summd form. Although th stady-fi solutios ar wll ow, a uifid solutio is prstd with th mthod of Gr s fuctios. Th stady tmpratur satisfis th followig quatios. T hah x V T T 0; 0 < x < L...(17) T x At x = 0, q0...(18) T x At x = L, h T T 0...(19) Agai, th boudary coditio at x = L rprsts thr ids of tip coditios. Usig th mthod of Gr s fuctios, th stadyfi tmpratur has th form Col (004). T q xt 0 GX J x, x 0...(0) Th symbol for Gr s fuctio G XJ dots a Cartsia coordiat systm symbol X, boudary of th scod id at x = 0 (symbol ), ad boudary of typ J at x = L (symbol J) for J = 1,, or 3. This umbrig systm is usd to catalog th may GF availabl o th Library wb sit ( Tabl blow shows th ig valus for thr diffrt tip coditios. Gr s fuctio G XJ for th stady-fi is giv by Col (008). G X J, x x R m m L xx m Lx x D xx m x x D Whr D = m (1 R. ml )...(1) Cofficit R is dtrmid by th tip coditio: 1 R 1 ml B ml B Whr B = h L/. typ 1 at x L typ at x L typ 3 at x L Th abov GF may b valuatd at x = 0 ad substitutd ito Th abov tmpratur xprssio, Equatio (0), to giv q L R m Lx 0 x T...() T ml ml R mx Whr cofficit R is giv i th prvious pag. Altratly, stady-fi solutios may b obtaid from computr program TFIN dscribd prviously (Col, 004) that produc aalytical xprssios for th stady tmpratur i fis udr a varity of boudary coditios. Program TFIN is also availabl for dowload at th Gr s Fuctio Library (Col, 008). Nxt th closd-form stady solutios giv abov ar usd i th trasit-fi solutios giv arlir to rplac th slowly covrgig sris by rplacig th sris stady trm with o sris stady trm as obtaid i th Equatio (). Th improvd-covrgc form of th trasit tmpratur i flux-bas fis ar giv by: For th tmpratur tip coditio (first id), T x, t T q0 L mx ml 1 m L ml x 75

8 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 q 0 L cos x / L 1 m L xp m L t / L...(3) Whr = ( 1/) For th isulatd d coditio (scod id), T x, t q0 L T q mx m t q0 L ml m L m Lx ml 1 0 L cos x / L 1 m L xp m L t / L...(4) Whr = ad for covctiv tip coditio (third id) T x, t T q0 L ml B m L ml B ml B ml 1 ml B x ml mx q0 L cos x / L B m L B B 1 xp m L t / L...(5) Whr satisfis ta = B ad whr B = h L/ It is istructiv to xami ths thr tmpratur solutios as a group. Each cotais a stady trm ad ach cotais a additioal trm, a o-sris trasit. Howvr, th isulatd-tip solutio uiquly cotais aothr trm, a o-sris trasit. Quasi Stady Solutio for Short Fis Th short fi is of itrst for our particular applicatio. Th xact tmpratur xprssio for this cas cotais two trms: a sris stady trm ad a sris trasit trm. Th sris cotais a xpotial factor with argumt m L +. By comparig ths argumts, it is clar that as tim icrass th sris trm will dcay mor rapidly. This suggsts that a quasi-stady solutio may b costructd of th form T q (x, t) = T s (x) + T L (t) Hr T s is th stady solutio trm ad T L is th trasit solutio trm. Both th trm cotai sris trm. I quasi stady approach, sris stady trm is big trasformd i to a o sris trm which trasforms th xprssio i to a asily computd algbraic xprssio. Basd o th abov discussio of xpotial argumts, th quasi-stady solutio should b accurat for latr tim. Th umrical rsults giv i th xt sctio ar prstd with th followig dimsiolss variabls: T T X x / L dt t / L q0 L M Bi h v A h Bi A h L v whr = Dimsiolss tmpratur = Dimsiolss locatio = Dimsiolss tim M = Fi paramtr Bi = Biot umbr With ths paramtrs, th dimsiolss quasi-stady tmpratur for short fi is giv by puttig th abov valus i th Equatio (5): 76

9 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 M M M M B M B M M B M B M 1 1 ta cos ta 1 ta M xp M...(6) Ad th dimsiolss xact fi tmpratur for short fi is giv by: 1 1 ta 1 ta ta xp M...(7) 1 Whr satisfis ta = B with dimsio lss paramtr hr = RESULTS AND DISCUSSION Accuracy of Quasi Stady Solutio Th quasi-stady solutio is compard with th xact trasit solutio to dtrmi th coditios udr which th quasi-stady solutio is accurat. Diffrt dimsiolss paramtr wr cosidrd (M, ad locatio) for obtaiig th tmpratur distributio curvs. Whil variatio of o paramtr was cosidrd th othr variabls wr pt costat as idicatd i th graphs. Basd o th aalysis, quasi-stady solutio has b proposd as a accurat solutio at larg dimsiolss tims, which is idpdt of gomtry of th problm. Accuracy of Quasi Stady Solutio for M = 1 at Dimsiolss Locatios 0.0, 0.5 ad 1.0 Figurs 1, ad 3 shows th (dimsiolss) tmpratur vrsus tim at thr diffrt positios o th fi, all for M = 1.0. For all valus of dimsiolss tim th quasi-stady thory stimats th xact valus at x/l = 0 ad x/l = 1.0. For all locatios th agrmt improvs as tim icrass. Figur 1: Tmpratur History i a Fi of Costat Cross Sctio for Both Quasi Stady Thory ad Exact Thory for M = 1 at Locatio x/l = X =

10 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Figur : Tmpratur History i a Fi of Costat Cross Sctio for Both Quasi Stady Thory ad Exact Thory for M = 1 at Locatio x/l = X = 0.5 Figur 3: Tmpratur History i a Fi of Costat Cross Sctio for Both Quasi Stady Thory ad Exact Thory for M = 1 at Locatio x/l = X = 1.0 Figurs 1, ad 3 shows th (dimsiolss) tmpratur vrsus tim at thr diffrt positios o th fi, all for M = 1. 78

11 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Th quasi-stady thory stimats th xact valus at x/l = 0.0, 0.5 ad 1.0. For all locatios th agrmt improvs as tim icrass. Accuracy of Quasi Stady Solutio For = X = 0 at Fi Paramtr M = 0., 1.0 ad 5.0 Figurs 4, 5 ad 6 shows tmpratur vrsus tim at X = 0 for M = 0., 1.0 ad 5.0. At M = 5.0 th fi trasit ds quicly so that this fi rachs stady-stat at about = 0.1. As M dcrass th tmpratur distributio tas logr ad logr to rach stady-stat. Fi paramtr M may b itrprtd as a ratio of thrmal rsistacs. Spcifically, M is th thrmal rsistac alog th fi lgth dividd by th covctiv thrmal rsistac from th surfac of th fi. Thus wh M is small, th covctiv thrmal rsistac from th surfac of th fi is larg compard to th thrmal rsistac alog th fi, producig a log, slow trasit. Spcific valus of th dimsiolss tmpratur i th quasi-stady thory for svral valus of dimsiolss tim ad svral valus of fi paramtr M, all at diffrt valus of x/l (dimsiolss locatio). Dimsiolss tmpratur calculatd is th icorporatd ad aalyzd with hlp of graphs for both th thoris. Followigs ar th rsults icorporatd from th graphs. Figurs 4, 5 ad 6 shows tmpratur vrsus tim at X = 0 for M = 0., 1.0 ad 5.0. At M = 5 th fi trasit ds quicly so that this fi rachs stady-stat at about = 0.1. As M dcrass th tmpratur distributio tas logr ad logr to rach stady-stat. Figur 4: Tmpratur History i a Fi of Costat Cross-Sctio for Both Quasi Stady Thory ad Exact Fi Thory at Locatio x/l = X = 0 for M = 0. 79

12 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Figur 5: Tmpratur History i a Fi of Costat Cross-Sctio for Both Quasi Stady Thory ad Exact Fi Thory at Locatio x/l = X = 0 for M = 1.0 Figur 6: Tmpratur History i a Fi of Costat Cross-Sctio for Both Quasi Stady Thory ad Exact Fi Thory at Locatio x/l = X = 0 for M = 5.0 Fi paramtr M may b itrprtd as a ratio of thrmal rsistacs. Thus wh M is small, th covctiv thrmal rsistac from th surfac of th 80

13 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 fi is larg compard to th thrmal rsistac alog th fi, producig a log, slow ustady stat. CONCLUSION A uifid thory has b prstd for ustady hat trasfr i flux-bas fis for thr tip coditios. Th mthod may b asily xtdd to fis with othr bas coditios. A quasi stady thory has b applid to a cas of straight fi with short lgth tip i th form of a simpl, o-sris xprssio for stady trm. Th quasi-stady thory is simpl ad fficit for computig umrical valus compard to th xact sris solutio. A compariso with a xact sris solutio for th ustady coditio fi shows that th quasi-stady thory is accurat withi dimsiolss tims for all valus of th fi paramtr M. Th rsults show that th quasi-stady fi modl is a simpl way to fid hat trasfr cofficits for largr dimsiolss tims. Complicatd xact ustady solutios ca b simplifid for tmpratur distributio aalysis through Gr s fuctio mthod. A uifid thory is obtaid for ustady hat trasfr i flux-bas fis for thr tip coditios. Basd o th aalysis, th followig coclusios hav b obtaid. For M > 1 th accurat rag xtds to all dimsiolss tims xcpt = 0. Th accuracy icrass for larg dimsiolss tims, whr th ssitivity to hat trasfr cofficit is largst. For M = 0., 1.0 ad 5.0. For = 0 th quasistady thory ovrstimats th xact valus at = X = 0 ad stimats th xact valus at = X = 1.0. For all locatios th agrmt improvs as tim icrass. At M = 5 ad = X = 0 th fi trasit ds quicly so that this fi rachs stady-stat at about = 0.. As M dcrass, th tmpratur distributio tas logr ad logr to rach stady-stat. Wh M is small, th covctiv thrmal rsistac of th fi surfac is larg compard to th thrmal rsistac alog th fi, producig a log, slow trasit. For M 1 ad M > 1. Thr is o rror for dimsiolss tim > 0. th rgio of small rror xtds to arlir tim. Th quasi-stady ad xact tmpraturs agrs closly xcpt at arly tim ( = 0). SCOPE FOR FUTURE WORK It is suggstd that th quasi-stady approach could b succssfully applid to othr fi gomtris with diffrt tip coditios or othr fis for which xact solutios ar difficult to b obtaid. Th rsults show that th quasi-stady fi approach ca b a simpl way to fid hat trasfr cofficit associatd with hat loss. Th hat trasfr cofficits obtaid by this mthod ar itdd for futur us as a xtral boudary coditio for mor laborat thrmal modls. REFERENCES 1. Aziz A ad Na T Y (1980), Trasit Rspos of Fis by Coordiat 81

14 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Prturbatio Expasio, It. J. Hat ad Mass Trasfr, Vol. 3, pp Aziz A ad Kraus A D (1995), Trasit Hat Trasfr i Extdd Surfacs, Appl. Mch. Rv., Vol. 48, No. 3, pp Bc J V, Col K D, Haji-Shih A ad Litouhi B (199), Hat Coductio Usig Gr s Fuctios Hmisphr, Nw Yor. 4. Bmadda M ad Lacroix M (1996), Trasit Natural Covctio from a Fid Surfac for Thrmal Storag i a Eclosur, Numr. Hat Trasf. A, Vol. 9, No. 1, pp Campo A ad Salazar A (1996), Similarity Btw Ustady-Stat Coductio i a Plaar Slab for Short Tims ad Stady-Stat Coductio i a Uiform, Straight Fi, Hat Mass Trasf., Vol. 31, No. 5, pp Chapma A J (1959), Trasit Hat Coductio i Aular Fis of Uiform Thicss, Chm. Eg. Symp., Vol. 55, No. 9, pp Col K D (004), Computr Programs for Tmpratur i Fis ad Slab Bodis with th Mthod of Gr s Fuctios, Comput. Appl. Eg. Educ., Vol. 1, No. 3, pp Col K D (008), Gr s Fuctio Library, availabl at (Accssd o May 15, 008). 9. Col K D, Tarawh C ad Wilso B (009), Aalysis of Flux Bas Fis for Estimatio of Hat Trasfr Cofficit, It. J. Hat ad Mass Trasfr. 10. Doaldso A B ad Shouma A R (197), Ustady-Stat Tmpratur Distributio i a Covctig Fi of Costat Ara, Appl. Sci. Rs., Vol. 6, Nos. 1-, pp Hsu T H ad Ch C K (1991), Trasit Aalysis of Combid Forcd ad Fr- Covctio Coductio Alog a Vrtical Circular Fi i Micro Polar Fluids, Numr. Hat Trasf. A, Vol. 19, No., pp Kim R H (1976), Th Katorovich Mthod i th Variatioal Formulatio to a Ustady Hat Coductio Ltt., Hat Mass Trasf., Vol. 3, No. 1, pp Kraus A D, Aziz A ad Wlty J (001), Extdd Surfac Hat Trasfr, Wily, Nw Yor. 14. Mao J ad Roo S (1994), Trasit Aalysis of Extdd Surfacs with Covctiv Tip, It. Commu. Hat Mass Trasf., Vol. 1, pp Mutlu I ad Al-Shmmri T T (1993), Stady-Stat ad Trasit Prformac of a Shroudd Logitu-Dial Fi Array, It. Commu. Hat Mass Trasf., Vol. 0, pp Osma A M ad Bc J V (1990), Ivstigatio of Trasit Hat Cofficits i Quchig Exprimt, J. Hat Trasf., Vol. 11, pp Ozisi M N (1993), Hat Coductio, p. 89, Wily, Nw Yor. 18. Saha A K ad Acharya S (003), Paramtric Study of Ustady Flow ad Hat Trasfr i a Pi-Fi Hat Exchagr, It. J. Hat Mass Trasf., Vol. 46, No. 0, pp

15 It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., Saha A K ad Acharya S (004), Ustady Simulatio of Turbult Flow ad Hat Trasfr i a Chal with Priodic Array of Cubic Pi-Fis, Numr. Hat Trasf. A, Vol. 46, No. 8, pp Stolz G Jr. (1960), Numrical Solutio to a Ivrs Problm of Hat Coductio for Simpl Shaps, J. Hat Trasf., Vol. 8, pp Suryaarayaa N V (1975), Trasit Rspos of Straight Fis, J. Hat Trasf., Vol. 97, pp Suryaarayaa N V (1976), Trasit Rspos of Straight Fis Part II, J. Hat Trasf., Vol. 98, pp Tafti D K, Zhag L W ad Wag G (1999), Tim-Dpdt Calculatio Procdur for Fully Dvlopd ad Dvlopig Flow ad Hat Trasfr i Louvrd Fi Gomtris, Numr. Hat Trasf. A, Vol. 35, No. 3, pp Tutar M ad Aoca A (004), Numrical Aalysis of Fluid Flow ad Hat Trasfr Charactristics i Thr-Dimsioal Plat Fi-ad-Tub Hat Exchagrs, Numr. Hat Trasf. A, Vol. 46, No. 3, pp APPENDIX Nomclaturs Gr A h Surfac ara of fi for covctio (m ) Thrmal diffusivity (m s 1 ) Bi Biot umbr, h i (V/A h )/K Eig valu [Equatio (14)] B Biot umbr, hl/ Dimsiolss tmpratur G Gr s fuctio, X Dimsiolss x-coordiat h Hat trasfr cofficit (W m K 1 ), dt Dimsiolss tim Thrmal coductivity (W m 1 K 1 ) Suprscripts L Lgth of fi (m) q Quasi-stady N Norm [Equatio (14)] (m) s Stady stat m Fi paramtr, (m 1 ) M Dimsiolss fi paramtr = ml q 0 Hat flux (W m ) Q Iput hat (W) T Tmpratur (K) t Tim (s) V Fi volum (m 3 ) W Trasformd tmpratur [Equatio (13)] 83

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Songklanakarin Journal of Science and Technology SJST belhocine

Songklanakarin Journal of Science and Technology SJST belhocine Exact solutio of boudary valu problm dscribig th covctiv hat trasfr i fully- dvlopd lamiar flow through a circular coduit Joural: Sogklaakari Joural of Scic ad Tchology Mauscript ID SJST-- Mauscript Typ:

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at   Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Availabl oli at www.scicdirct.com Ergy Procdia 4 (01 170 177 Ergy Procdia 00 (010) 000 000 Ergy Procdia www.lsvir.com/locat/procdia www.lsvir.com/locat/xxx GHGT-10 Exprimtal Studis of CO ad CH 4 Diffusio

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

A Strain-based Non-linear Elastic Model for Geomaterials

A Strain-based Non-linear Elastic Model for Geomaterials A Strai-basd No-liar Elastic Modl for Gomatrials ANDREW HEATH Dpartmt of Architctur ad Civil Egirig Uivrsity of Bath Bath, BA2 7AY UNITED KINGDOM A.Hath@bath.ac.uk http://www.bath.ac.uk/ac Abstract: -

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE Ya-Fi Gao ad A. F. Bowr Divisio of Egirig, Brow Uivrsity, Providc, RI 9, USA Appdix A: Approximat xprssios for

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

ANALYSIS OF MULTIPLE ZONE HEATING IN RESIN TRANSFER MOLDING

ANALYSIS OF MULTIPLE ZONE HEATING IN RESIN TRANSFER MOLDING FPCM-9 (8) Th 9 th Itratioal Cofrc o Flow Procsss i Composit Matrials Motréal (Québc), Caada 8 ~ July 8 ANALYSIS OF MLTIPLE ZONE HEATING IN ESIN TANSFE MOLDING Flort Cloutir,, Sofia Souka, Fracois Trochu

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting Mixd Mod Oscillatios as a Mchaism for Psudo-Platau Burstig Richard Brtram Dpartmt of Mathmatics Florida Stat Uivrsity Tallahass, FL Collaborators ad Support Thodor Vo Marti Wchslbrgr Joël Tabak Uivrsity

More information

A Novel Approach to Recovering Depth from Defocus

A Novel Approach to Recovering Depth from Defocus Ssors & Trasducrs 03 by IFSA http://www.ssorsportal.com A Novl Approach to Rcovrig Dpth from Dfocus H Zhipa Liu Zhzhog Wu Qiufg ad Fu Lifag Collg of Egirig Northast Agricultural Uivrsity 50030 Harbi Chia

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD rocdigs of NIT 00 opyright 00 by ABM 3 th Brazilia ogrss of Thrmal Scics ad girig Dcmbr 05-0, 00, brladia, MG, Brazil T O -NORMS ON TH ARAY ORDR O NMRIAL SOLTION RRORS IN D arlos Hriqu Marchi, marchi@ufpr.br

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations.

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations. Eulr s Mthod for Solvig Iitial Valu Problms i Ordiar Diffrtial Equatios. Suda Fadugba, M.Sc. * ; Bosd Ogurid, Ph.D. ; ad Tao Okulola, M.Sc. 3 Dpartmt of Mathmatical ad Phsical Scics, Af Babalola Uivrsit,

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

A NEW CURRENT TRANSFORMER SATURATION DETECTION ALGORITHM

A NEW CURRENT TRANSFORMER SATURATION DETECTION ALGORITHM A NEW CURRENT TRANSFORMER SATURATION DETECTION ALGORITHM CHAPTER 5 I uit protctio schms, whr CTs ar diffrtially coctd, th xcitatio charactristics of all CTs should b wll matchd. Th primary currt flow o

More information

Analysis of the power losses in the three-phase high-current busducts

Analysis of the power losses in the three-phase high-current busducts Computr Applicatios i Elctrical Egirig Vol. 3 5 Aalysis of th powr losss i th thr-phas high-currt busucts Tomasz Szczgiliak, Zygmut Piątk, Dariusz Kusiak Częstochowa Uivrsity of Tchology 4- Częstochowa,

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

SOLUTIONS TO CHAPTER 2 PROBLEMS

SOLUTIONS TO CHAPTER 2 PROBLEMS SOLUTIONS TO CHAPTER PROBLEMS Problm.1 Th pully of Fig..33 is composd of fiv portios: thr cylidrs (of which two ar idtical) ad two idtical co frustum sgmts. Th mass momt of irtia of a cylidr dfid by a

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

7 Finite element methods for the Timoshenko beam problem

7 Finite element methods for the Timoshenko beam problem 7 Fiit lmt mtods for t Timosko bam problm Rak-54.3 Numrical Mtods i Structural Egirig Cotts. Modllig pricipls ad boudary valu problms i girig scics. Ergy mtods ad basic D fiit lmt mtods - bars/rods bams

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

Combined effects of Hall current and rotation on free convection MHD flow in a porous channel

Combined effects of Hall current and rotation on free convection MHD flow in a porous channel Idia Joural of Pur & Applid Physics Vol. 47, Sptbr 009, pp. 67-63 Cobid ffcts of Hall currt ad rotatio o fr covctio MHD flow i a porous chal K D Sigh & Raksh Kuar Dpartt of Mathatics (ICDEOL, H P Uivrsy,

More information

Investigation of Transition to Chaos for a Lotka. Volterra System with the Seasonality Factor Using. the Dissipative Henon Map

Investigation of Transition to Chaos for a Lotka. Volterra System with the Seasonality Factor Using. the Dissipative Henon Map Applid Mathmatical Scics, Vol. 9, 05, o. 7, 580-587 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.05.57506 Ivstigatio of Trasitio to Chaos for a Lotka Voltrra Systm with th Sasoality Factor Usig

More information

A Mathematical Study of Electro-Magneto- Thermo-Voigt Viscoelastic Surface Wave Propagation under Gravity Involving Time Rate of Change of Strain

A Mathematical Study of Electro-Magneto- Thermo-Voigt Viscoelastic Surface Wave Propagation under Gravity Involving Time Rate of Change of Strain Thortical Mathmatics & Applicatios vol.3 o.3 3 87-6 ISSN: 79-9687 (prit) 79-979 (oli) Sciprss Ltd 3 A Mathmatical Study of Elctro-Magto- Thrmo-Voigt Viscolastic Surfac Wav Propagatio udr Gravity Ivolvig

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information