IV Design of Discrete Time Control System by Conventional Methods

Size: px
Start display at page:

Download "IV Design of Discrete Time Control System by Conventional Methods"

Transcription

1 IV Dig of Dicrt im Cotrol Sytm by Covtioal Mthod opic to b covrd. Itroductio. Mappig bt th pla ad pla 3. Stability aalyi 4. rait ad tady tat rpo 5. Dig bad o root locu mthod 6. Dig bad o frqucy rpo mthod 7. Aalytical dig mthod IV.. Itroductio Not: hr diffrt dig mthod ar itroducd: ) root locu bad mthod, ) frqucy rpo mthod i pla, 3) aalytical mthod. May covtioal cotiuou-tim ytm dig mthod ca b applid to dicrt-tim ytm.

2 IV.. Mappig bt th pla ad pla h complx variabl ad ar rlatd by th quatio j j j jk Not: frquci diffr i itgral multipl of th amplig frqucy, ar mappd ito th am locatio i th pla. j axi i th pla corrpod to. h itrior of th uit circl corrpod to th lft half of th pla. h xtrior of th uit corrpod to th right half of th pla. Not: ) th agl of vari from to a vari from to. a poit mov from j to j ( ) vari from to hi i th primary trip. ) Each othr trip ith rag of ill trac th pla i o circl. 3) Mappig bt pla ad pla i ot uiqu

3 Mappig bt th primary trip ad th uit circl a) cotat attuatio li i cotat map i to th circl of radiu 3

4 Sttig tim rlat to th rgio o th lft of, hich corrpod to th itrior of th circl ith radiu b) Cotat frqucy loci: Cotat frqucy locu, i th pla map ito th radial li of cotat agl i th pla. c) Cotat damp ratio li map ito a piral i th pla. 4

5 5 d j j, hr d d d j j hu d ad d hu th magitud of dcra ad th agl of icra liarly a d icra, th locu i th pla bcom a logarithmic piral. h rgio boudd by cotat frqucy li ad cotat attuatio li ad th mappig. Cotat li

6 Diagram of th orthogoality of th cotat ad mappig to th pla. Exampl 4..: pcify th rgio i th pla that corrpod to a dirabl rgio i pla. 6

7 IV.3. Stability aalyi Clod loop pul trafr fuctio ytm: C( ) G 4. R GH h tability of 4. may b dtrmid from th locatio of th clod loop pol i th pla, or th root of th charactritic quatio. P GH 0 4. Not: ) For th tabl ytm, all clod loop pol mut li i th uit circl i th pla. ) If a impl pol li at, th th ytm bcom critically tabl. Alo if a igl pair of cojugat complx pol li o th uit circl i th pla, th ytm i critically tabl. Ay multipl clod loop pol o th uit circl mak th ytm utabl 3) Clod loop ro do ot affct th abolut tability ad thrfor may b locatd ayhr i th pla. Mthod for ttig abolut tability: ) Schur-coh tability tt ) Jury tability tt 3) t bad o th biliar traformatio coupld ith th Routh tability critrio. 4) Liapuov tability aalyi Not: Both Schur-coh tability tt ad Jury tability tt may b applid to polyomial quatio ith ral or complx cofficit. Wh th cofficit ar ral, Jury tt ar much implr tha chur-coh tt. h Jury Stability t: P a0 a a a hr a 0 0 h tabl i giv a follo: 7

8 a a k 0 k b k,,,,, a0 ak b b k 0 k c k,,,,, b0 bk p p k 0,, 3 k qk p0 pk Stability critrio by th Jury t: A ytm ith th charactritic quatio P 0 rritt a P a0 a a a hr a 0 0 i tabl if th folloig coditio ar all atifid: ) a a0 ) P 0 3) P 0 for v 0 for odd 4) b b0 c c 0 q q 0 Exampl 4.: dtrmi th tability of folloig Ch quatio P

9 9 Stability aalyi by u of th biliar traformatio ad routh tability critrio Biliar traformatio dfid by : biliar traformatio map th iid of th uit circl ito th lft half of th pla. aum j if j j j j Not: oc traform 0 P ito 0 Q, it i poibl to apply th Routh tability critrio i th am mar. Exampl 4.3: dtrmi th tability of folloig Ch quatio uig biliar traformatio P

10 IV.4. rait ad tady tat rpo rait rpo pcificatio: ) Dlay tim t d th dlay tim i th tim rquird for th rpo to rach half th fial valu th vry firt tim. ) Ri tim t r h ri tim i th tim rquird for th rpo to ri from 0% to 90%, or 5% to 95%, or 0% to 00% of it fial valu. 3) Pak tim t p, th pak tim i th tim rquird for th rpo to rach th firt pak of th ovrhoot. 4) Maximum ovrhoot M p h maximum ovrhoot i th maximum pak valu of th rpo curv maurd from uity. Ct p C maximum prct ovrhoot = 00% C 5) Sttlig tim t th ttlig tim i th tim rquird for th rpo curv to rach ad tay ithi a rag about th fial valu of a i pcifid a a abolut prctag of th fial valu, uually %. Not: h trait rpo of a dicrt ytm to th Krockr dlta iput, tp iput, ramp iput, ad o o, ca b obtaid aily by u of MALAB. 0

11 Stady-Stat Error Aalyi: rcall h loop trafr fuctio i ritt i gral form: k ( i ) i Gc ( ) G( ) Q N ( p ) M k N h trm i th domiator rprt a pol of multiplicity N at th origi. h umbr of itgratio i oft idicatd by lablig a ytm ith a typ umbr that i imply i qual to N. Not: a th typ umbr icra, th tady tat rror rduc, hovr, tability problm aggravat. Cocpt of tatic rror cotat ca b xtdd to th dicrt-tim cotrol ytm. h dicrt ytm loop trafr fuctio i ritt i gral form: k C( ) R B k ( i ) i N Q A N ( p ) M k k B hr cotai ithr a pol or a ro at =. h th ytm ill b claifid a A typ N ytm. R + E R() - E * G P () C() C() b t H() Coidr abov ytm: t r t bt from fial valu thorm, hav lim k lim E 4.3 k

12 for abov ytm cofiguratio : dfi th hav: ad G GH G p Z ad C R G Z G GH p H E R B R GH E E R GH ubtitut ito 4.3, hav lim 4.4 k lim E lim k GH Ca : Uit tp iput: r ( t) u( t) R( ) R E lim lim lim GH GH W dfi th tatic poitio rror cotat thu K p limgh K p 4.5 Not: h tady tat rror i rpo to a uit tp iput bcom ro if rquir that GH ha at lat o pol at =. Ca : ramp tp iput: r ( t) tu( t) R( ) K p, hich

13 lim E lim GH GH lim GH W dfi th tatic vlocity rror cotat K thu v lim 4.6 K v Not: th tady tat rror i rpo to a ram tp iput bcom ro if rquir that GH ha at lat doubl pol at =. K v, hich Ca 3: Uit acclratio iput: r ( t) t u( t) R( ) 3 lim E lim lim 3 GH GH GH W dfi th tatic acclratio rror cotat K lim thu a a 4.7 K Not: h tady tat rror i rpo to a uit acclratio iput bcom ro if hich rquir that GH ha at lat thr pol at =. Summary: K, abl of tady tat rror yp umbr Stp iput Ramp iput Acclratio iput 0 A ifiity ifiity K p 3 or mor A K V ifiity A K a a 3

14 Static rror cotat for typical clod-loop cofiguratio of dicrt tim cotrol ytm 4

15 Rpo to diturbac: N R + - G D G C (a) N + - G C G D aum th rfrc iput i ro, or R 0 C G N G G E, hich ca b obtaid from th quivalt modl i b. R C C D G G G D (b) G E lim lim N GG D Not: o rduc th diturbac impact, ca icra th gai G N G D 5

16 IV.5. Dig bad o root locu mthod Not: h root locu mthod dvlopd for cotiuou-tim ytm ca b xtdd to dicrttim ytm ithout modificatio, xcpt that th tability boudary i chagd from th j axi i th pla to th uit circl i th pla. Agl ad magitud coditio charactritic quatio may hav ithr of folloig form: G H 0 ad 0 0 F Agl coditio: 80k Magitud coditio: F GH hich ca b ritt a : F k 0,, Gral procdur for cotructig root loci. ) Obtai th charactritic quatio F th rarrag th quatio: K 0 m p p p 0 ) Fid th tartig poit ad trmiatig poit of th root loci. A K icra from 0 to ifiit, a root locu tart from a op loop pol ad trmiat at a fiit op loop ro. Locat th pol pi ad ro i o th -pla ith lctd ymbol. By covrio, u x to dot pol ad o to dot ro. Rmark: Loci bgi at th pol ad d at th ro. h umbr of parat loci i qual to th umbr of pol. Root loci mut b ymmtrical ith rpct to th horiotal ral axi bcau th complx root mut appar a pair of complx cojugat root. 3) Dtrmi th root loci o th ral axi. Root loci o th ral axi ar dtrmid by op-loop pol ad ro lyig o it. h root locu o th ral axi alay li i a ctio of th ral axi to th lft of a odd umbr of pol ad ro. 4) Dtrmi th aymptot of th root loci. 6

17 h loci procd to th ro at ifiity alog aymptot ctrd at A ad ith agl A. h umbr of ro M i l tha th umbr of pol by N=-M. th N ctio of loci mut d at ro at ifiity. h ctio of loci procd to th ro at ifiity alog aymptot a K approach ifiity. h liar aymptot ar ctrd at a poit o th ral axi giv by pol of ro of ( pi ) P P i i A ( ) ( ) M M h agl of th aymptot ith rpct to th ral axi i k 0 A 80, k=0,, (-M-), M M ( ) 5) Dtrmi th brakaay poit o th ral axi (if ay). I gral, th tagt to th loci 0 at th brakaay poit ar qually pacd ovr 360. W may valuat dk 0 d 6) Dtrmi th agl of dpartur of th locu from a pol ad th agl of arrival of th locu at a ro, uig th pha agl critrio. h agl of locu dpartur from a pol i th diffrc bt th t agl du to all othr pol ad ro ad th critrio of 80 0 (k ), ad imilarly for th locu agl of arrival at a ro. i 7) Fid th poit hr th root loci cro th uit circl 8) Ay poit o th root loci i a poibl clod-loop pol. 7

18 G ith ro of H F ad th domiator of Cacllatio of th pol of if G H G ad umrator of H hav commo factor th th corrpodig op loop pol ad ro ill cacl ach othr, rducig th dgr of th charactritic quatio. Exampl 4.4 H i th fdback loop : H c ad G b a c d G c a a ( ) H Pol c b c d d b ha b caclld. Exampl 4.5 H i th fd forard loop : H c ad G b a c d G c a a ( ) H Pol c b c d d b ha b caclld. Exampl 4.6 Sytm ha loop gai K KG 0 G, dra th root locu. Not: amplig im ill affct th K valu. Somtim, it ill affct th pol ad ro locatio a ll. Effct of amplig Priod o trait rpo charactritic Not: Icra th amplig priod ill mak th ytm l tabl ad vtually ill mak it utabl. 8

19 9 h damp ratio of th clod loop pol ca b aalytically dtrmid from th locatio of th clod loop pol i th pla. d j j, hr d d d j j hu d ad d

20 Exampl 4.7 (B-4-8) Coidr th digital cotrol ytm ho i figur, plot th root loci. Dtrmi th critical valu of gai K for tability. h amplig priod i 0. c hat valu of gai K ill yild a dampig ratio of th clod loop pol qual to 0.5? ith gai K t to yild 0. 5, dtrmi th dampd atural frqucy d ad th umbr of ampl pr cycl of dampd iuoidal ocillatio. R + - K C 0

21 IV.6. Dig bad o frqucy rpo mthod G j Not: o obtai th frqucy rpo of d to oly ubtitut for. h j fuctio G i commoly calld th iuoidal pul trafr fuctio. It i priodic, ith th priod qual to. Exampl 4.8 (B-4-8) Coidr ytm dfid by th tady tat output. G ith iput Ai k. Obtai G j j co j i co j i i ta G j co i G j co hu th tady tat output: x k A co i i k ta i co Biliar traformatio ad th pla Not: traform map th primary ad complmtary trip of th lft half of th pla ito th uit circl i th pla, covtioal frqucy rpo mthod, hich dal ith th tir lft half pla, do ot apply to th pla. traformatio ill olv th problm:

22 , hr i th amplig priod. th ivr traform: Not: th primary trip of th lft half of th pla i firt mappd ito th iid of th uit circl i th pla ad th mappd ito th tir lft half of th pla. vari from 0 j alog j axi i th pla vari from, alog th uit circl vari from 0 alog th imagiary axi i th pla. pla primary trip: pla frqucy 0 v Although pla rmbl th pla gomtrically, th frqucy axi i th pla i ditortd. h fictio frqucy v ad th actual frqucy ar rlatd a follo: j jv j ta v ta j j

23 Folloig figur ho th rlatiohip bt v ad G b b b m m 0 m, hr m a a tak th traformatio th, m m 0 G Nyquit tability ad bod diagram ca b applid. Not: high frqucy aymptot of th logarithmic magitud for G j ad G jv may b diffrt. Advatag of bod diagram approach: ) lo frqucy aymptot of th magitud curv i idicativ of th tatic K p rror cotat Kv or Ka ) Spcificatio of th trait rpo ca b tralatd ito tho of th frqucy rpo i trm of pha margi, gai margi, badidth, ad o forth. 3) Dig i implr mar. 3

24 Rvi pha lad, pha lag, pha lag-lad: ) Pha lad i commoly ud for improvig tability margi. h pha lad compatio icra th ytm badidth. hu th ytm ha fatr pd to rpod. It may b ubjctd to high-frqucy oi du to it icrad high frqucy gai. ) Pha lag compatio rduc th ytm gai at highr frquci ithout rducig th ytm gai at lor frquci. h ytm badidth i rducd ad th ytm ha lor rpo. Stady tat accuracy ca b improvd. High frqucy oi ca b attuatd. 3) Somtim, pha lag compator i cacadd ith a pha lad compator. Lo frqucy gai ca b icrad, th badidth ca b maitaid. PID cotrollr a a xampl. (PD a lad ad PI a lag) Dig Procdur i th pla. ) Firt obtai G, th traform G to G through, ( hould b proprly cho) rul of thumb i to ampl at th frqucy 0 tim that of th badidth of th clod loop ytm) ) Subtitut jv ad plot th bod diagram for G jv 3) Rad th bod diagram tatic rror cotat, th pha margi, th gai margi. 4) Aum th lo frqucy gai of th cotrollr G D i uity, dtrmi th ytm gai by atifyig th rquirmt for a giv tatic rror cotat. Uig covtioal dig tchiqu to dig G D 5) raform th G D to G D through th biliar traformatio giv by 6) Raliatio th pul trafr fuctio G D by computatioal algorithm. 4

25 Exampl 4.8 (B-4-5) Uig th bod diagram approach i th pla, dig a digital cotrollr for th ytm ho i figur. h dig pcificatio ar that th pha margi b 50 dgr, th gai margi b at lat 0 db, ad th tatic vlocity rror cotat Kv b 0 c -. h amplig priod i aumd to b 0. c. aftr th cotrollr i digd, calculat th umbr of ampl pr cycl of dampd iuoidal ocillatio. R + - G D K 0.5 C() 5

26 IV.7. Aalytical dig mthod Dig of digital cotrollr for miimum ttlig tim ith ro tady tat rror Dfi th traform of th plat that i prcdd by th ro-ordr hold a G Z GP h op loop trafr fuctio bcom G D G (fd forard) Dfi th clod loop pul trafr fuctio C R G G G, or GD F 4.8 G D Sic it i rquird that th ytm xhibit a fiit ttlig tim ith ro tady tat rror, th ytm mut xhibit a fiit impul rpo. Hc, F mut b of th folloig form: F Not: a N 0 a a N, hr N, i th ordr of th ytm. F mut ot cotai ay trm ith poitiv por i. olv 4.8 ill hav F G D G F 4.9 Not: Both F ad G D mut b phyically raliabl ) h ordr of th umrator of G D mut b qual to or lor tha th ordr of th domiator. (Othri, th cotrollr rquir futur iput data to grat currt iput. ) L ) If th plat G p ivolv a traportatio lag, th th digd clod loop ytm mut ivolv at lat th am magitud of th traportatio lag. (Othri, th clo loop ytm ill rpod bfor th iput i giv) 3) If G i xpadd ito a ri i, th lot -por trm of th ri xpaio of F i mut b at lat a larg a that of G. 4) I additio to th phyical raliability coditio, atttio hould b paid to th tability. W mut avoid cacllig a utabl pol of th plat by a ro of th digital cotrollr. Similarly, th digital cotrollr pul trafr fuctio hould ot ivolv utabl pol to cacl plat ro that li outid th uit circl. 6

27 G Aum G ivolv a utabl pol G, hr a a G G G G D C D a F R G G G D GD, thu F mut hav a a ro. a a F a G G Not: ic i F a ro. Zro of of D 7 G D hould ot cacl utabl pol of G G li iid th uit circl may b caclld ith pol of G D G that li o or outid th uit circl mut b icludd i F Dig proc: R C R F, all utabl pol mut b icludd. Hovr, all ro a ro. E 4.0 for uit tp iput R for uit ramp iput R for uit acclratio iput: R 3 I gral, E P R, ubtitut ito 4.0 q R C R F P F q to ur that th ytm rach tady tat i a fiit umbr of amplig priod ad maitai ro tady tat rror, E mut b a polyomial i ith a fiit umbr of trm., cho th fuctio F to b th form q F N, hr N i a polyomial i th, E P N, hich i a polyomial i oc hav G G F, th ubtitut ito 4.9 to gt F F G F q N D ith a fiit umbr of trm. G D ith a fiit umbr of trm.

28 For a tabl plat G P, th coditio that th output ot xhibit itramplig rippl aftr th ttlig tim i rachd my b ritt a follo: C( t ) co ta t, for tp iput C( t ) co ta t, for ramp iput C( t ) co ta t, for acclratio iput Exampl 4.9 (B-4-8) Coidr th cotrol ytm ho i figur. Dig a digital cotrollr G D uch that th ytm output ill xhibit a dadbat rpo to a uit tp iput (that i, th ttlig tim ill b th miimum poibl ad th tady tat rror ill b ro; alo th ytm output ill ot xhibit itramplig rippl aftr th ttlig tim i rachd) th amplig priod i aumd to b c. R + - G D C() 8

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Updtd: Tudy, Octor 8, EE 434 - Cotrol Sytm LECTUE Copyright FL Lwi 999 All right rrvd BEEFTS OF FEEBACK Fdc i uivrl cocpt tht ppr i turl ytm, itrctio of pci, d iologicl ytm icludig th ic cll d mucl cotrol

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Chapter 10 Time-Domain Analysis and Design of Control Systems

Chapter 10 Time-Domain Analysis and Design of Control Systems ME 43 Sytm Dynamic & Control Sction 0-5: Stady Stat Error and Sytm Typ Chaptr 0 Tim-Domain Analyi and Dign of Control Sytm 0.5 STEADY STATE ERRORS AND SYSTEM TYPES A. Bazoun Stady-tat rror contitut an

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Exercises for lectures 23 Discrete systems

Exercises for lectures 23 Discrete systems Exrciss for lcturs 3 Discrt systms Michal Šbk Automatické říí 06 30-4-7 Stat-Spac a Iput-Output scriptios Automatické říí - Kybrtika a robotika Mols a trasfrs i CSTbx >> F=[ ; 3 4]; G=[ ;]; H=[ ]; J=0;

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University ctur RF ad Micrwav Circuit Dig -Pla ad Smith Chart Aalyi I thi lctur yu will lar: -pla ad Smith Chart Stub tuig Quartr-Wav trafrmr ECE 33 Fall 5 Farha Raa Crll Uivrity V V Impdac Trafrmati i Tramii i ω

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Introduction to Control Systems

Introduction to Control Systems Itroductio to Cotrol Sytem CLASSIFICATION OF MATHEMATICAL MODELS Icreaig Eae of Aalyi Static Icreaig Realim Dyamic Determiitic Stochatic Lumped Parameter Ditributed Parameter Liear Noliear Cotat Coefficiet

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

Last time: Ground rules for filtering and control system design

Last time: Ground rules for filtering and control system design 6.3 Stochatic Etimatio ad Cotrol, Fall 004 Lecture 7 Lat time: Groud rule for filterig ad cotrol ytem deig Gral ytem Sytem parameter are cotaied i w( t ad w ( t. Deired output i grated by takig the igal

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

DISCRETE TIME FOURIER TRANSFORM (DTFT)

DISCRETE TIME FOURIER TRANSFORM (DTFT) DISCRETE TIME FOURIER TRANSFORM (DTFT) Th dicrt-tim Fourir Tranform x x n xn n n Th Invr dicrt-tim Fourir Tranform (IDTFT) x n Not: ( ) i a complx valud continuou function = π f [rad/c] f i th digital

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Designing of Decoupler for a 4 4 Distillation Column Processes with PID Controller

Designing of Decoupler for a 4 4 Distillation Column Processes with PID Controller Dii of Dcouplr for a 4 4 Ditillatio Colum Proc with PD Cotrollr Maah Kumar Sthi Dpt.of Elctroic ad Commuicatio E. Natioal titut of Tcholoy Rourkla Odiha thi.maah@mail.com Abtract Thi papr xtd th cocpt

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

STABILITY OF THE ACTIVE VIBRATION CONTROL OF CANTILEVER BEAMS

STABILITY OF THE ACTIVE VIBRATION CONTROL OF CANTILEVER BEAMS Iteratioal Coferece o Vibratio Problem September 9-,, Liboa, Portugal STBILITY OF THE CTIVE VIBRTIO COTROL OF CTILEVER BEMS J. Tůma, P. Šuráe, M. Mahdal VSB Techical Uierity of Otraa Czech Republic Outlie.

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 4 Dr Amir G Aghdam Cocordia Uiverity Part of thee ote are adapted from the material i the followig referece: Moder Cotrol Sytem by Richard C Dorf ad Robert H Bihop, Pretice Hall

More information

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s CONTROL SYSTEMS Chapter 7 : Bode Plot GATE Objective & Numerical Type Solutio Quetio 6 [Practice Book] [GATE EE 999 IIT-Bombay : 5 Mark] The aymptotic Bode plot of the miimum phae ope-loop trafer fuctio

More information

Exercises for lectures 7 Steady state, tracking and disturbance rejection

Exercises for lectures 7 Steady state, tracking and disturbance rejection Exrc for lctur 7 Stady tat, tracng and dturbanc rjcton Martn Hromčí Automatc control 06-3-7 Frquncy rpon drvaton Automatcé řízní - Kybrnta a robota W lad a nuodal nput gnal to th nput of th ytm, gvn by

More information

LESSON 10: THE LAPLACE TRANSFORM

LESSON 10: THE LAPLACE TRANSFORM 0//06 lon0t438a.pptx ESSON 0: THE APAE TANSFOM ET 438a Automatic ontrol Sytm Tchnology arning Objctiv Aftr thi prntation you will b abl to: Explain how th aplac tranform rlat to th tranint and inuoidal

More information

DPSK signal carrier synchronization module implemented on the FPGA

DPSK signal carrier synchronization module implemented on the FPGA 06 Sixth Itratioal Cofrc o Itrumtatio & Maurmt, Computr, Commuicatio ad Cotrol DPSK igal carrir ychroiatio modul implmtd o th FPGA Yufi Yag, Zhuomig i, Ricai Tia, Xiaoli Zhag 3 School of Elctroic ad Iformatio

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs G. Math. Not Vol. No. Jauary 3 pp. 6- ISSN 9-78; Copyright ICSRS Publicatio 3 www.i-cr.org Availabl fr oli at http://www.gma.i Solutio to Voltrra Sigular Itgral Equatio ad No Homogou Tim Fractioal PDE

More information

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 1/9 h govrig balac qatio that dcrib diffio proc i itatio ivolvig two idpdt variabl appar typically a xyt,, fxyt,, 0 t i g, t o 1 t q t x, y,0 c x, y

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Automatic Control Systems

Automatic Control Systems Automatic Cotrol Sytem Lecture-5 Time Domai Aalyi of Orer Sytem Emam Fathy Departmet of Electrical a Cotrol Egieerig email: emfmz@yahoo.com Itrouctio Compare to the implicity of a firt-orer ytem, a eco-orer

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

Lecture 30: Frequency Response of Second-Order Systems

Lecture 30: Frequency Response of Second-Order Systems Lecture 3: Frequecy Repoe of Secod-Order Sytem UHTXHQF\ 5HVSRQVH RI 6HFRQGUGHU 6\VWHPV A geeral ecod-order ytem ha a trafer fuctio of the form b + b + b H (. (9.4 a + a + a It ca be table, utable, caual

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Superfluid Liquid Helium

Superfluid Liquid Helium Surfluid Liquid Hlium:Bo liquid ad urfluidity Ladau thory: two fluid modl Bo-iti Codatio ad urfluid ODLRO, otaou ymmtry brakig, macrocoic wafuctio Gro-Pitakii GP quatio Fyma ictur Rfrc: Thory of quatum

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

CONTROL ENGINEERING LABORATORY

CONTROL ENGINEERING LABORATORY Uiverity of Techology Departmet of Electrical Egieerig Cotrol Egieerig Lab. CONTROL ENGINEERING LABORATORY By Dr. Abdul. Rh. Humed M.Sc. Quay Salim Tawfeeq M.Sc. Nihad Mohammed Amee M.Sc. Waleed H. Habeeb

More information

Frequency Domain Design of a Complex Controller under Constraints on Robustness and Sensitivity to Measurement Noise

Frequency Domain Design of a Complex Controller under Constraints on Robustness and Sensitivity to Measurement Noise 40 ELECTRONICS VOL 5 NO JUNE 0 Frqucy Domai Dig of a Comlx Cotrollr udr Cotrait o Robut ad Sitivity to Maurmt Noi Tomilav B Šara Miloš B Trifuović ad Vida ovdarica Abtract Nw gral rul hav b dvlod for digig

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information