Magnetic Resonance for Quaility Control of Palm Oil

Size: px
Start display at page:

Download "Magnetic Resonance for Quaility Control of Palm Oil"

Transcription

1 Magnetic Resonance for Quaility Control of Palm Oil

2 SFC Solid Fat Content

3 SFC NMR Solid Fat Content

4 Magnetic Resonance Overview MR CW-MR Pulse-MR High Res FT-MR High Low Resolution NMR Free NMR Induction Spectrum Decay Low Res TD-MR Industrial Organic Applications: Chemistry: Molecular Tyres, Toothpaste, Structure Elucidation Soaps etc. Food Bio Applications: Chemistry: Protein Palm Oil, Structures Seeds, Chips, and Dynamics Chocolate etc. Chemical Inorganic Industry: Chemistry: Polymers, Catalysis, Christalinity organo metalic Construction Material Science: Industry: Polymer Concrete Structures, Blends etc. Textile Physics: Industry: Quantum Spin Computing, Finnish Physical Chemistry many more.

5 SFC Solid Fat Content Time domain NMR Signal F S S+L Solid 0 S S+L S Liquid L t [µs] f - factor ( ) Standard- f - factor ( ) Special-Fats linear extrapolation to t = 0 September 4, 2013

6 SFC Solid Fat Content Time domain NMR TD-NMR Measurements Groups Absolute NMR Methods Ratio NMR Methods FID Hahn-Echo T1 NMR Relaxation Time T2 NMR Relaxation Time which allows to differentiate between 0% solids(100% liquid) and almost 100% solids(0% liquid)

7 SFC NMR Solid Fat Content

8 SFC Solid Fat Content Time domain NMR September 4, 2013

9 Structure MR a well known correlation

10 Structure MR a well known correlation We need pure, clean compounds

11 The Real World is a Mixture

12 Can Magnetic Resonance help in the Real World?

13 Why Magnetic Resonance? MR is linear: double sample amount => double signal 1H MR 4000 human samples MR vs. conv. creatinine measurement (Jaffe) Correlation ~ 0.95

14 Why Magnetic Resonance? MR is time invariant: sample measured today = sample measured tomorrow - NOESYGPPR1D - automatic phasing - no baseline correction! 1.2Hz Automated preparation, transfer, measurement and processing of multiple replicate samples

15 Why Magnetic Resonance? KEY STATEMENT MR is SOFT Magnetic Radio Wave shines on sample No Ionization No destruction of sample can repeat without loss or change of signal CAN DETERMINE STABILITY OF MEASUREMENT Variations outside the measurement fluctuations must be caused by chemical differences

16 What is Palm Oil? Production Mio Met Ton

17 What is Palm Oil?

18 What is the Quality of Palm Oil? Basic Methods

19 What is the Quality of Palm Oil? Advanced methods: SFC Solid Fat Content DOBI Deterioration Of Bleachability Index IV Iodine Value FFA Free Fatty Acid Content MAG Mono-acylglycerols DAG Di-acylglycerols DAG

20 Example DOBI Deterioration Of Bleachability Index

21 Example DOBI Deterioration Of Bleachability Index

22 Example IV Iodine Value Degree of Unsaturation

23 Example FFA Free Fatty Acid Content

24 Magnetic Resonance We know it already

25 Magnetic Resonance Imaging the molecules

26 Example IV Iodine Value

27 Example CPO - RBD Chem. Dept. June Malaysia

28 Example CPO - RBD Chem. Dept. June Malaysia

29 Example CPO - RBD Chem. Dept. June Malaysia 2 samples measured 10x

30 Example CPO - RBD Chem. Dept. June Malaysia

31 Testing with ONE Magnetic Resonance System Check it out:

32 Testing with ONE Magnetic Resonance System

33 Palm Oil From The Store measured MR 500 MHz PTT Wang Noi

34 Palm Oil From The Store measured MR 500 MHz PTT Wang Noi

35 Palm Oil From The Store measured MR 500 MHz PTT Wang Noi

36 Determination of geographical origin of olive oils by MR

37 Olive Oil LDA with Prediction Italy versus Greek Islands Cooperation Bari University

38 Regional Discrimination Italy / Greek Islands Olive Oil DAUNO = it-1 15 samples Terra di Bari = it-2 31 samples Terra di Otranto = it-3 11 samples Kefalonia = gr-1 14 samples Korfu = gr-2 10 samples Lefkada = gr-3 8 samples Zakynthos = gr-4 14 samples Mean correct prediction rate: 78.2% (±2.6% standard deviation) Only ZG: 74%, Only NOESY: 65% Experiments used: ZG: ppm, 450 buckets NOESYGPPR1DSP: ppm, 450 buckets CDCl3 excluded ( ) No Scaling = Absolute concentration Per bucket: Unit variance scaling PCA Fixed Dimension: 50 Cross Validation: 7 sets Monte Carlo: 1000 runs

39 Wastewater from Palm Oil Mills? Can we predict Wasterwater products?

40 Energy Drinks

41 Energy Drinks Wikipedia says: Energy drinks are beverages whose producers advertise that they "boost energy". These advertisements usually do not emphasize energy derived from the sugar and caffeine they contain [1] but rather increased energy release due to a variety of stimulants and vitamins. [2]

42 Energy Drinks Thailand Krating Daeng M-150 Shark Red Bull 357 Thailand number One Energy country Thai Market $500Mio

43 Energy Drinks Thailand

44 Energy Drinks Thailand

45 Energy Drinks Thailand 2 x 106 PCA, 2D: 100 NMR measurements 1.5 Shark KratingDaeng LipoPlus Chalam Lipo 0 RedBull -0.5 Ranger -1 KalabauDeang M x 10 6

46 Magnetic Resonance for Characterization, Applied Chemistry, QC

47 Conclusion MR is cool because: Soft excitation of sample Repeatability Knowledge of measurement Linear double amount > double signal Time invariant Stability Reliability MR is not cool because: Detection limit ppm rather than ppb Difficult for trace analysis Need 3 rd generation systems only new electronics (e.g. low noise shims, RF pulses etc.) can do Expensive maybe. BUT FOURIER. 47

48 Conclusion Magnetic Resonance enables innovation Competitive advantage with new approach to analyze Prevent Chinese additives in your product Clean, Nondestructive and sexy approach to QC

49 49 MR is affordable

50 50 It s here already and

51 51 It s here already Assure Software:

52 Magnetic Resonance for Characterization, Applied Chemistry, QC Thank You: Gabi Rupprecht, Bruker Switzerland Willy Schaerer, Bruker Switzerland Azhar Ariffin, Universiti Malaya, Kuala Lumpur, Malaysia Nordin Bin Mohamed, Universiti Malaya, Kuala Lumpur, Malaysia Fang Fang, Bruker Germany Supaporn Khaubunsongserm, PTT R&D, Wang Noi, Thailand 52

53 ??? Confused??? Anyway thank you for listening 53

Analyze... Cheese. Ice Cream. Sour Cream. Yogurt. Butter. Margarine. Deboned Poultry. Beef. Condiments. Cookies. Crackers. Snack Foods. and more...

Analyze... Cheese. Ice Cream. Sour Cream. Yogurt. Butter. Margarine. Deboned Poultry. Beef. Condiments. Cookies. Crackers. Snack Foods. and more... Analyze... Cheese Ice Cream Sour Cream Yogurt Butter Margarine Deboned Poultry Beef Condiments Cookies Crackers Snack Foods and more... Rapid Fat Analysis System Fast, Accurate Fat & Moisture Analysis

More information

Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance spectroscopy nuclear spin transitions O Nuclear magnetic resonance spectroscopy 1 H, 13 C, 2-dimensional which transitions? wavelength and intensity; ppm what happens if we change the environment of the nucleus? substituent

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Spin Track TD-NMR Spectrometer. Applications and Instrumentation Review

Spin Track TD-NMR Spectrometer. Applications and Instrumentation Review Spin Track TD-NMR Spectrometer Applications and Instrumentation Review "Spin Track" Time-Domain (TD) NMR spectrometer is a high quality time-domain NMR instrument with wide range of applications, advanced

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

The paper is well written and prepared, apart from a few grammatical corrections that the editors can find.

The paper is well written and prepared, apart from a few grammatical corrections that the editors can find. Reviewers' comments: Reviewer #1 (Remarks to the Author): The manuscript by Desvaux and colleagues describes a novel application of spin-noise spectroscopy, a concept developed by Slean, Hahn and coworkers

More information

Ch : Advanced Analytical Chemistry: NMR

Ch : Advanced Analytical Chemistry: NMR Ch 235.42: Advanced Analytical Chemistry: NMR COURSE OBJECTIVES 1. Understand the theoretical basis of NMR; 2. Use of NMR for organic compounds and to observe other nuclei, such as 31P or 19F 3. Understand

More information

Band-Selective Homonuclear 2D Correlation Experiments

Band-Selective Homonuclear 2D Correlation Experiments Band-Selective Homonuclear 2D Correlation Experiments Application Note Authors Péter Sándor Agilent Technologies GmbH D76337 Waldbronn Germany Abstract This application note demonstrates the utility of

More information

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 13 Structure t Determination: ti Nuclear Magnetic Resonance Spectroscopy Revisions by Dr. Daniel Holmes MSU Paul D. Adams University of Arkansas

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

Relaxation, Multi pulse Experiments and 2D NMR

Relaxation, Multi pulse Experiments and 2D NMR Relaxation, Multi pulse Experiments and 2D NMR To Do s Read Chapter 6 Complete the end of chapter problems; 6 1, 6 2, 6 3, 6 5, 6 9 and 6 10. Read Chapter 15 and do as many problems as you can. Relaxation

More information

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013 What is spectroscopy? NUCLEAR MAGNETIC RESONANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves an interaction between electromagnetic

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca Laplacian Eigenfunctions in NMR Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique, Palaiseau, France IPAM Workshop «Laplacian Eigenvalues and Eigenfunctions» February

More information

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Physical Background Of Nuclear Magnetic Resonance Spectroscopy Physical Background Of Nuclear Magnetic Resonance Spectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography University of North Carolina Wilmington What is Spectroscopy?

More information

Suspended Long-Lived NMR Echo in Solids

Suspended Long-Lived NMR Echo in Solids Suspended Long-Lived NMR Echo in Solids A. Turanov 1 and A.K. Khitrin 2 1 Zavoisky Physical-Technical Institute RAS, Kazan, 420029, Russia 2 Department of Chemistry, Kent State University, OH 44242, USA

More information

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY PRINCIPLE AND APPLICATION IN STRUCTURE ELUCIDATION Carbon 13 NMR Professor S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai

More information

Everyday NMR. Innovation with Integrity. Why infer when you can be sure? NMR

Everyday NMR. Innovation with Integrity. Why infer when you can be sure? NMR Everyday NMR Why infer when you can be sure? Innovation with Integrity NMR Only NMR gives you definitive answers, on your terms. Over the past half-century, scientists have used nuclear magnetic resonance

More information

Stable isotope analytical methods

Stable isotope analytical methods Stable isotope analytical methods Powerful to ensure food and beverage authenticity. Based on the principle that C, H, O, N of organic matter exist in their naturally occurring isotopic forms - 13 C/ 12

More information

C NMR Spectroscopy

C NMR Spectroscopy 13.14 13 C NMR Spectroscopy 1 H and 13 C NMR compared: both give us information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens or nonequivalent carbons) both give us information

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet NMR SPECTROSCOPY This section will discuss the basics of NMR (nuclear magnetic resonance) spectroscopy. Most of the section will discuss mainly 1H or proton spectroscopy but the most popular nuclei in

More information

NMR Spectroscopy. Guangjin Hou

NMR Spectroscopy. Guangjin Hou NMR Spectroscopy Guangjin Hou 22-04-2009 NMR History 1 H NMR spectra of water H NMR spectra of water (First NMR Spectra on Water, 1946) 1 H NMR spectra ethanol (First bservation of the Chemical Shift,

More information

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal What is this? ` Principles of MRI Lecture 05 EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS The first NMR spectrum of ethanol 1951. 1 2 Today Last time: Linear systems, Fourier Transforms, Sampling

More information

Natural Products. Innovation with Integrity. High Performance NMR Solutions for Analysis NMR

Natural Products. Innovation with Integrity. High Performance NMR Solutions for Analysis NMR Natural Products High Performance NMR Solutions for Analysis Innovation with Integrity NMR NMR Spectroscopy Continuous advancement in Bruker s NMR technology allows researchers to push the boundaries for

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Tips & Tricks around temperature

Tips & Tricks around temperature Tips & Tricks around temperature 40. NMR Benutzertagung 2016 Karlsruhe Frank Schumann Bruker BioSpin AG, Schweiz Innovation with Integrity Temperature in NMR NMR experiments are sensitive to small changes

More information

Correcting Lineshapes in NMR Spectra

Correcting Lineshapes in NMR Spectra Correcting Lineshapes in NMR Spectra Colin Vitols, Pascal Mercier June 2006 In this note we present a method for removing lineshape distortions from nuclear magnetic resonance (NMR) spectra prior to more

More information

Relaxation times in nuclear magnetic resonance

Relaxation times in nuclear magnetic resonance Relaxation times in TEP Related topics Nuclear spins, atomic nuclei with a magnetic moment, precession movement of the nuclear spins, Landau-Lifshitz equation, Bloch equation, magnetisation, resonance

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Fragment-based drug discovery

Fragment-based drug discovery Fragment-based drug discovery Dr. Till Kühn VP Applications Development MRS, Bruker BioSpion User s meeting, Brussels, November 2016 Innovation with Integrity The principle of Fragment Based Screening

More information

Asian Journal of Chemistry; Vol. 25, No. 4 (2013),

Asian Journal of Chemistry; Vol. 25, No. 4 (2013), Asian Journal of Chemistry; Vol. 25, No. 4 (213), 214-218 http://dx.doi.org/1.14233/ajchem.213.13346 Observation of Triplet Traces Obtained with Inversion Recovery Method in Both Residual Water- and H

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Types of Analyzers: Quadrupole: mass filter -part1

Types of Analyzers: Quadrupole: mass filter -part1 16 Types of Analyzers: Sector or double focusing: magnetic and electric Time-of-flight (TOF) Quadrupole (mass filter) Linear ion trap Quadrupole Ion Trap (3D trap) FTICR fourier transform ion cyclotron

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

NMR: PRACTICAL ASPECTS

NMR: PRACTICAL ASPECTS NMR: PRACTICAL ASPECTS Pedro M. Aguiar Sample Preparation Well prepared sample can yield high quality spectra Poorly prepared sample typically yields low quality spectra Tubes of appropriate quality Higher

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Can you differentiate A from B using 1 H NMR in each pair?

Can you differentiate A from B using 1 H NMR in each pair? Can you differentiate A from B using 1 H NMR in each pair? To be NMR active any nucleus must have a spin quantum number, different from zero (I 0) As in 1 H, the spin quantum number (I) of 13 C is 1/2

More information

Supplementary Material

Supplementary Material Supplementary Material 4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins Barbara Krähenbühl 1 Sebastian Hiller 2 Gerhard Wider 1 1 Institute of Molecular

More information

Supplementary Information. Profiling Formulated Monoclonal Antibodies by 1 H NMR Spectroscopy

Supplementary Information. Profiling Formulated Monoclonal Antibodies by 1 H NMR Spectroscopy Supplementary Information Profiling Formulated Monoclonal Antibodies by 1 H NMR Spectroscopy Leszek Poppe 1 *, John B. Jordan 1, Ken Lawson 2, Matthew Jerums 2, Izydor Apostol 2 and Paul D. Schnier 1 1

More information

INTERACTION BETWEEN DRUGS AND BIOMEDICAL MATERIALS. I. BINDING POSITION OF BEZAFIBRATE TO HUMAN SERUM ALUBMIN

INTERACTION BETWEEN DRUGS AND BIOMEDICAL MATERIALS. I. BINDING POSITION OF BEZAFIBRATE TO HUMAN SERUM ALUBMIN Advanced Materials Development and Performance (AMDP2011) International Journal of Modern Physics: Conference Series Vol. 6 (2012) 751-756 World Scientific Publishing Company DOI: 10.1142/S2010194512004096

More information

The NMR Spectrum - 13 C. NMR Spectroscopy. Spin-Spin Coupling 13 C NMR. A comparison of two 13 C NMR Spectra. H Coupled (undecoupled) H Decoupled

The NMR Spectrum - 13 C. NMR Spectroscopy. Spin-Spin Coupling 13 C NMR. A comparison of two 13 C NMR Spectra. H Coupled (undecoupled) H Decoupled Spin-Spin oupling 13 NMR A comparison of two 13 NMR Spectra 1 oupled (undecoupled) 1 Decoupled 1 Proton Decoupled 13 NMR 6. To simplify the 13 spectrum, and to increase the intensity of the observed signals,

More information

Demonstrating the Value of Data Fusion

Demonstrating the Value of Data Fusion Demonstrating the Value of Data Fusion Thomas I. Dearing 1 Wesley Thompson and Brian Marquardt 1 Carl Rechsteiner Jr. 2 1. Applied Physics Labs, University of Washington 2. Chevron Energy Technology, Richmond

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Lecturer: Gabriele Varani Biochemistry and Chemistry Room J479 and

More information

NMR Imaging in porous media

NMR Imaging in porous media NMR Imaging in porous media What does NMR give us. Chemical structure. Molecular structure. Interactions between atoms and molecules. Incoherent dynamics (fluctuation, rotation, diffusion). Coherent flow

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Structural Elucidation Nuclear magnetic resonance spectroscopy is the name given to the technique which exploits the magnetic properties of nuclei and measures their

More information

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space 2256 Magnetization Gradients k-space and Molecular Diffusion Magnetic field gradients magnetization gratings and k-space In order to record an image of a sample (or obtain other spatial information) there

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

How does this work? How does this method differ from ordinary MRI?

How does this work? How does this method differ from ordinary MRI? 361-Lec41 Tue 18nov14 How does this work? How does this method differ from ordinary MRI? NEW kinds of MRI (magnetic resononance imaging (MRI) Diffusion Magnetic Resonance Imaging Tractographic reconstruction

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules hapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the s and s of a molecules Nuclei are positively charged and spin on an axis; they create a tiny magnetic field + + Not all

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

NMR Spectroscopy. Alexej Jerschow, NYU Chemistry

NMR Spectroscopy. Alexej Jerschow, NYU Chemistry NMR Spectroscopy Alexej Jerschow, NYU Chemistry 1 Overview Larmor Eq Chemical Shift J-coupling 1D NMR spectra 2D NMR spectra (Imaging) Alexej Jerschow, NYU 2 Alexej Jerschow, NYU 3 For further reading:

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES

INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES INVESTIGATION OF NMR- BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES 1 Olga Samsonenka, University of Washington Andy Kim, University of Washington Andrea Oehler,

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

What is a solution? 22.1

What is a solution? 22.1 22 22.1 How Solutions Form What is a solution? Solution= homogeneous mixture- same composition throughout Can be: liquids, gases and even solids Worlds Largest= Ocean Solute: is dissolved Solvent: does

More information

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005 Polarised Nucleon Targets for Europe, nd meeting, Bochum Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals H. Štěpánková, J. Englich, J. Kohout,

More information

NMR Data workup using NUTS

NMR Data workup using NUTS omework 1 Chem 636, Fall 2008 due at the beginning of the 2 nd week lab (week of Sept 9) NMR Data workup using NUTS This laboratory and homework introduces the basic processing of one dimensional NMR data

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10 CHEM / BCMB 490/690/889 Introductory NMR Lecture 0 - - CHEM 490/690 Spin-Echo The spin-echo pulse sequence: 90 - τ - 80 - τ(echo) Spins echoes are widely used as part of larger pulse sequence to refocus

More information

Collecting the data. A.- F. Miller 2012 DQF- COSY Demo 1

Collecting the data. A.- F. Miller 2012 DQF- COSY Demo 1 A.- F. Miller 2012 DQF- COSY Demo 1 gradient Double-Quantum-Filtered COSY (gdqf-cosy) This spectrum produces cross peaks exclusively between 1 Hs that are connected through bonds, usually 3 or less. (Exceptions

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

The Use of NMR Spectroscopy

The Use of NMR Spectroscopy Spektroskopi Molekul Organik (SMO): Nuclear Magnetic Resonance (NMR) Spectroscopy All is adopted from McMurry s Organic Chemistry The Use of NMR Spectroscopy Used to determine relative location of atoms

More information

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni Supplementary Figure 1 IR Spectroscopy. IR spectra of 1Cu and 1Ni as well as of the starting compounds, recorded as KBr-pellets on a Bruker Alpha FTIR spectrometer. Supplementary Figure 2 UV/Vis Spectroscopy.

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

NMR PRAKTIKUM. Data processing Data acquisition... 17

NMR PRAKTIKUM. Data processing Data acquisition... 17 NMR PRAKTIKUM 1. INTRODUCTION... 2 1.1. Description of a Spectrometer... 2 1.2. Principle of a NMR Experiment... 4 1.2.1. 1D NMR experiment... 4 1.2.2. 2D NMR experiment... 5 2. PRACTICAL PART... 8 2.1.

More information

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy Topics: 1. Some Common Experiments 2. Anatomy of a 2D experiment 3. 3D NMR spectroscopy no quantum mechanics! Some Common 2D Experiments Very

More information

Nuclear Magnetic Resonance Spectroscopy Chem 4010/5326: Organic Spectroscopic Analysis Andrew Harned

Nuclear Magnetic Resonance Spectroscopy Chem 4010/5326: Organic Spectroscopic Analysis Andrew Harned Nuclear Magnetic Resonance Spectroscopy Chem 4010/5326: Organic Spectroscopic Analysis 2015 Andrew Harned NMR Spectroscopy NMR Spectroscopy All nuclei have a nuclear spin quantum number (I) I = 0, 1/2,

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

Laboration 8a. Relaxation, T 1 -measurement with inversion recovery

Laboration 8a. Relaxation, T 1 -measurement with inversion recovery , T 1 -measurement with inversion recovery KR Theory The way the magnetizations returns to equilibrium, relaxation, is a very important concept in NMR, for example, due to the fact that the rate of relaxation

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information (ESI) for Effect of Conjugation and Aromaticity of 3,6 Di-substituted

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers UNESCO/IUPAC Course 2005/2006 Jiri Brus NMR Spectroscopy of Polymers Brus J 1. part At the very beginning the phenomenon of nuclear spin resonance was studied predominantly by physicists and the application

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

Structure Determination: Nuclear Magnetic Resonance Spectroscopy Structure Determination: Nuclear Magnetic Resonance Spectroscopy Why This Chapter? NMR is the most valuable spectroscopic technique used for structure determination More advanced NMR techniques are used

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends 4 Spin-echo, Spin-echo ouble Resonance (SEOR and Rotational-echo ouble Resonance (REOR applied on polymer blends The next logical step after analyzing and concluding upon the results of proton transversal

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Christopher Pavlik Bioanalytical Chemistry March 2, 2011

Christopher Pavlik Bioanalytical Chemistry March 2, 2011 Nuclear Magnetic Resonance of Proteins Christopher Pavlik Bioanalytical Chemistry March 2, 2011 Nuclear Magnetic Resonance NMR Application of a magnetic field causes absorption of EM energy that induces

More information

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems Agilent s new solution for obtaining routinely quantitative results from NMR measurements. 1 Magnetic Resonance Systems The Scope of Analytical Chemistry Analytical Chemistry is the study of the separation,

More information

Supporting Information

Supporting Information Supporting Information Supplementary Materials Isolation and characterisation of well-defined silicasupported azametallacyclopentane: key intermediate in catalytic hydroaminoalkylation reactions Bilel

More information

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Alex Bain 1, Christopher Anand 2, Zhenghua Nie 3 1 Department of Chemistry & Chemical Biology 2 Department

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

Solid state and advanced NMR

Solid state and advanced NMR Solid state and advanced NMR Dr. Magnus Wolf-Watz Department of Chemistry Umeå University magnus.wolf-watz@chem.umu.se NMR is useful for many things!!! Chemistry Structure of small molecules, chemical

More information

Experience the most powerful benchtop NMR spectrometer

Experience the most powerful benchtop NMR spectrometer Experience the most powerful benchtop NMR spectrometer Outstanding Features Highest field strength (80 MHz) Largest chemical shift spread Highest sensitivity Superb Resolution (0.5 Hz/20 Hz) Multi-nuclear

More information