Mitigating Balanced and Unbalanced Voltage Sag Via Shunt-Connected Voltage Source Convertor (VSC) by using Double Vector Controller

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Mitigating Balanced and Unbalanced Voltage Sag Via Shunt-Connected Voltage Source Convertor (VSC) by using Double Vector Controller"

Transcription

1 sah Jounal of Appl Sns, Engnng an Thnology 6(3): , 03 ISSN: ; -ISSN: Maxwll Sntf Oganzaton, 03 Submtt: Dmb 7, 0 Apt: Mah 07, 03 Publsh: August 05, 03 Mtgatng Balan an Unbalan Voltag Sag Va Shunt-Connt Voltag Sou Convto (VSC) by usng Doubl Vto Contoll Abollah Sho, Hussan Shaf, Azah Moham an Shvn Sho Dpatmnt of Eltal, Elton an Systms Engnng, Unvst Kbangsaan, Malaysa Abstat: Ths stuy psnts a shunt-connt Voltag Sou Convto (VSC) to mtgat balan an unbalan voltag sag an gulat th g voltag at a fx lvl by nstng u atv pow at th Pont of Common Couplng (PCC). Moov, an nn Vto Cunt-Contoll (VCC) an out voltag ontoll (VVC) a appl togth to alulats th unt fns fo th VCC. Futhmo, an nuto/ apato/nuto (C) flt s pla wth th smpl -flt n btwn th VSC an th ntwo an t s onstut to u th voltag sag. ws, to ma up fo th unbalan ps, th postv an ngatv sun omponnts lat to th g voltag shoul b manag stntly. Th postv an ngatv sun omponnts lat to th g voltag shoul b manag stntly. Ths s ahv though th applaton of two npnnt ontolls fo th two suns wth an ntal asa stutu whh has bn xplat abov. Smulaton sults sgnat pop funtonng of th ontol systm whh has bn popos. Kywos: Pow ualty, atv pow ontoll, voltag an unt ontoll, voltag sag mtgaton, voltag sou onvto INTODUCTION In th nt as, pow ualty poblms spally voltag sag an hamon stoton a nown as on of th most sgnfant tops among pow systm ngns (Hngoan, 995; D Pna t al., 003; Wooly t al., 999; Jung t al., 00). Thfo, th oun of ths pow ualty vnts spally fo thos nusts whh a assoat wth nfomaton thnology systms an b vy hamful. ntly, stat-of-th-at pow lton bas ompnsatos all Custom Pow Dvs (CPD) hav bn vlop to mtgat th ngatv ffts of pow ualty poblms (Hngoan, 995). Th Ssonnt Voltag Sou Convtos (VSC), also all Stat Ss Compnsato (SSC) o Dynam Voltag sto (DV), an b atgoz as a typ of CPDs. Ths vs an b onnt n ss wth th stbuton f at th upstam s of th snstv loas to fftvly mtgat o lmnat th ffts of voltag sag, voltag mbalan an oth typs of pow ualty vnts (Hngoan, 995). Nvthlss, hgh nvstmnt an mantnan osts an omplx stutu a th man lmtatons to of Ss-onnt VSCs (Nwman an Holms, 00). Th Dstbuton Stat Synhonous Compnsato (D- STATCOM) s a typ of shunt-onnt CPDs whh s mostly bas on VSC an onnt n paalll wth snstv loas n stbuton ntwos to pott snstv loas aganst voltag sag, voltag vaaton an unt hamon stoton (Choma an Etza- Amol, 00; Esoba t al., 000). Th voltag sag ompnsaton statgy n D-STATCOM s bas on th atv pow njton at th onnton pont fo moat voltag sag, whl atv pow njton s manatoy to mtgat p voltag sags (Bolln, 999; Wang t al., 998). Thfo, a ps ontol statgy s nssay to mpov th ynam pfomans of D-STATCOMs. Suh ontolls shoul b abl to auatly ontol th voltag o unt fba loop an th swthng pattn of th nvts. Bas ontolls n D-STATCOM ontolls an b manly v nto voltag ontol an unt ontol, whh voltag ontol mo s manly ommon n Voltag ontol mo, th output AC voltag shoul ta th at fn voltag n DC uantts. Dpnng on th u ontol paamts, ths pou an b mplmnt usng (Cla an pa tansfom) fn to xtat atv atv pow an tuaat voltag omponnts as th tansfomaton valus an multplyng ths valus n th AC nstantanous voltag (Svnsson an ngn, 998). Th man lmtaton of ths thnu s th hgh snstvty of th tansfom valus to th mbalan voltag ontons, whh ma th ontol pou mo omplx. In ompason, th unt ontol mthos suh as hystss an avag unt ontolls a lss omplx an fast than voltag ontol mthos. In ths stuy, an mpov ontol mtho bas on voltag an unt gulaton s popos an usng Doubl Vto Contol (DVC) baus t has two Cosponng Autho: Abollah Sho, Dpatmnt of Eltal, Elton an Systms Engnng, Unvst Kbangsaan, Malaysa 379

2 s. J. Appl. S. Eng. Thnol., 6(3): , 03 vto-ontol loops. On of th loops s tan nto onsaton to gulat unt whl th oth loop gulats voltag at (PCC). Vto Cunt Contol (VCC) s appl fo ompnsato unt gulaton (Hngoan, 995) an Vto Voltag Contoll (VVC) wos as out ontol lop, whh tas th fn bus voltag to alz th voltag sag mtgaton. In th smulaton pogam PSCAD/EMTDC all th smulatons a a out an th lvant pfoman s manfst. wttn as Hanfos an N, 000; Wang t al., 998): u u ff pε ( u ) ff ε () (3) wh, an a th f-fowa tm an unt o at ah sampl, sptvly an:, ε ( n ) CONFIGUATION OF D-STATCOM WITH DUA VECTO CONTOE (DVC) u ω j [ ff g ] (4) DVC s manly a typ of asa ontoll sgn to ontol th u njt unt. DVC onssts of two vto ontolls namly Vto Cunt Contoll (VCC) an Vto Voltag Contoll (VVC). Vto unt ontoll: Th Vto Cunt Contoll (VCC) an b ons as a usful tool whh mas th ompnsato unt to ta th fn unt. Consng th shmat agam of th shunt-onnt VSC shown n Fg. an applyng Khhoff's voltag law to th VSC output flt by usng Cla an Pa tansfomaton un th fx two-oonat αβ fam, th voltag an unt at th Pont of Common Couplng (PCC) an b obtan as: u ( αβ ) ( t) ( αβ ) ( αβ ) αβ ) t ( g ( αβ ) ( αβ ) ( αβ ) ( αβ ) u ( t) g t () () wh, an a sstan an atan of th flt an u, g an a th VSC output voltag, PCC voltag an njt unt at th PCC, sptvly. By applyng th Synhonous fn Fam (SF),.., -oonat systm an Phas-o oop (P) n th VCC, th atv an atv unt an b spaatly ontoll. Thfo, E. () an b ε (5) Th popotonal gan, p, an th ntgal gan,, to attan th abat spons an also b fn as / T s / an K p, T s /T,, sptvly, wh, T, Th ntgato tm onstant s st to / Both atv an atv unts a ontoll npnntly wth hgh banwth, vn n ov moulaton gon usng th voltag lmtaton an Mnmum Ampltu Eo (MAE) tats (Ottstn an Svnsson, 00; Svnsson an ngn, 998). Th output voltag of VCC an b xpss n tms of SF by substtutng (4) an (5) n () as: ω u ( ) ( ) p, g u, ( )( ) ω ( ) ( ) ( ), p, g (6) (7) Vto Voltag-Contol (VVC): Th man tas of th VVC s to mantan an stablz th PCC voltag at ts Fg. : Sngl-ln agam of systm wth shunt-onnt VSC an -flt 380

3 s. J. Appl. S. Eng. Thnol., 6(3): , 03 Fg. : Blo shm of th wth ts lvant poss Fg. 3: G voltags ung 5% voltag sag. Wthout VSC at valu. In th psn of an njton tansfom wth wnng ato of : an assumng a nglgbl voltag op at th tansfom ato, th PCC voltag an b ons balan an ual to th flt apato voltag Fg. 6. Hn, th voltag at PCC an b ontoll an pt onstant. Consng Fg., th njt unt nto th g an b obtan as: ω j [ nj p, v, vε ( n ) (8) wh, ε () s th voltag o at sampl, s gvn by: ε ε AC-voltag ontoll: Th ampltu of th PCC voltag an b ontoll by njtng atv pow an also th voltag g an b hang by usng th ntwo mpan (Wooly t al., 999). Fgu shows` th omplt blo shm of th Vto Cunt-Contoll (VCC) wth ts lvant poss. Th voltag magntu o s tansmtt to th a-voltag ontoll, fom by a PI-gulato. In as of th stay-stat -voltag of wll b zo. s th g output fn atv unt, whh s f to th VCC an s th fn atv unt whh s au fom a slow -ln voltag ontoll that ompnsats fo VSC losss. Th apatv atv pow njt nto th ntwo by th VSC, has bn psnt as a blow: Thfo, ω nj nj ( ω ( ) wh, K p,v Th popotonal gan K,v Th ntgal gan ( p v ) (, v ), ) ( ) p, v (9) (0) If th ntgato tm onstant s ual to 30 ms an sttng of th unt an voltag ontoll a sptvly 70% an 5% of abat (Bongono t al., 005, Ptsson t al., 005)., v ( ) 38 Q g g () In vw of th fat that g s zo, whn th voltag of g s too low, apatv atv pow has bn njt an th unt wll b postv. Dst tm ampltu of th PI-gulato s gvn by: Tabl : Contol paamts g pamt G voltag E 400 V pu G Cunt I 40 A pu G funy f 50 HZ G nutan g. mh 0.4 pu G sstan g 0.05 Ω pu oa sstan l 0 Ω.73 pu oa nutan l 3.9 mh.3 pu DC-ln voltag u 600 V.5 pu Flt sstan 4.8 mω pu Flt nutan mh 0.09 pu g

4 Tabl : Systm paamt Cunt ontoll paamts Popotonal gan K P, 7.0(70% a bat) Intgato gan K, 0 AC- voltag ontoll paamts Popotonal gan K P,Q 0.97 Intgato tm onstant T,Q 0.0 P-ban wth α P 30 a/s Tabl 3: Injton tansfom paamts at pow S T 0 KVA.08 pu Shot-ut pow E T 30 V pu Shot-ut voltag P 4 W 0.05 pu aag nutan V 5.3 V 0.03 pu Ss sstan λ 0.3 mh 0.08 pu λ mω 0.04 [ pq g g g ] g [ TQ S s. J. Appl. S. Eng. Thnol., 6(3): , 03 ( n ) g g ( pq T )( 0.4 Q g () (3) wh, K PQ an T Q a th popotonal an ntgal gan of th gulato, sptvly. Pfoman spton: Tabls an a th ontoll an systm paamts sptvly (Wooly t al., 999). An by usng PSCAD/EMTDC, smulaton, ontol systm has bn nvstgat an tst. Fgu 3 has psnt th voltag at th PCC whn th VSC n l mo. As llustat, th voltag of PCC s un th nflun of a 5% voltag p an 9 phas-angl jump. Fgu 4 splay th VSC njt a hgh atv unt (los to 00A..) ung voltag sag to ma voltag at th PCC onstant 400V (Fg. 5). Aong to th smulaton sult t s possbl to ompnsat voltag sag wth nvstgat ontoll an by hangng -flt wth C-flt, VSC wll manag th amount of atv pow n. Systm pfoman by applyng ll-flt an atv ampng: In abov ston th VCC sb un stff g voltag, mpan of th g s appoxmatly ual to zo. If th PCC voltag stff s not nough, g wth th sam ynams of th njton unt wll hang, lang to th stablty poblm sb abov. It wll b ssntal to ovom ths poblms to shown th ynam of th g voltag at PCC. Consuntly, t shoul b mof onfguaton fo th SVC by ang a apato (C 60μμμμ) (Fg. 6). Paamts fo th njton tansfom a shown n Tabl 3. SIMUATION ANAYSIS ( n )] g g Th ontol systm, whh has bn off, has bn xamn un smla voltag p shown n n Fg. 0 an. 38 g Fg. 3. Th osllatons a vsbly snbl n Fg. 7. Instng a sst as a ampng tm n ss ( 0.5Ω) wth th flt apato wll la to th pvnton of ths phnomnon. Nonthlss, th ffowa tm n E. (4) s pt blow an Fg. 8 monstats that th PCC voltag s ajust to th pf valu whh appoxmats 0.0 pu osllatons an an b obsv n -voltag (Ptsson t al., 005,, 989): u ff [ ω j g ( ] (4) Dynam opaton ung unbalan voltag sag: Th popos ontol statgy by Smulaton sults has laf that t s only appopat fo mtgaton of balan voltag sag as you an s n Fg. 8, owng to th psn of th ngatv-sun n th masu uantts an to gan btt op wth unbalan voltag ps shoul mofy th onfguaton of th systm spaat to th ontol postv an ngatvsun of th njt unt. Mofatons of th ngatv-sun omponnts of th njt unt wll b llumnat n abov ston. Doubl vto otoll (v): To mpov th unbalan stuban ompnsaton two spaat ontols, Synhonous fn Fam (SF s ) an b us (Ptsson t al., 005, Snsama t al., 00), wh th postv an ngatv (SF) a synhonz to postv an ngatv sun omponnt of th ntwo voltag. Th sults an xplan by th blo shm of Dual Vto Contoll (DVC) (Wooly t al., 999). By Sun Spaaton Mtho (SSM) an sb sun omponnts of unt njton, voltag of apato an flt unt (Wooly t al., 999, Jung t al., 00). Euatons (3 an 3) a th sam fo th postv sun of VCC an VVC, sptvly. To ompnsat fo th unbalan stuban of th voltag, a ontol mtho s u to pou th sou fn unts of D-STATCOM n th as th ntwo voltag s unbalan. Ths fn unts nt th vto ontoll bas on whh onvto voltag a ma n phass a, b an. Th gnal tn s llustat n Fg. 9. In th Doubl Vto Contoll (DVC) (Wooly t al., 999), two ntal vto ontol blos xst whh a ffnt only n th sgn of oupl fatos btwn th an axs (Hngoan, 995). Th am s to tah th postv an ngatv omponnts of voltag an unt n th vnt of th unbalan voltag. Fou sgnals hang nto subsun omponnts. Dsptons of ths sgnals a pov )

5 s. J. Appl. S. Eng. Thnol., 6(3): , 03 Fg. 4: Injt unt of - an -omponnt as a sult of 5% voltag sag Fg. 5: Th-phas g voltags ompnsat at PCC.VSC an - flt a us Fg. 6: Shmat lat to th systm wth shunt-onnt VSC an C-output flt. Fg. 7: Th th-phas g voltags of th PCC ung th voltag sag.vsc n l mo Fg. 8: Th-phas g voltags of PCC. By applyng VSC, C-flt an atv ampng 383

6 s. J. Appl. S. Eng. Thnol., 6(3): , 03 Fg. 9: Shmat of systm (DVC) bas on oubl synhonous fn fams Fg. 0: Dsptons of ths sgnals Fg. : Dsptons of ths sgnals Fg. : Th-phas wav foms at PCC E g Ntwo voltag at PCC pont E Capato voltag of ompnsato flt I Cunt of VSC onvto I nj Injt unt to th ntwo Implmntng of ths fou sgnals s shown by E. (6, 7), (8, 9) an Fg. 0, : xx 0.5( (tt) (tt 0.005) (5) xx 0.5( (tt) (tt 0.005) (6) xx 0.5( (tt) (tt 0.005)) (7) xx 0.5( (tt) (tt 0.005)) (8) 384

7 s. J. Appl. S. Eng. Thnol., 6(3): , 03 To ompa th pfoman of th asa ontoll that w psnt n th pvous ston wth DVC un th sam unbalan voltag sag, llustat n Fg. 7, fo th-phas wavfoms an by usng Dual Vto Contoll, t wll b sussful mtgaton of th voltag sag an t s vntly vsbl n Fg.. CONCUSION Ths stuy sbs how to us VSC to mtgat voltag p. Moov, t susss an shows that VSC an ontol an mantan th ampltu of th ntwo s voltag wth ompnsatng voltag p by njtng atv pow. Nvthlss, ths n of ontol systm s ompltly snstv to th paamts vaatons of th systm. To gan at th hgh opaton an mo obust ontoll an stutu of shunt onnton, wth smpl -flt an C-flt has bn analyz. Invstgaton vals that by sltng a asa ontoll, wth VVC an VCC a mo powful ontoll an b ah. sult of th ontol systm has bn obtan n th postv an ngatv SF, n o to spaat ontol omponnts of postv an ngatv-sun of th ntwo voltag. Smulaton sults mantan that wth th popos ontol mtho, w an ahv hgh ynam pfoman by usng DVC. EFEENCES Bolln, M., 999. Unstanng Pow Qualty Poblms: Voltag Sags an Intuptons. IEEE Pss, Nw Yo. Bongono, M., J. Svnsson an A. Sannno, 005. An avan asa ontoll fo ss-onnt VSC fo voltag p mtgaton. Inusty Applatons Confn, Foutth IAS Annual Mtng Confn o of th 005, Gotbog, Swn, : Choma, K.N. an M. Etza-Amol, 00. Th applaton of a DSTATCOM to an nustal falty. IEEE Pow Engnng Soty Wnt Mtng, : D Pna, C., P. V, A. Sannno an M. Bolln, 003. Stat ss ompnsato fo voltag p mtgaton wth zo-sun njton apablty. IEEE Bologna Pow Th Confn Pongs, Italy, VO. 4. Esoba, G., A. Stanov an P. Mattavll, 000. atv Pow, mbalan an hamons ompnsaton usng -statom wth a sspatvtybas ontoll. IEEE Inusty Applatons Confn, Confn o of th 000, Boston, MA, USA, 4: Hanfos,. an H.P. N, 000. A gnal algothm fo sp an poston stmaton of AC motos. IEEE T. In. Elt., 47(): Hngoan, N.G., 995. Intoung ustom pow. IEEE Sptum, 3(6): Jung, S.Y., T.H. Km, S.I. Moon an B.M. Han, 00. Analyss an ontol of DSTATCOM fo a ln voltag gulaton. IEEE Pow Engnng Soty Wnt Mtng, South Koa, : , T.N., 989. Kompnssaton shnll vanlh blnstom ns shstomvbauhs. tzahv H. 8(B. ): Nwman, M.J. an D.G. Holms, 00. An ntgat appoah fo th potton of ss njton nvts. IEEE T. In. Appl., 38(3): Ottstn,. an J. Svnsson, 00. Vto unt ontoll voltag sou onvt-abat ontol an satuaton statgs. IEEE T. Pow Elt., 7(): Ptsson, A.,. Hanfos an T. Thng, 005. Evaluaton of unt ontol mthos fo wn tubns usng oubly-f nuton mahns. IEEE T. Pow Elt., 0(): Snsama, P., K. Paya an V. amanaayanan, 00. Analyssanpfomanvaluatonof a stbuton STATCOM fo ompnsatng voltag flutuatons. IEEE T. Pow Dlv., 6(): Svnsson, J. an M.B. ngn, 998. Vto unt ontoll g onnt voltag sou onvtnflun of nonlnats on th pfoman. 9th Annual IEEE Pow Eltons Spalsts Confn, PESC 98 o, 7- May, Gotbog, Swn, : Wang, P., N. Jnns an M. Bolln, 998. Expmntal nvstgaton of voltag sag mtgaton by an avan stat VA ompnsato. IEEE T. Pow Dlv., 3(4): Wooly, N.H.,. Mogan an A. Sunaam, 999. Expn wth an nvt-bas ynam voltag sto. IEEE T. Pow Dlv., 4(3):

Rectification and Depth Computation

Rectification and Depth Computation Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz Rctfcaton an Dpth Computaton CMPE 64: mag Anass an Comput Vson Spng 0 Ha ao 4/6/0 mag cosponncs Dpatmnt of Comput Engnng Unvst of Cafona at Santa Cuz

More information

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations

Analysis of a M/G/1/K Queue with Vacations Systems with Exhaustive Service, Multiple or Single Vacations Analyss of a M/G// uu wth aatons Systms wth Ehaustv Sv, Multpl o Sngl aatons W onsd h th fnt apaty M/G// uu wth th vaaton that th sv gos fo vaatons whn t s dl. Ths sv modl s fd to as on povdng haustv sv,

More information

Switching FOC Method for Vector Control of Single-Phase Induction Motor Drives

Switching FOC Method for Vector Control of Single-Phase Induction Motor Drives Intnatonal Jounal of Elctcal an Comput Engnng (IJECE) Vol. 6, No., Apl 16, pp. 474~483 ISSN: 88-878, DOI: 1.11591/jc.6.9146 474 Swtchng FOC tho fo Vcto Contol of Sngl-Phas Inucton oto Ds ohamma Jannat*,

More information

Applications of Lagrange Equations

Applications of Lagrange Equations Applcaton of agang Euaton Ca Stuy : Elctc Ccut ng th agang uaton of oton, vlop th athatcal ol fo th ccut hown n Fgu.Sulat th ult by SIMI. Th ccuty paat a: 0.0 H, 0.00 H, 0.00 H, C 0.0 F, C 0. F, 0 Ω, Ω

More information

Determination of slot leakage inductance for three-phase induction motor winding using an analytical method

Determination of slot leakage inductance for three-phase induction motor winding using an analytical method ACHIVES OF EECTICA EGIEEIG VO 6 pp 569-59 DOI 78/--6 Dtnton of ot ntn fo t-p nton oto wnn n n nt to JA STASZAK Dptnt of Et Mn n Mton St K Unvt of Tnoo Tą PP 7 K Pon -: j@tp v: v: 5 Att: T t nto o pon fo

More information

Noise in electronic components.

Noise in electronic components. No lto opot5098, JDS No lto opot Th PN juto Th ut thouh a PN juto ha fou opot t: two ffuo ut (hol fo th paa to th aa a lto th oppot to) a thal at oty ha a (hol fo th aa to th paa a lto th oppot to, laka

More information

ECE 522 Power Systems Analysis II 2 Power System Modeling

ECE 522 Power Systems Analysis II 2 Power System Modeling ECE 522 Power Systems Analyss II 2 Power System Moelng Sprng 218 Instrutor: Ka Sun 1 Outlne 2.1 Moelng of synhronous generators for Stablty Stues Synhronous Mahne Moelng Smplfe Moels for Stablty Stues

More information

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors Ealuaton of Back-EMF Etmato fo Snol Contol of JPE -4- http://x.o.og/.63/jpe...4. Ealuaton of Back-EMF Etmato fo Snol Contol of Pmannt Magnt Synchonou Moto Kwang-Woon an Jung-Ik Ha Dpt. of Elctonc Eng.,

More information

Integrated Optical Waveguides

Integrated Optical Waveguides Su Opls Faha Raa Cll Uvs Chap 8 Ia Opal Wavus 7 Dl Slab Wavus 7 Iu: A va f ff a pal wavus a us f a u lh a hp Th s bas pal wavu s a slab wavus shw blw Th suu s uf h - Lh s u s h b al al fl a h -la fas Cla

More information

Optimum PSK Signal Mapping for Multi-Phase Binary-CDMA Systems

Optimum PSK Signal Mapping for Multi-Phase Binary-CDMA Systems Omum Sgnal Mappng fo Mult-Pha Bnay-CDMA Sytm Yong-Jn So and Yong-Hwan L Shool of Eltal Engnng and INMC Soul Natonal Unvty Kwanak P O Box 34 Soul 5-744 Koa -mal: yl@nuak Atat - Although th CDMA ytm an ffntly

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation.

( V ) 0 in the above equation, but retained to keep the complete vector identity for V in equation. Cuvlna Coodnats Outln:. Otogonal cuvlna coodnat systms. Dffntal opatos n otogonal cuvlna coodnat systms. Dvatvs of t unt vctos n otogonal cuvlna coodnat systms 4. Incompssbl N-S quatons n otogonal cuvlna

More information

MODELING AND SIMULATION OF SENSORLESS CONTROL OF PMSM WITH LUENBERGER ROTOR POSITION OBSERVER AND SUI PID CONTROLLER

MODELING AND SIMULATION OF SENSORLESS CONTROL OF PMSM WITH LUENBERGER ROTOR POSITION OBSERVER AND SUI PID CONTROLLER Jounal of Elctcal Engnng www.j.o MODEING AND SIMUAION OF SENSORESS CONRO OF PMSM WIH UENBERGER ROOR POSIION OBSERVER AND SUI PID CONROER GHADA A. ABDE AZIZ, MOHAMED. I. ABU E- SEBAH, Elctonc Rsach Insttut,

More information

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t

Lecture 7 Diffusion. Our fluid equations that we developed before are: v t v mn t Cla ot fo EE6318/Phy 6383 Spg 001 Th doumt fo tutoal u oly ad may ot b opd o dtbutd outd of EE6318/Phy 6383 tu 7 Dffuo Ou flud quato that w dvlopd bfo a: f ( )+ v v m + v v M m v f P+ q E+ v B 13 1 4 34

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Extinction Ratio and Power Penalty

Extinction Ratio and Power Penalty Application Not: HFAN-.. Rv.; 4/8 Extinction Ratio and ow nalty AVALABLE Backgound Extinction atio is an impotant paamt includd in th spcifications of most fib-optic tanscivs. h pupos of this application

More information

SHELL CANADA PIPING AND INSTRUMENT DIAGRAM QUEST CCS PROJECT LEGENDS AND SYMBOLS QUEST CCS PROJECT UNIT COMMON "!!

SHELL CANADA PIPING AND INSTRUMENT DIAGRAM QUEST CCS PROJECT LEGENDS AND SYMBOLS QUEST CCS PROJECT UNIT COMMON !! .. 2 S 222... 2. SSU TON Y K PS S M P PM T S N QUST S POJT. S NON N N NSTUMNT M QUST S POJT S W NO.. 2... NT M T \\\2\WNS\UTTS\2\2..pid MO T22 PM Yahm 2. UNT 2 OMMON NS N SYMOS .. SSU T 2 2 2. TON Y K

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

Signal Circuit and Transistor Small-Signal Model

Signal Circuit and Transistor Small-Signal Model Snal cut an anto Sall-Snal Mol Lctu not: Sc. 5 Sa & Sth 6 th E: Sc. 5.5 & 6.7 Sa & Sth 5 th E: Sc. 4.6 & 5.6 F. Najaba EE65 Wnt 0 anto pl lopnt Ba & Snal Ba Snal only Ba Snal - Ba? MOS... : : S... MOS...

More information

CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING SCHEME (TNTRDSS) INDEXED THROUGH BASIC QUALITY LEVELS

CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING SCHEME (TNTRDSS) INDEXED THROUGH BASIC QUALITY LEVELS Intnatonal Rsach Jounal of Engnng and Tchnology (IRJET) -ISSN: 2395-0056 Volum: 03 Issu: 02 Fb-2016 www.jt.nt p-issn: 2395-0072 CERTAIN RESULTS ON TIGHTENED-NORMAL-TIGHTENED REPETITIVE DEFERRED SAMPLING

More information

Unit 3: Transistor at Low Frequencies

Unit 3: Transistor at Low Frequencies Unt 3: Tansst at Lw Fquncs JT Tansst Mdlng mdl s an qualnt ccut that psnts th chaactstcs f th tansst. mdl uss ccut lmnts that appxmat th ha f th tansst. Th a tw mdls cmmnly usd n small sgnal analyss f

More information

Grid Transformations for CFD Calculations

Grid Transformations for CFD Calculations Coll of Ennn an Comput Scnc Mchancal Ennn Dpatmnt ME 69 Computatonal lu Dnamcs Spn Tct: 5754 Instuct: La Catto Intoucton G Tansfmatons f CD Calculatons W want to ca out ou CD analss n altnatv conat sstms.

More information

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model 6. ntoucton to anssto mples: oncepts an Small-Sgnal Moel Lectue notes: Sec. 5 Sea & Smth 6 th E: Sec. 5.4, 5.6 & 6.3-6.4 Sea & Smth 5 th E: Sec. 4.4, 4.6 & 5.3-5.4 EE 65, Wnte203, F. Najmaba Founaton o

More information

(8) Gain Stage and Simple Output Stage

(8) Gain Stage and Simple Output Stage EEEB23 Electoncs Analyss & Desgn (8) Gan Stage and Smple Output Stage Leanng Outcome Able to: Analyze an example of a gan stage and output stage of a multstage amplfe. efeence: Neamen, Chapte 11 8.0) ntoducton

More information

EE750 Advanced Engineering Electromagnetics Lecture 17

EE750 Advanced Engineering Electromagnetics Lecture 17 EE75 Avan Engnrng Eltromagnt Ltur 7 D EM W onr a D ffrntal quaton of th form α α β f ut to p on Γ α α. n γ q on Γ whr Γ Γ Γ th ontour nlong th oman an n th unt outwar normal ot that th ounar onton ma a

More information

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8.

PH672 WINTER Problem Set #1. Hint: The tight-binding band function for an fcc crystal is [ ] (a) The tight-binding Hamiltonian (8. PH67 WINTER 5 Poblm St # Mad, hapt, poblm # 6 Hint: Th tight-binding band function fo an fcc cstal is ( U t cos( a / cos( a / cos( a / cos( a / cos( a / cos( a / ε [ ] (a Th tight-binding Hamiltonian (85

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor Mcoelectoncs Ccut Analyss and Desgn Donald A. Neamen Chapte 5 The pola Juncton Tanssto In ths chapte, we wll: Dscuss the physcal stuctue and opeaton of the bpola juncton tanssto. Undestand the dc analyss

More information

) 3. 3 i. 2π ) 3. sin(

) 3. 3 i. 2π ) 3. sin( Fl Ont Contol of An Inucton Moto Sp Snol wth Cunt Vcto Contoll, ct-quaatu Cunt Copnato an Full O Obv In ct-quaatu Ax Rwan Gunawan 1,F Yuva, Zuhal A. Ka 1 Dpatnt Elctcal Engnng, Unvty of Inona, Dpok Mb

More information

Q Q N, V, e, Quantum Statistics for Ideal Gas and Black Body Radiation. The Canonical Ensemble

Q Q N, V, e, Quantum Statistics for Ideal Gas and Black Body Radiation. The Canonical Ensemble Quantum Statistics fo Idal Gas and Black Body Radiation Physics 436 Lctu #0 Th Canonical Ensmbl Ei Q Q N V p i 1 Q E i i Bos-Einstin Statistics Paticls with intg valu of spin... qi... q j...... q j...

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Xa.Ktlyn@nam.u ERASMUS MUNDUS MASTER STEPS 0&0//0 Intoucton to Vcto Contol of Pmannt Magnt Synchonou Machn ung Engtc Macocopc Rpntaton Xa.Ktlyn@nam.u Aocat Pofo n Elctcal Engnng PhD - HR At t Mét PaTch

More information

multipath channel Li Wei, Youyun Xu, Yueming Cai and Xin Xu

multipath channel Li Wei, Youyun Xu, Yueming Cai and Xin Xu Robust quncy ost stmato o OFDM ov ast vayng multpath channl L W, Youyun Xu, Yumng Ca and Xn Xu Ths pap psnts a obust ca quncy ost(cfo stmaton algothm sutabl o ast vayng multpath channls. Th poposd algothm

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

SPACE TYPES & REQUIREMENTS

SPACE TYPES & REQUIREMENTS SPACE TYPES & REQUIREENTS 2 Fby 2012 Gys Sh Typ: K E H 1 2 3 5 6 7 8 9 10 11 12 Ajy D (Hh Sh) F A Dsps Th fs f phys hs vv sps f h hhy fsy f vs. Phys s hf w fss wss hh vy hy-bs s f hhy fsy hs. Gy sps sh

More information

2011 HSC Mathematics Extension 1 Solutions

2011 HSC Mathematics Extension 1 Solutions 0 HSC Mathmatics Etsio Solutios Qustio, (a) A B 9, (b) : 9, P 5 0, 5 5 7, si cos si d d by th quotit ul si (c) 0 si cos si si cos si 0 0 () I u du d u cos d u.du cos (f) f l Now 0 fo all l l fo all Rag

More information

Guo, James C.Y. (1998). "Overland Flow on a Pervious Surface," IWRA International J. of Water, Vol 23, No 2, June.

Guo, James C.Y. (1998). Overland Flow on a Pervious Surface, IWRA International J. of Water, Vol 23, No 2, June. Guo, Jams C.Y. (006). Knmatc Wav Unt Hyrograph for Storm Watr Prctons, Vol 3, No. 4, ASCE J. of Irrgaton an Dranag Engnrng, July/August. Guo, Jams C.Y. (998). "Ovrlan Flow on a Prvous Surfac," IWRA Intrnatonal

More information

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM Unversty o Bahran College o Scence Dept. o Physcs PHYCS 10 FINAL XAM Date: 15/1/001 Tme:Two Hours Name:-------------------------------------------------ID#---------------------- Secton:----------------

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

Ch. 3: Forward and Inverse Kinematics

Ch. 3: Forward and Inverse Kinematics Ch. : Fowa an Invee Knemat Reap: The Denavt-Hatenbeg (DH) Conventon Repeentng eah nvual homogeneou tanfomaton a the pout of fou ba tanfomaton: pout of fou ba tanfomaton: x a x z z a a a Rot Tan Tan Rot

More information

+8A STATUS CVBS TXT (A9) STATUS AUDIO IN AUDIO OUT +8SC VOLUME PAL C CHROMA DECODER P Y +8A B Y. 4.43MHz PAL / SECAM CHROMA. 64uS. 4.

+8A STATUS CVBS TXT (A9) STATUS AUDIO IN AUDIO OUT +8SC VOLUME PAL C CHROMA DECODER P Y +8A B Y. 4.43MHz PAL / SECAM CHROMA. 64uS. 4. LOK IAAM V INT AT AT AT AUIO OUT 0 0 P P P V EXT FL AT OVE AUIO IN V INT V EXT IF (OUN) AE AN V L/L' 0 AW /I' / L A A FM AM OUN AM +A FM TATU + EXTENAL AM / L TATU TATU AUIO IN 0 A A AM 0 FM + VOLUME +A

More information

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( )

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( ) I I T / P M T A C A D E M Y IN D IA JEE ADVANCE : 5 P PHASE TEST (.8.7) ANSWER KEY PHYSICS CHEMISTRY MATHEMATICS Q.No. Answer Key Q.No. Answer Key Q.No. Answer Key. () () (). () () (). (9) () (). () ()

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information

2 dependence in the electrostatic force means that it is also

2 dependence in the electrostatic force means that it is also lectc Potental negy an lectc Potental A scala el, nvolvng magntues only, s oten ease to wo wth when compae to a vecto el. Fo electc els not havng to begn wth vecto ssues woul be nce. To aange ths a scala

More information

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time Phys 31. No. 3, 17 Today s Topcs Cou Chap : lcomagc Thoy, Phoos, ad Lgh Radg fo Nx Tm 1 By Wdsday: Radg hs Wk Fsh Fowls Ch. (.3.11 Polazao Thoy, Jos Macs, Fsl uaos ad Bws s Agl Homwok hs Wk Chap Homwok

More information

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student GUIDE FOR SUPERVISORS 1. This vn uns mos fficinly wih wo o fou xa voluns o hlp poco sudns and gad h sudn scoshs. 2. EVENT PARAMETERS: Th vn supviso will povid scoshs. You will nd o bing a im, pns and pncils

More information

Why working at higher frequencies?

Why working at higher frequencies? Advanced course on ELECTRICAL CHARACTERISATION OF NANOSCALE SAMPLES & BIOCHEMICAL INTERFACES: methods and electronc nstrumentaton. MEASURING SMALL CURRENTS When speed comes nto play Why workng at hgher

More information

L...,,...lllM" l)-""" Si_...,...

L...,,...lllM l)- Si_...,... > 1 122005 14:8 S BF 0tt n FC DRE RE FOR C YER 2004 80?8 P01/ Rc t > uc s cttm tsus H D11) Rqc(tdk ;) wm1111t 4 (d m D m jud: US

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

Who is this Great Team? Nickname. Strangest Gift/Friend. Hometown. Best Teacher. Hobby. Travel Destination. 8 G People, Places & Possibilities

Who is this Great Team? Nickname. Strangest Gift/Friend. Hometown. Best Teacher. Hobby. Travel Destination. 8 G People, Places & Possibilities Who i thi Gt Tm? Exi Sh th foowing i of infomtion bot of with o tb o tm mt. Yo o not hv to wit n of it own. Yo wi b givn on 5 mint to omih thi tk. Stngt Gift/Fin Niknm Homtown Bt Th Hobb Tv Dtintion Robt

More information

Dynamic Modelling and Simulation of Five Phase Induction Motor

Dynamic Modelling and Simulation of Five Phase Induction Motor ISSN (Pnt : 30 3765 ISSN (Onln: 78 8875 Intnatonal Jounal of Advancd Rsach n Elctcal, Elctoncs and Instuntaton Engnng (An ISO 397: 007 Ctfd Oganzaton ol. 4, Issu 4, Apl 05 Dynac Modllng and Sulaton of

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2 Internal Innovation @ C is c o 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o C o n f i d e n t i a l 1 Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

( ) + is the distance from the point of interest to the location of the charge q i

( ) + is the distance from the point of interest to the location of the charge q i Elctcal Engy and apactanc 57. Bcaus lctc ocs a consvatv, th kntc ngy gand s qual to th dcas n lctcal potntal ngy, o + + 4 4 KE PE q( ).. so th coct choc s (a).. Fom consvaton o ngy, KE + PE KE + PE, o

More information

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

MECH321 Dynamics of Engineering System Week 4 (Chapter 6) MH3 Dynamc of ngnrng Sytm Wk 4 (haptr 6). Bac lctrc crcut thor. Mathmatcal Modlng of Pav rcut 3. ompl mpdanc Approach 4. Mchancal lctrcal analogy 5. Modllng of Actv rcut: Opratonal Amplfr rcut Bac lctrc

More information

School of Electrical Engineering. Lecture 2: Wire Antennas

School of Electrical Engineering. Lecture 2: Wire Antennas School of lctical ngining Lctu : Wi Antnnas Wi antnna It is an antnna which mak us of mtallic wis to poduc a adiation. KT School of lctical ngining www..kth.s Dipol λ/ Th most common adiato: λ Dipol 3λ/

More information

Localisation of partial discharges sources using acoustic transducers arrays

Localisation of partial discharges sources using acoustic transducers arrays Comput Applcatons n Elctcal Engnng Vol. 4 Localsaton of patal schags soucs usng acoustc tansucs aays Flp Polak, Wojcch Skosk, Kzysztof Soła Poznań Unsty of Tchnology 6-965 Poznań, ul. Potowo a, -mal: Kzysztof.Sola@put.poznan.pl

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer Negate feedback β s the feedback transfer functon S o S S o o S S o f S S S S fb

More information

Physics 240: Worksheet 15 Name

Physics 240: Worksheet 15 Name Physics 40: Woksht 15 Nam Each of ths poblms inol physics in an acclatd fam of fnc Althouh you mind wants to ty to foc you to wok ths poblms insid th acclatd fnc fam (i.. th so-calld "won way" by som popl),

More information

( ) 4. Jones Matrix Method 4.1 Jones Matrix Formulation A retardation plate with azimuth angle y. V û ë y û. év ù év ù év. ë y û.

( ) 4. Jones Matrix Method 4.1 Jones Matrix Formulation A retardation plate with azimuth angle y. V û ë y û. év ù év ù év. ë y û. 4. Jons Mati Mthod 4. Jons Mati Foulation A tadation plat with aziuth angl Yh; 4- Linal polaizd input light é = ë û Dcoposd into th slow and ast noal ods és é cos sin é = sin cos ë- û ë û R ( ), otation

More information

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 1. Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 2

Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 1. Matthias Liepe, P4456/7656, Spring 2010, Cornell University Slide 2 5. F ystems ad Patile Aeleatio 5. Waveguides 5..3 Cylidial Waveguides 5. Aeleatig F Cavities 5.. Itodutio 5.. Tavelig wave avity: dis loaded waveguide 5..3 tadig wave avities 5..4 Highe-Ode-Modes 5..5

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs N-B Oh Dw f Sv f P Tcc Cc Gh (Ex Ac) M. S Rh, N E, T Nhz G Sch f If Scc, Th Uvy, A-y 05, S 980-8579, J. {,}@hz.c.h.c. h@c.h.c. Ac. A h h wh fx. I - h w f h, ch vx w ch w hz vc. A h hv - h w f f h - h w.

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Chapter-10. Ab initio methods I (Hartree-Fock Methods)

Chapter-10. Ab initio methods I (Hartree-Fock Methods) Chapt- Ab nto mthods I (Hat-Fock Mthods) Ky wods: Ab nto mthods, quantum chmsty, Schodng quaton, atomc obtals, wll bhavd functons, poduct wavfunctons, dtmnantal wavfunctons, Hat mthod, Hat Fock Mthod,

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

for the magnetic induction at the point P with coordinate x produced by an increment of current

for the magnetic induction at the point P with coordinate x produced by an increment of current 5. tatng wth th ffnta psson B fo th magntc nucton at th pont P wth coonat pouc by an ncmnt of cunt at, show pcty that fo a oop cayng a cunt th magntc nucton at P s B Ω wh Ω s th so ang subtn by th oop

More information

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW) 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W 4 444 s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44 9 W : W F

More information

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University

Lecture 3.2: Cosets. Matthew Macauley. Department of Mathematical Sciences Clemson University Lctu 3.2: Costs Matthw Macauly Dpatmnt o Mathmatical Scincs Clmson Univsity http://www.math.clmson.du/~macaul/ Math 4120, Modn Algba M. Macauly (Clmson) Lctu 3.2: Costs Math 4120, Modn Algba 1 / 11 Ovviw

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

PHYSICS 203-NYA-05 MECHANICS

PHYSICS 203-NYA-05 MECHANICS PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overvew Electrcal achnes an Drves 7-9 1: Introucton, axwell s equatons, magnetc crcuts 11-9 1.2-3: agnetc crcuts, Prncples 14-9 3-4.2: Prncples, DC machnes 18-9 4.3-4.7: DC machnes an rves 21-9 5.2-5.6:

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses 16.512, okt Proulon Prof. Manul Martnz-Sanhz Ltur 6: Hat Conduton: Thrmal Str Efft of Sold or Lqud Partl n Nozzl Flow An u n hhly alumnzd old rokt motor. 3 2Al + O 2 Al 2 O 2 3 m.. 2072 C, b.. 2980 C In

More information

Lecture 20. Transmission Lines: The Basics

Lecture 20. Transmission Lines: The Basics Lcu 0 Tansmissin Lins: Th Basics n his lcu u will lan: Tansmissin lins Diffn ps f ansmissin lin sucus Tansmissin lin quains Pw flw in ansmissin lins Appndi C 303 Fall 006 Fahan Rana Cnll Univsi Guidd Wavs

More information

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x.

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x. 7.4 Eastodynams 7.4. Propagaton of Wavs n East Sods Whn a strss wav travs throgh a matra, t ass matra parts to dspa by. It an b shown that any vtor an b wrttn n th form φ + ra (7.4. whr φ s a saar potnta

More information

24 th International Conference on Electricity Distribution Glasgow, June Paper 0045 ABSTRACT INTRODUCTION

24 th International Conference on Electricity Distribution Glasgow, June Paper 0045 ABSTRACT INTRODUCTION 4 th ntnatonal Confnc on Elctcty Dtbuton Glagow, 1-15 Jun 017 Pap 0045 EALUATNG NOSE AND DC OFFSET DUE TO NTER-HARMONCS AND SUPRA- HARMONCS CAUSED BY BACK TO BACK CONERTER OF (DFG GENERATOR N AC DSTRBUTON

More information

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A.

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A. A quote of the week (or camel of the week): here s no expedence to whch a man wll not go to avod the labor of thnkng. homas A. Edson Hess law. Algorthm S Select a reacton, possbly contanng specfc compounds

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

Resonant Slepton Production

Resonant Slepton Production Overvew III. Physkalsches Insttut A Resonant Slepton Producton Chrstan Autermann III. Phys. Inst. A, RWTH Aachen The Sgnal Processes Lmt Calculaton Model-Independent Lmts Combned Lmts Supported by Chrstan

More information

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 11. CHEM 793, 2008 Fall

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 11. CHEM 793, 2008 Fall Chapt 3 Basc Cystalloaphy and Elcton Dacton om Cystals Lctu CHEM 793 8 all Top o thn ol Cystal plan (hl) Bottom o thn ol Ba Law d snθ nλ hl CHEM 793 8 all Equons connctn th Cystal Paamts (h l) and d-spacn

More information

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch

Solid state physics. Lecture 3: chemical bonding. Prof. Dr. U. Pietsch Solid stat physics Lctu 3: chmical bonding Pof. D. U. Pitsch Elcton chag dnsity distibution fom -ay diffaction data F kp ik dk h k l i Fi H p H; H hkl V a h k l Elctonic chag dnsity of silicon Valnc chag

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

SOUTH. Bus Map. From 25 October travelsouthyorkshire.com/sbp

SOUTH. Bus Map. From 25 October travelsouthyorkshire.com/sbp SOUT SFFIL u Mp F Ocb 1 N Sff p vb f Tv Su Y If Sff vuc/sp Sff u Pp - v Sff Sff u Pp cu w pv u w: u p bu w b vu c f u-p v Fqu vc ub f u Fw u c bu w w f cc v w cv f? 3 f-p p Sff bu Ipv cu fc b up % 0,000

More information

Incidence Matrices of Directed Graphs of Groups and their up-down Pregroups

Incidence Matrices of Directed Graphs of Groups and their up-down Pregroups SQU Jounal fo Sn 207 22( 40-47 207 Sultan Qaboos Unvst DOI: http://ddoo/024200/squsvol22sspp40-47 Indn ats of Dtd aphs of oups th up-down Poups Wadhah S Jassm Dpatmnt of athmats Fault of Sn Soan Unvst

More information