FY 2008 Project Quarterly Report BUSC 08. Enzymatic Polymerization. Research Team: Gisela Buschle Diller (PI), Shuying Long, Zhiwei Xie

Size: px
Start display at page:

Download "FY 2008 Project Quarterly Report BUSC 08. Enzymatic Polymerization. Research Team: Gisela Buschle Diller (PI), Shuying Long, Zhiwei Xie"

Transcription

1 FY 2008 Project Quarterly Report BUSC 08 Enzymatic Polymerization Research Team: Gisela Buschle Diller (PI), Shuying Long, Zhiwei Xie Background In the light of rising cost of petro chemicals and concerns regarding the environment, alternative polymer synthesis routes are gaining increased importance that incorporate greener and more energy efficient approaches and the use of less toxic chemicals. ne possible venue is the application of highly specific enzymes in place of conventional catalysts that support a chemical reaction under mild and environmentally friendly conditions. These biocatalysts are highly selective and have extraordinary catalytic power under optimum process conditions. Enzymes are proteins that assist in the conversion of a chemical reaction by enhancing the reaction rate. Based upon the type of reaction they catalyze, they have been classified into six major categories: oxidoreductases, transferases, hydrolases, ligases, lyases, and isomerases. xidoreductases have shown great promise for oxidative polymerizations of small aromatic compounds as well as for other applications. orseradish peroxidase, for example, has been repeatedly used for bioremediation in the presence of hydrogen peroxide [Wu et al., 1999]. orseradish (RP) and soybean peroxidase (SBP) allowed the successful production of polyphenol resins that very well could replace conventionally polymerized novolac and resol resins without the involvement of formaldehyde [Ikeda et al., 1996]. The same research group also used laccase, an oxidoreductase that has shown to be involved in the biodegradation of lignin as well as in lignin s biosynthesis. By way of one electron transfer reactions polyphenols could be synthesized and a product polymer obtained with very similar structure for both RP and SBP. Enzymatic reactions generally only work well with water as the solvent. owever, the reaction with any of the oxidoreductases with low molecular weight phenols could be achieved in aqueous organic solution with a mixed acetone/acetate buffer. rvetto et al. (2001) achieved 40% conversion of phenols and near 70% conversion of aniline in the presence of RP and hydrogen peroxide. The research group suggested to apply RP to remove these toxic substances from waste effluent with the simultaneous benefit of generating polymeric products as a side effect. Polyphenol and polyaniline could then be used for further applications. It could be argued that without the formation of a valuable polymeric product that could be harvested, pure RP is currently too costly for wastewater treatment. A crude white rot fungus might be used instead with reasonable results for effluent treatment. Soybean peroxidase has also been explored, which is contained in the shells of soybeans and as such a waste product of the food industry itself, for a similar approach to industrial effluent clean up [Ghiuoreliotis and icell, 1999]. The research group however notes that small enzymatically formed products that are water soluble remain in the treated water and might present a problem. Laccases obtained from various microorganisms have been investigated for their capability of polymerizing guaiacol, 1 naphthol, hydroquinone, vanillic acid and other small substrates [Coll et al.,

2 1993]. The initial reaction proceeds via a one electron transfer (or hydrogen transfer) at the active site of the enzyme (see Figure 1), followed by further enzymatic or chemical reactions of the products: 2 laccase 2 non-enzymatic 1/2 2 2 Scheme 1: ne electron transfer in laccase oxidations. Radicals formed from substrates in the process might be able to couple to oligomers. The redox potential of a specific reactive center in an oxidoreductase strongly depends on its origin. It has been found that substrate oxidation occurs at the type I copper center which is also responsible for the blue color of these multi copper proteins due to the absorbance band of the cysteine bond at 600 nm. Types 2 and 3 form a trinuclear cluster and are thought to be responsible for the reduction of molecular oxygen and the release of water (Figure 2). Reactive radicals such as phenoxy are formed during the reduction of the substrates (substituted phenols, anilines, etc., Figure 3). They subsequently react to form oligomeric and polymeric products with covalent C C, C, and C bonds. Some of these products further proceed via non enzymatic cross linking reactions to polymeric networks or moderate molecular weight. Met S Type 1 Amino Acid Type 3 Type 3 Type 2 Figure 1: Active site of blue copper oxidoreductases (laccase B. subtilis).

3 Tyrosinases and laccases were found to catalyze phenols without the need for any cofactors. A binuclear containing active site (type 3 bound to 6 histidine residues) was shown to be responsible for o hydroxylation of monophenols to o diphenols and for oxidation of o diphenols to o ketones (Claus and Decker, 2006). 4 A, laccase 4 A 2 2 laccase(red) peroxide intermediate 2 Figure 2: Simplified reaction mechanism according to Wesenberg et al. (2003) Figure 3: Possible mechanisms for oxidative polymerization of small aromatic phenols (Shleev et al., 2006).

4 The fundamental research background for this current project is based on the reaction of laccases with small fragments of colorants as substrates to create colorant compounds (Stephen, 2007). Waterinsoluble colorants were incorporated into films made from natural compounds, such as carboxymethylcellulose and chitosan, or synthetic compounds, such as poly(vinyl alcohol); water soluble ones were used like dyes for natural fibers (cotton, linen, wool) for light, but washfast shades. It was found that the colorants formed faster and with more intense hue if lignin was present during the polymerization reaction. This observation was not surprising, because in earlier research pulp fibers were enzymatically modified to be hydrophobically coated by reaction of small ligninic substrate compounds with a laccase (Kenealy et al.,2003). The redox potentials of the screened laccases generally were sufficiently high for oxidation of o and p phenols, amino and polyphenols, and polyamides without the need for an additional mediator. The formed polymeric materials can serve as binding adhesive in many different applications in the forest products industry, thus lowering the demand for petrochemical resins. As part of that project a large number of ligninic constituents had been screened for their suitability to function as substrates. It was found that resorcinol, guaiacol and vanillic acid and others yielded such hydrophobic surfaces on pulp fibers which were orange, brown and dark purple in shade, respectively, under enzymatic catalysis. owever, only resorcinol based products were water soluble and could be isolated as a versatile dye. Experimental approach Most of the polymerization reactions documented in the literature have been performed with oxidoreductases especially extracted and purified from specific microorganisms in the respective research laboratories. These enzymes are prohibitively expensive for a larger scale process. Previous research in our laboratories has been carried out with an experimental laccase (ovozymes) with very promising results. owever, if the enzymatic oxidation of phenolic aromatics is to be used more broadly at reasonable cost of the enzyme, it is necessary to achieve equally good results with commercially available oxidoreductases. Thus, in the first phase of the current approach, various types of commercial enzymes will be screened for their suitability. Laccase from various microbial sources are available, as are horseradish peroxidases. The first series of experiments is performed with laccases from Trametes versicolor which are commercially obtainable at a somewhat reasonable price. Resorcinol had worked exceptionally well as a substrate for both colorant formation and as coating precursor. In this project it will serve as the control substrate and as an indicator whether the selected laccases possess a sufficiently high redox potential for the planned biocatalyzed coupling reactions. The goal of the first phase will be to polymerize simple compounds that are natural lignin precursors. It will be investigated whether auxiliary compounds, such as tannin or soluble lignin could be beneficial for the enzymatic process. References Claus,. and M. Decker, (2006), System. Appl. Microbiol. 29, Coll, P.M., Ferandez Abalos, J.M., Villanueva, J.R., Santamaria, R., Perez, P., (1993), Applied Environ. Microbiol. 59, 2607.

5 rvetto,.r., D. Figlas, A. Brandolin, S. B. Saidman,. Rueda, M. L. Ferreira, (2006), Biochem. Eng. J. 29, 191. Ghioureliotis, M., J. A. icell, (1999), Enzyme Microbiol. Technol. 25, 185. Ikeda, R., J. Sugihara,. Uyama, and S. Kobayashi, (1996), Macromolecules 29, W. Kenealy, J. Klungness, M. Tshabalala, E. orn, M. Akhtar, R. Gleisner,. Zulaica Villagomez, G. Buschle Diller, Modification of Lignocellulosic Materials by Laccase, TAPPI Fall Techn. Conf., Engineering, Pulping & PCE&I, Chicago, IL, ct , 2003 Shleev, S. P. Persson, G. Shumakovich, Y. Mazhugo, A. Yaropolov, T. Ruzgas, L. Gorton, (2006), Enzyme Microbiol. Technol. 39, 841. Stephen, R., Enzymatic Formation of Colorants, MS Thesis, Auburn University, Wesenberg, D. I. Kyriakides, S.. Agathos (2003), Biotechn. Adv. 22, 161. Wu, Y., Tailor, K.E., Biswas,., Bewra, J.K., (1999), J. Chem. Technol. Biotechnol. 74, 519.

PHENOLIC POLYMERIZATION USING Fe III -TAML

PHENOLIC POLYMERIZATION USING Fe III -TAML PHENOLIC POLYMERIZATION USING Fe III -TAML K. Entwistle*, D. Tshudy*, and T. Collins** *Gordon College, Department of Chemistry, Wenham, MA 01984 **Institute for Green Science, Carnegie Mellon University,

More information

Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase

Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase Science and Technology 2012, 2(1): 25-29 DOI: 10.5923/j.scit.20120201.05 Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase Hidetaka Kawakita Department of Applied

More information

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline Chemistry 1506 Dr. Hunter s Class Section 10 Notes - Page 1/14 Chemistry 1506: Allied Health Chemistry 2 Section 10: Enzymes Biochemical Catalysts. Outline SECTION 10.1 INTRODUCTION...2 SECTION SECTION

More information

LAB 05 Enzyme Action

LAB 05 Enzyme Action LAB 05 Enzyme Action Objectives: Name the substrate and products of the peroxidase-catalyzed reaction. To understand the terms: enzyme, activation energy, active site, ph, and denaturation. Distinguish

More information

Laccase-catalyzed polymerization of m-phenylenediamine in aqueous buffers

Laccase-catalyzed polymerization of m-phenylenediamine in aqueous buffers Korean J. Chem. Eng., 33(10), 3011-3015 (2016) DOI: 10.1007/s11814-016-0163-x INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 Laccase-catalyzed polymerization of m-phenylenediamine in aqueous buffers

More information

Catalytically Facilitated Sequestration and Transformation of Persistent Organic Pollutants in Soils and Sediments. Walter J. Weber, Jr.

Catalytically Facilitated Sequestration and Transformation of Persistent Organic Pollutants in Soils and Sediments. Walter J. Weber, Jr. Catalytically Facilitated Sequestration and Transformation of Persistent Organic Pollutants in Soils and Sediments Walter J. Weber, Jr. Energy and Environment Program Department of Chemical Engineering

More information

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells Transferases and hydrolases catalyze group transfer reactions Acyl transfer: Hexokinase catalyzes a phosphoryl transfer from ATP to

More information

Peroxidase Enzyme Lab

Peroxidase Enzyme Lab Peroxidase Enzyme Lab An enzyme is a type of protein known as a biological catalyst. A catalyst speeds up chemical reactions by lowering the activation energy required. Enzymes, biological catalysts carry

More information

PEROXIDASE CATALYZED THE REMOVAL OF PHENOL FROM SYNTHETIC WASTE WATER

PEROXIDASE CATALYZED THE REMOVAL OF PHENOL FROM SYNTHETIC WASTE WATER Thirteenth International Water Technology Conference, IWTC 13 29, Hurghada, Egypt 363 PEROXIDASE CATALYZED THE REMOVAL OF PHENOL FROM SYNTHETIC WASTE WATER Khaled F. Mossallam *, Farida M. Sultanova and

More information

Enzymes I. Dr. Mamoun Ahram Summer semester,

Enzymes I. Dr. Mamoun Ahram Summer semester, Enzymes I Dr. Mamoun Ahram Summer semester, 2017-2018 Resources Mark's Basic Medical Biochemistry Other resources NCBI Bookshelf: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=books The Medical Biochemistry

More information

Oxidation of Phenolic Wastewater by Fenton's Reagent

Oxidation of Phenolic Wastewater by Fenton's Reagent Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.0 No. ( June 009) 35-4 ISSN: 997-4884 University of Baghdad College of Engineering xidation of

More information

Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible Molecular Cloaking of the Active Center

Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible Molecular Cloaking of the Active Center Int. J. Mol. Sci. 2005, 6, 245-256 International Journal of Molecular Sciences ISSN 1422-0067 2005 by MDPI www.mdpi.org/ijms/ Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible

More information

Downloaded from Unit - 15 POLYMERS. Points to Remember

Downloaded from   Unit - 15 POLYMERS. Points to Remember Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only I. Addition Reactions of Alkenes Introduction Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem 2310 An addition reaction always involves changing a double bond to a single bond and adding a new bond

More information

ENZYME CATALYZED SYNTHESIS IN IONIC LIQUIDS. A Thesis. Presented to. The Graduate Faculty of The University of Akron. In Partial Fulfillment

ENZYME CATALYZED SYNTHESIS IN IONIC LIQUIDS. A Thesis. Presented to. The Graduate Faculty of The University of Akron. In Partial Fulfillment ENZYME CATALYZED SYNTHESIS IN IONIC LIQUIDS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Danelle Lynn

More information

Laccase in Organic Synthesis and Its Applications. Suteera Witayakran Art J. Ragauskas

Laccase in Organic Synthesis and Its Applications. Suteera Witayakran Art J. Ragauskas Laccase in rganic Synthesis and Its Applications Suteera Witayakran Art J. Ragauskas utline Laccase in rganic Synthesis Laccase Laccase application in organic synthesis The synthesis of naphthoquinones

More information

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility (P&S Ch 5; Fer Ch 2, 9; Palm Ch 10,11; Zub Ch 9) A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility B.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A novel enzymatic approach to develop a lignin-based adhesive for

More information

Techniques for effluent treatment. Lecture 5

Techniques for effluent treatment. Lecture 5 Techniques for effluent treatment Lecture 5 Techniques for effluent treatment Dye effluent treatment methods are classified into three main categories: 1. Physical treatment method 2. Chemical treatment

More information

Biology 30 The Chemistry of Living Things

Biology 30 The Chemistry of Living Things Biology 30 The Chemistry of Living Things Hierarchy of organization: Chemistry: MATTER: Periodic Table: ELEMENT: Ex. oxygen, gold, copper, carbon COMPOUND: Ex. salt (NaCl), H 2 O ELEMENTS ESSENTIAL TO

More information

SRI DEVI LIQUIDS. (A Unit of Sri Devi Group) Product: CNSL

SRI DEVI LIQUIDS. (A Unit of Sri Devi Group) Product: CNSL TECHNICAL DATE SHEET (TDS) Introduction Cashew nut shell liquid (CNSL) is one of the sources of naturally occurring phenols. It is obtained from the shell of a cashew nut. About 30-35% CNSL is present

More information

THERMAL INACTIVATION KINETICS OF POLYPHENOLOXIDASE EXTRACTED FROM WHITE GRAPES

THERMAL INACTIVATION KINETICS OF POLYPHENOLOXIDASE EXTRACTED FROM WHITE GRAPES THERMAL INACTIVATION KINETICS OF POLYPHENOLOXIDASE EXTRACTED FROM WHITE GRAPES GABRIELA RÂPEANU, MIRCEA BULANCEA Dunarea de Jos, University of Galati, Romania, Faculty of Food Science and Engineering,

More information

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Lecture 14 (10/18/17) Lecture 14 (10/18/17) Lecture 14 (10/18/17) Reading: Ch6; 190-191, 194-195, 197-198 Problems: Ch6 (text); 7, 24 Ch6 (study guide-facts); 4, 13 NEXT Reading: Ch6; 198-203 Ch6; Box 6-1 Problems: Ch6 (text); 8, 9, 10, 11, 12,

More information

Kristen Fox Chem 213 Synthetic #2 FFR. Green Synthesis of Fluorescein Dye

Kristen Fox Chem 213 Synthetic #2 FFR. Green Synthesis of Fluorescein Dye Kristen Fox Chem 213 Synthetic #2 FFR Green Synthesis of Fluorescein Dye Fox 2 Introduction Fluorescein is a fluorescent dye that has a significant impact in the fields of medicine and science. An everyday

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Review of General & Organic Chemistry

Review of General & Organic Chemistry Review of General & Organic Chemistry Diameter of a nucleus is only about 10-15 m. Diameter of an atom is only about 10-10 m. Fig 3.1 The structure of an atom Periodic Table, shown below, is a representation

More information

Enzymes are macromolecules (proteins) that act as a catalyst

Enzymes are macromolecules (proteins) that act as a catalyst Chapter 8.4 Enzymes Enzymes speed up metabolic reactions by lowering energy barriers Even though a reaction is spontaneous (exergonic) it may be incredibly slow Enzymes cause hydrolysis to occur at a faster

More information

Biology Slide 1 of 34

Biology Slide 1 of 34 Biology 1 of 34 2 4 Chemical Reactions and Enzymes 2 of 34 2 4 Chemical Reactions and Enzymes Chemical Reactions Chemical Reactions A chemical reaction is a process that changes one set of chemicals into

More information

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics Margaret A. Daugherty Fall 2003 ENZYMES: Why, what, when, where, how? All but the who! What: proteins that exert kinetic control over

More information

How can oxidation be done

How can oxidation be done Oxidation of Colors How can oxidation be done Synthetic dyes are difficult to degrade due to their complex aromatic structure and synthetic origin. Some of them are known to be toxic or carcinogenic The

More information

The Chemistry of Life

The Chemistry of Life The Chemistry of Life Things you should be able to do 1. Describe how the unique properties of water support life on Earth. 2. Explain how carbon is uniquely suited to form biological macromolecules. 3.

More information

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6 Basic Concepts of Enzyme Action Stryer Short Course Chapter 6 Enzymes Biocatalysts Active site Substrate and product Catalyzed rate Uncatalyzed rate Rate Enhancement Which is a better catalyst, carbonic

More information

Chapter 20 Amines-part 2

Chapter 20 Amines-part 2 Reactions of Amines Lone pair on the nitrogen directs the chemistry of amines Chapter 20 Amines-part 2 The nitrogen lone pair can also make a carbon nucleophilic by resonance Amines can also activate carbons

More information

Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory

Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory Part II => PROTEINS and ENZYMES 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory Section 2.5a: Enzyme Nomenclature Synopsis 2.5a - Enzymes are biological catalysts they are almost

More information

2 4 Chemical Reactions and Enzymes Slide 1 of 34

2 4 Chemical Reactions and Enzymes Slide 1 of 34 2 4 Chemical Reactions and Enzymes 1 of 34 Chemical Reactions Chemical Reactions A chemical reaction is a process that changes one set of chemicals into another set of chemicals. Some chemical reactions

More information

Chapter Two Test Chemistry. 1. If an atom contains 11 protons and 12 neutrons, its atomic number is A. 1 C. 12 B. 11 D. 23

Chapter Two Test Chemistry. 1. If an atom contains 11 protons and 12 neutrons, its atomic number is A. 1 C. 12 B. 11 D. 23 Name Chapter Two Test Chemistry 1. If an atom contains 11 protons and 12 neutrons, its atomic number is A. 1 C. 12 B. 11 D. 23 2. The nucleus is made up of all of the following: A. Electrons C. Protons

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY SEMMELWEIS CATHOLIC UNIVERSITY UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Describe how proteins and nucleic acids (DNA and RNA) are related to each other.

Describe how proteins and nucleic acids (DNA and RNA) are related to each other. Name Date Molecular Biology Review Part 1 IB Papers Topic 2.1 Molecules to Metabolism Living organisms control their composition by a complex web of chemical interactions. Be able to: Explain how molecular

More information

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes Chapter 6 Overview Enzymes Catalysis most important function of proteins n Enzymes protein catalysts Globular protein Increase rate of metabolic processes Enzymes kinetics info on reaction rates & measure

More information

Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

Supporting Information

Supporting Information Supporting Information Eco-friendly Composite of Fe 3 O 4 -Reduced Grapene Oxide Particles for Efficient Enzyme Immobilization Sanjay K. S. Patel a,, Seung Ho Choi b,, Yun Chan Kang b,*, Jung-Kul Lee a,*

More information

ENZYMES. by: Dr. Hadi Mozafari

ENZYMES. by: Dr. Hadi Mozafari ENZYMES by: Dr. Hadi Mozafari 1 Specifications Often are Polymers Have a protein structures Enzymes are the biochemical reactions Katalyzers Enzymes are Simple & Complex compounds 2 Enzymatic Reactions

More information

CHEM April 10, Exam 3

CHEM April 10, Exam 3 Name CHEM 3511 April 10, 2009 Exam 3 Name Page 1 1. (12 points) Give the name of your favorite Tech professor and in one sentence describe why you like him/her. 2. (10 points) An enzyme cleaves a chemical

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01 Questions Patrick: An Introduction to Medicinal Chemistry 5e 01) Which of the following molecules is a phospholipid? a. i b. ii c. iii d. iv 02) Which of the following statements is false regarding the

More information

Matter and Substances Section 3-1

Matter and Substances Section 3-1 Matter and Substances Section 3-1 Key Idea: All matter is made up of atoms. An atom has a positively charges core surrounded by a negatively charged region. An atom is the smallest unit of matter that

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3 ENZYMES AS BIOCATALYSTS * CATALYTIC EFFICIENCY *SPECIFICITY Having discussed

More information

Sustainable Chemistry in the CAS Databases. 247th ACS National Meeting & Exposition

Sustainable Chemistry in the CAS Databases. 247th ACS National Meeting & Exposition Sustainable Chemistry in the CAS Databases 247th ACS National Meeting & Exposition It s not easy being green Agenda Green Chemistry Techniques New Energy Storage Materials More Efficient Biomass Conversion

More information

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003 Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 Enzyme function: the transition state Catalytic Reactions A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms Enzyme function: the transition state Catalytic Reactions Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Name: Class: _ Date: _ 2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1) In what

More information

2.2.7 Research Area Oxidative Coupling Reactions Methods and Mechanisms (M. Klußmann)

2.2.7 Research Area Oxidative Coupling Reactions Methods and Mechanisms (M. Klußmann) 2.2.7 Research Area Oxidative Coupling Reactions Methods and Mechanisms (M. Klußmann) Involved: E. Böß, P. Karier, K. M. Jones, T. Hillringhaus, C. Schmitz, J. Demaerel, B. Schweitzer-Chaput, N. Gulzar,

More information

Enzyme Catalysis & Biotechnology

Enzyme Catalysis & Biotechnology L28-1 Enzyme Catalysis & Biotechnology Bovine Pancreatic RNase A Biochemistry, Life, and all that L28-2 A brief word about biochemistry traditionally, chemical engineers used organic and inorganic chemistry

More information

Removal of Crystal Violet from Aqueous Solution by Activated Biocharfibers. Maria A. Andreou and Ioannis Pashalidis

Removal of Crystal Violet from Aqueous Solution by Activated Biocharfibers. Maria A. Andreou and Ioannis Pashalidis Removal of Crystal Violet from Aqueous Solution by Activated Biocharfibers Maria A. Andreou and Ioannis Pashalidis Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus Corresponding

More information

Laccase BioBleaching Review. Matyas Kosa Georgia Institute of Technology School of Chemistry and Biochemistry

Laccase BioBleaching Review. Matyas Kosa Georgia Institute of Technology School of Chemistry and Biochemistry Laccase BioBleaching Review Matyas Kosa Georgia Institute of Technology School of Chemistry and Biochemistry OUTLINE Introduction Occurrence in microbes, structure of laccase & active site, enzyme activity

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 2 The Chemistry of Biology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Coloring Powder Compositions are Universal Dyes for Dyeing Natural and Synthetic Fibers as Well as Textile Materials based on Them

Coloring Powder Compositions are Universal Dyes for Dyeing Natural and Synthetic Fibers as Well as Textile Materials based on Them J. Chem. Eng. Chem. Res. Vol. 1, No. 1, 2014, pp. 138-145 Received: May 29, 2014; Published: August 25, 2014 Journal of Chemical Engineering and Chemistry Research Coloring Powder Compositions are Universal

More information

CHEMISTRY & BIOLOGY INTERFACE

CHEMISTRY & BIOLOGY INTERFACE RESEARCH PAPER ISS: 2249 4820 CHEMISTRY & BILGY ITERFACE An official Journal of ISCB, Journal homepage; www.cbijournal.com HRP-catalyzed synthesis of water-soluble and redox poly(catechol) at room temperature

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

Elements and Isotopes

Elements and Isotopes Section 2-1 Notes Atoms Life depends on chemistry. The basic unit of matter is the atom. Atoms are incredibly small The subatomic particles that make up atoms are protons, neutrons, and electrons. Parts

More information

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics Margaret A. Daugherty Fall 2004 What is an enzyme? General Properties Mostly proteins, but some are actually RNAs Biological catalysts

More information

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES Tuty Emilia A., Yourdan Wijaya A. and Febrian Mermaliandi Department of Chemical Engineering, Faculty of Engineering, University

More information

Chemical Oxidation Oxidizing agents

Chemical Oxidation Oxidizing agents Chemical Oxidation CENG 4710 Environmental Control Chemical oxidation is used to detoxify waste by adding an oxidizing agent to chemically transform waste compounds. It is capable of destroying a wide

More information

12U Biochemistry Unit Test

12U Biochemistry Unit Test 1 12U Biology: Biochemistry Test 12U Biochemistry Unit Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

More information

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5 Le Lycee Mauricien Proposed Syllabus 2017 Chemistry (5070) - Form 5 First Term 1. Metals Properties of metals - Physical properties of metals - Structure of alloys and uses Reactivity Series - Place metals

More information

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction. Human Physiology - Problem Drill 04: Enzymes and Energy Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick the answer,

More information

Chem 263 Oct. 12, 2010

Chem 263 Oct. 12, 2010 Chem 263 ct. 12, 2010 Alkyl Side Chain xidation Reaction If the carbon directly attached to the aromatic ring has > 1 hydrogen attached to it, it can be oxidized to the corresponding carboxylic acid with

More information

Study Guide: Basic Chemistry, Water, Life Compounds and Enzymes

Study Guide: Basic Chemistry, Water, Life Compounds and Enzymes Study Guide: Basic Chemistry, Water, Life Compounds and Enzymes 1. Lipids are good energy-storage molecules because a) the can absorb a large amount of energy while maintaining a constant temperature b)

More information

Chapter 8 Metabolism: Energy, Enzymes, and Regulation

Chapter 8 Metabolism: Energy, Enzymes, and Regulation Chapter 8 Metabolism: Energy, Enzymes, and Regulation Energy: Capacity to do work or cause a particular change. Thus, all physical and chemical processes are the result of the application or movement of

More information

Guided Notes Unit 1: Biochemistry

Guided Notes Unit 1: Biochemistry Name: Date: Block: Chapter 2: The Chemistry of Life I. Concept 2.1: Atoms, Ions, and Molecules a. Atoms Guided Notes Unit 1: Biochemistry i. Atom: _ ii. (They are SUPER small! It would take 3 million carbon

More information

Chapter 7: Alkene reactions conversion to new functional groups

Chapter 7: Alkene reactions conversion to new functional groups hapter 7: Alkene reactions conversion to new functional groups Preparation of alkenes: two common elimination reactions 1. Dehydration of alcohols Dehydration is a common biochemical reaction in carbohydrate

More information

Microorganisms. Dissolved inorganics. Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia

Microorganisms. Dissolved inorganics. Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia 1 Microorganisms Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia Species makeup: f(t, O 2, ph, nutrients, etc.) Indicators & pathogens Dissolved inorganics

More information

Organic Chemistry. Radical Reactions

Organic Chemistry. Radical Reactions For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Radical Reactions by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding.

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Sigma and Pi Bonds: All single bonds are sigma(σ), that

More information

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water.

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Alcohols are usually classified as primary, secondary and tertiary. Alcohols with the hydroxyl bound directly

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

Chapters 5-6 Enzymes. Catalyst: A substance that speeds up the rate of a chemical reaction but is not itself consumed.

Chapters 5-6 Enzymes. Catalyst: A substance that speeds up the rate of a chemical reaction but is not itself consumed. hapters 56 Enzymes atalyst: A substance that speeds up the rate of a chemical reaction but is not itself consumed. Most biological catalysts are proteins but some RA are catalysts too. e.g. Peptide bonds

More information

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components.

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Bio-elements Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Most of the chemical components of living organisms

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

GeNei TM Enzyme Kinetics Teaching Kit Manual

GeNei TM Enzyme Kinetics Teaching Kit Manual Teaching Kit Manual Cat No. New Cat No. KT89 106209 Revision No.: 00140806 CONTENTS Page No. Objective 3 Principle 3 Kit Description 4 Materials Provided 5 Procedure 6 Result 12 Interpretation 17 ORDERING

More information

GCSE to A-level progression

GCSE to A-level progression . GCSE to A-level progression AQA A-level Chemistry is a natural next stage from the GCSE course and so there are many recognisable topics that are taken a stage further. Some topics, such as atomic structure,

More information

Investigation on dyes oxidation by Fenton s reagent in aqueous medium

Investigation on dyes oxidation by Fenton s reagent in aqueous medium A N N A L E S U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N P O L O N I A VOL. LIX, 5 SECTIO AA 24 Investigation on dyes oxidation by Fenton s reagent in aqueous medium

More information

Biology: The Core (Simon) Chapter 2 The Chemistry of Life. Multiple-Choice Questions

Biology: The Core (Simon) Chapter 2 The Chemistry of Life. Multiple-Choice Questions Biology: The Core (Simon) Chapter 2 The Chemistry of Life Multiple-Choice Questions 1) The chemical name for table salt is sodium chloride, or simply NaCl. What type of chemical is NaCl? A) Compound B)

More information

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed CHEMICAL OXIDATION The use of oxidizing agents without the need of microorganisms for the reactions to proceed oxidizing agents : O 3, H 2 O 2, Cl 2 or HOCl or O 2 etc catalysts : ph, transition metals,

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

The Basics of General, Organic, and Biological Chemistry

The Basics of General, Organic, and Biological Chemistry The Basics of General, Organic, and Biological Chemistry By Ball, Hill and Scott Download PDF at https://open.umn.edu/opentextbooks/bookdetail.aspx?bookid=40 Page 5 Chapter 1 Chemistry, Matter, and Measurement

More information

Polymers are high molecular mass macromolecules composed of repeating structural

Polymers are high molecular mass macromolecules composed of repeating structural Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

GCSE. Core Gateway Science B C1: Carbon Chemistry. We are what we repeatedly do. Excellence, therefore, is not an act but a habit

GCSE. Core Gateway Science B C1: Carbon Chemistry. We are what we repeatedly do. Excellence, therefore, is not an act but a habit GCSE Core Gateway Science B C1: Carbon Chemistry We are what we repeatedly do. Excellence, therefore, is not an act but a habit Unit Page Completed By 1a Making Crude Oil Useful 46 1b Using Carbon Fuels

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Biologic catalysts 1. Shared properties with chemical catalysts a. Enzymes are neither consumed nor produced during the course of a reaction. b.

Biologic catalysts 1. Shared properties with chemical catalysts a. Enzymes are neither consumed nor produced during the course of a reaction. b. Enzyme definition Enzymes are protein catalysts that increase the velocity of a chemical reaction and are not consumed during the reaction they catalyze. [Note: Some types of RNA can act like enzymes,

More information

Substrate Specificity of Alcohol Dehydrogenase

Substrate Specificity of Alcohol Dehydrogenase 0 Substrate Specificity of Alcohol Dehydrogenase Roshan Roshan Chikarmane and Jonathan White Department of Chemistry University of Oregon Eugene, OR 97403 April 26, 2014 Abstract: The substrate specificity

More information

(c) Dr. Payal B. Joshi

(c) Dr. Payal B. Joshi Polymer (Greek: poly=many; mer=part) Made up of large molecules characterized by repeating units called monomers held together by covalent bonds Functionality To act as monomer, it must have at least two

More information

Design of Enzyme Literature Seminar Yun-wei Xue

Design of Enzyme Literature Seminar Yun-wei Xue Design of Enzyme 20180714 Literature Seminar Yun-wei Xue 1 Contents 1. Introduction 2. De novo design 3. Incorporation of unnatural amino acid (main paper) 2 1.1 Advantages and limitations of natural enzyme

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

ENZYMES 1: OVERVIEW AND MECHANISM OF ACTION

ENZYMES 1: OVERVIEW AND MECHANISM OF ACTION ENZYMES 1: OVERVIEW AND MECHANISM OF ACTION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 WHAT ARE ENZYMES? 2 Enzymes are molecular devices

More information

Why study Carbon? Chemistry of Life. Chemistry of Life. Hydrocarbons can grow. Hydrocarbons. Building Blocks. Combinations of C & H

Why study Carbon? Chemistry of Life. Chemistry of Life. Hydrocarbons can grow. Hydrocarbons. Building Blocks. Combinations of C & H Chemistry of Life Building Blocks Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl, K Chemistry of Life

More information

Green Chemistry: A Greener Clean

Green Chemistry: A Greener Clean Green Chemistry: A Greener Clean Chicago ACS Chemistry Day Mary Kirchhoff Green Chemistry Institute What is Green Chemistry? Green Chemistry is the design of chemical products and processes that reduce

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Enzymes. Dr.Anupam Porwal Assistant Professor Dept. Of Biotechnology

Enzymes. Dr.Anupam Porwal Assistant Professor Dept. Of Biotechnology 1 Enzymes Dr.Anupam Porwal Assistant Professor Dept. Of Biotechnology 2 What Are Enzymes? Most enzymes are Proteins (tertiary and quaternary structures) except for a class of RNA modifying catalysts known

More information

Peracetic Acid Bleaching CH CO H

Peracetic Acid Bleaching CH CO H Peracetic Acid Bleaching CH 3 CO 3 H Introduction of Bleaching Bleaching is a chemical decoloration and delignification process carried out on various types of pulp. Dli Delignification ifi i Removal of

More information