Removal of Copper Ions from Electroplating Wastewater by Ion-exchange Membranes

Size: px
Start display at page:

Download "Removal of Copper Ions from Electroplating Wastewater by Ion-exchange Membranes"

Transcription

1 Removal of Copper Ions from Electroplating Wastewater by Ion-exchange Membranes SIMONA CAPRARESCU 1*, DANUT-IONEL VAIREANU 1, ANCA COJOCARU 1, IOANA MAIOR 1, ANDREI SARBU 2 1 Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Applied Physical Chemistry and Electrochemistry, 132 Calea Grivitei, , Bucharest, Romania 2 INCDCP-ICECHIM, Bucharest, Department of Polymers, 202 Spl. Independentei,060021, Bucharest, Romania The electrodialysis technique for the treatment of a synthetic wastewater containing copper was studied using three-compartment electrodialysis cell using different type of ion-exchange membranes. In this paper conductivity, ph, gravimetric evaluation and percent extraction was determined for different values of the applied voltage. The best results were observed for A500, respective PPC100. Keywords: copper ions, electrodialysis, ion-exchange membranes, wastewater The release of industrial wastewater containing heavy metals to the environment is nowadays strictly controlled due to the toxic nature of these substances. In order to mitigate the environmental impact it is necessary to remove such heavy metals from wastewater before discharging the effluent industrial streams in the environment [1-14]. Electrodialysis started to be considered in various applications in the early 1900 s as an improved version of the dialysis process by the addition of 2 inert electrodes and the application of a direct current to increase the rate of dialysis process by speeding up the ions movement [2, 6, 7] This technique has been constantly improved over the years and since the 1940 s, and has developed into a newly independent technique that is considered as being different from classical dialysis in many ways, although it is still considered as a part of the membrane separation processes [6, 7]. Electrodialysis has been recently used more and more in sewage work processing to remove pollutants from water, especially where there are highly toxic low concentration contaminants, and it is preferred over other methods (e.g. reverse osmosis, freezing and flash distillation) on economic grounds. Heavy metal electrolytes have gained particularly attention for electrodialysis applications as they present a series of necessary particular properties (e.g. ionic conduction, small ionic volume, easy detection) in order to make this technique economic feasible [2, 3, 9]. Electrodialysis, as a separation technique, consists of series of ion-exchange/ion-selective membranes positioned between two electrodes where a d.c. potential gradient is imposed, as the driving force [6-9]. In an electrodialysis stack the cation-exchange and anion-exchange membranes are alternately arranged in a filter press-like system between two chemically and electrochemically inactive electrodes, positioned at the end of the stack, so that a diluted flow and concentrated flow are the results of the separation processes taking place. Another important membrane characteristic, besides the selectivity and ion-exchange capacity is also that of the membrane ionic conductivity, a high ionic conductivity being able to decrease the cell voltage drop and increase the energy efficiency [15]. The applied direct current field determines the transport of cations towards the cathode and anions towards the anode [2, 8, 11, 16]. During this transport process, anions are able to permeate through the anion selective membrane, but are blocked by the cation selective membrane. A similar process takes place with cations and the anion-exchange membrane [1]. The electrodialysis system is a very flexible one and may be operated in batch, semi-bath, or in a continuous mode [2]. In this paper one describes an electrodialysis cell stack consisting of three compartment cell, each compartment being separated from each other by ion-exchange membranes. The electrodialysis performance was evaluated in term of percent extraction [1, 7, 9], defined as: where C 0 is the initial ion concentration and C f is the ion concentration at the end of the experiment. Experimental part The electrodialysis was performed in a three compartments cell (fig. 1 and 2). The experiments were conducted using different types of ion-exchange membranes:anion-exchange membranes Purolite A400 and Purolite A500 and cation-exchange membranes Purolite C104, Purolite PPC100. The characteristics of these membranes are given in table 1 [10, 17]. Fig. 1. Schematic diagram of electrodialysis cell with three compartments (1) * scaprarescu@yahoo.com ; Tel.: (+40)

2 Fig. 2. Experimental electrodialysis cell Table 1 CHARACTERISTICS OF ION-EXCHANGE MEMBRANES USED IN ELECTRODIALYSIS The anion-exchange membrane was placed next to the anode and the cation-exchange membrane was placed next to the cathode. The leaks are prevented by the use of acid resistant O-rings placed on each side of the compartment body. The electrodes were made of lead 99.9%, in order to allow an easy construction and integration inside the cell. The metal preferred was lead chemically and electrochemically inactive with respect to the solution ions and electrode processes taking place (the anode does not release lead cations in solutions) [8]. The effective area of each membrane and electrode was of cm2. The distance between anode-cathode electrodes was 52 mm. Synthetic wastewater solutions, reassembling the wastewater from copper electroplating waste streams were prepared by dissolving copper sulphate (CuSO4. 5H2O) and sulphuric acid in deionised water to obtain concentrations between 1000 ppm and 4000 ppm of copper ions. The ratio between the cooper sulphate and sulphuric acid was 1:1. This ratio is the most defavourable case that one may encounter in real life applications. The heavy metal contaminated solution is pumped into the electrodialysis unit and the cell may be operated as batch/stagnant or continuously, at a controlled flow rate, depending on the chosen operating conditions. Under the influence of the applied electrical potential across the cell electrodes, the cations from solution migrate toward the cathode, and the anions toward the anode. For the above given membranes, when a cation encounters the cationexchange membrane, the cation is exchanged for H + ; similarly, anions migrate toward the anode and the process is taking place at an anion-exchange membrane, the sulphate anion being now exchanged for Cl - [1, 2, 7 and 19]. The effects of applied potential, and initial concentration on the percent extraction were studied in the above presented electrodialysis cell. One has also recorded the variations in ph and ionic conductivity in the cell compartments. The conductivity of the solutions was measured by a conductivity meter WA-100 ATC (Voltcraft, Germany) that was calibrated using KCl 0.02 n solution. The conductivity meter contains a temperature sensor that allows the automatic compensation with respect to the temperature variation [8]. The ph of the solutions was measured by a ph meter HI 8915 (HANNA Instruments, Germany). The ph meter contains also a temperature sensor that allows the automatic compensation with respect to the temperature variation. Results and discussions In these experiments the actual working volume which was subjected to the electrodialysis process at room temperature (25 C), for 3 h, under potentiostatic conditions (a constant anode-cathode applied voltage between 5 and 674

3 Fig. 3. Variation of cell current in time for different concentrated solutions and pairs of membranes at 5 V applied voltage Fig. 4. Variation of cell current in time for different concentrated solutions and types of membranes at 9 V applied voltage 9V) was of ml/compartment. The variation of current in time for the applied voltage (the polarization curve) was recorded for various initial concentrations of copper ions [8, 9, and 18] and various levels of applied voltage (fig. 3 and 4). Figures 3 and 4 show that the current initially increases with increasing time because the stack resistance gradually decreases due to ion transfer processes. The curves present a maximum value when the stack resistance was minimum (highest conductivity resulting from the addition of individual ionic species conductivity) and then decreases with increasing time (due to a decrease in the overall conductivity) reaching a steady state value after 120 min. As far as the initial concentration is concerned, the current increases with increasing concentration being explained by the increased ionic conductivity with increasing concentration; the increased current with increasing applied voltage is due to the ohmic behaviour of solution for increased applied voltage, the highest current being obtained for an applied voltage of 9 V. The wastewater conductivity of solutions from anodic and cathodic compartment was also measured. In table 2 and table 3 one may see that the values of conductivities for various solutions increase in the anodic compartment. This is due to the fact that following the oxygen evolution, the remaining excess protons will increase the overall proton concentrations increasing the value of conductivity in this compartment. The apparently abnormal decrease of conductivity in the cathodic compartment is a direct consequence of the electrodeposition reaction of copper on the cathode, decreasing the copper ions conductivity contribution, and consequently, the value of the respective conductivity. Similar results are also reported in [8, 9]. This is confirmed by the metallic copper layer deposited onto the cathode that can be visually noticed at the end of the experiment when the cell is disassembled and also by gravimetric estimation evaluation (table 4). The experimental results indicate that in the case of Purolite PPC100 one has obtained better results for the removal of copper ions comparing to that of Purolite C104 for all the applied electrical voltage values, as well as for both concentration levels studied (table 4), indicating that Purolite PPC100 has also an elevated copper loading than Purolite C104 - a membrane containing carboxylic functional groups; this is due to the fact that in Purolite PPC100 the sulphonic functional groups are able to provide a high degree of proton ionisation comparing to carboxylic groups contained in Purolite C104. Table 2 CONDUCTIVITY VALUES OF DIFFERENT SOLUTIONS AND MEMBRANES AT 5V APPLIED VOLTAGE 675

4 Table 3 CONDUCTIVITY VALUES OF THE DIFFERENT SOLUTIONS AND MEMBRANES AT 9V APPLIED VOLTAGE Table 4 GRAVIMETRIC EVALUATION FOR DIFFERENT SOLUTIONS ON DIFFERENT MEMBRANES AND VALUES OF POTENTIAL Table 5 ph VALUES AT VARIOUS CONCENTRATION SOLUTIONS AND MEMBRANES AT 5V APPLIED VOLTAGE Electrical voltage values, as well as for both concentration levels studied (table 4), indicating that Purolite PPC100 has also an elevated copper loading than Purolite C104 - a membrane containing carboxylic functional groups; this is due to the fact that in Purolite PPC100 the sulphonic functional groups are able to provide a high degree of proton ionisation comparing to carboxylic groups contained in Purolite C104. The lower capacity anion-exchange for sulphate anions of membrane Purolite A400 with respect to A500 is due to the fact that the first one is in fact a gel based and the diffusion process is slower in this case comparing to the macroporous membrane A500. The selectivity of A400 and A500 for sulphate anions and the rejection forces for copper cations are due to the presence of the quaternary ammonium functional groups that determines existence of the repulsive forces between A400 and A500 and copper cations [8]. Table 5 and table 6 present the ph values for the different concentration of solutions and type of membranes considered at different applied voltages measured after 3 h. The ph values decreased in the anodic compartment 676

5 Table 6 ph VALUES AT VARIOUS CONCENTRATION SOLUTIONS AND MEMBRANES AT 9V APPLIED VOLTAGE Fig. 5. Percent. extraction of copper ions after 3,5 h of treatment for different concentrated solutions at 5 V applied cell voltage due to the formation of H + as a result of oxygen evolution. The increase of ph in the cathodic compartment may be explained by a partial discharge besides copper ions of protons induced by an elevated overpotential caused by the increased applied voltage (5 and 9 V). The results are consistent to similar findings reported in [8, 12, 20]. The value of the percent extraction parameter was calculated using relation (1) in accordance with the established procedure [1, 7-9] in order to evaluate the efficiency of the electrodialysis process. Figures 5 and 6 show that the percent extraction increases with increasing initial concentration solutions and applied cell voltage. The best performance combination is obtained in the case of PPC100 and A500 pair. Conclusions The results presented here have shown that the Purolite PPC100 presents a high capacity for removal of copper ions from wastewater in comparison with Purolite C104 under the given conditions because of a limited ionization of sulphonic functional groups with respect to carboxylic ones and an increase water uptake. The value of the electrical current increases initially with increase concentration and applied voltage; the percent extraction of copper ions increases with increasing initial concentration of copper ions and increasing applied voltage reaching values above 80% for both membrane pair combinations, when a voltage above 5 V is applied. References 1. MARDER, L., SULZBACH, G. O., BRENARDES A. M., FERREIRA, J. Z., J. Braz. Chem. Soc., 14, no. 4, 2003, p VAIREANU, D. I., Electrochemistry and corrosion, AGIR Publishing House, Bucuresti, 2006 p. 102 Fig. 6. Percent. extraction of copper ions after 3,5 h of treatment for different concentrated solutions at 9 V applied cell voltage 3. CHOI, K. H., YOUNG, T., Korean J. Chem. Eng., 19, no. 1, 2002, p MIHALY COZMUTA, A., MIHALY COZMUTA, L., VARGA, C., Rev. Chim., 58, nr.12, 2007, p SIMONESCU, C. M., DELEANU, C., CAPATI, C., Rev. Chim. (Bucuresti), 58, nr. 11, 2007, p SANTAROSA, V. E., PERETTI, F., CALDART, V., ZAPPAS, J., ZENI, M., Desalination, 149, 2002, p MOHAMMADI, T., SADRZADEH, M., MOHEB, A., RAZMI, A., Ninth International Water Technology Conference, Egypt, IWTC9 2005, p CAPRARESCU, S., VAIREANU, D.-I., COJOCARU, A., MAIOR, I., PURCAR, V., SIRBU, A., U. P. B. Sci. Bull., in press 9. DALLA COSTA, R. F., KLEIN, C. W., BERNARDES, A. M., FERREIRA, J. Z., J. Braz. Chem. Soc., 13, no. 4, 2002, p JANCEVIÈIÛTË, R., GEFENIENË, A., J. Environ. Eng. Landsc. Manag, XIV, no. 4, ISSN , 2006, p GÜVENÇ, A., KARABACAKOÐLU, B., Desalination, 172, 2005, p KHAN, J., TRIPATHI, B. P., SAXENA, A., SHAHI, V. K., Electrochem. Acta, 52, 2007, p ABO-GHANDER, N. S., RAHMAN, S. U., ZAIDI, S. M. J., Portugaliae Electrochim. Acta, 24, 2006, p SATA, T., SATA, T., YANG, W., J. Membr. Sci., 206, 2002, p VAIREANU, D-I., MAIOR, I., GRIGORE, A., SAVOIU, D., Rev. Chim., 59, nr. 10, 2008, p VAIREANU, D. I., Metode electrochimice aplicate în protecþia mediului, Ed. Printech, Bucuresti, 2007, p KOTER, S., WARSZAWSKI, A., Polish J. of Environmental Studies, 9, no. 1, 2000, p NATARAJ, S. K., HOSAMANI, K. M., AMINABHAVI, T. M., Desalination, 217, 2007, p VAIREANU, D. I., Depoluarea electrochimicã a apelor reziduale, Ed. Printech, Bucuresti, 2000, p CHEN, X.-F., WU, Z.-C., J. of Zhejiang University Science, 6B(6), 2005, p. 543 Manuscript received:

MATHEMATICAL MODELING OF DESALINATION BY ELECTRODIALYSIS

MATHEMATICAL MODELING OF DESALINATION BY ELECTRODIALYSIS Tenth International Water Technology Conference, IWTC10 006, Alexandria, Egypt 1 ATHEATICAL ODELING OF DESALINATION BY ELECTRODIALYSIS ohtada Sadrzadeh, Anita Kaviani, and Toraj ohammadi* Research Lab

More information

Electrolytic processes Notes

Electrolytic processes Notes Edexcel GCSE Chemistry Topic 3: Chemical changes Electrolytic processes Notes 3.22 Recall that electrolytes are ionic compounds in the molten state or dissolved in water When an ionic substance is melted

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

MEMBRANE CAPACITIVE DEIONIZATION

MEMBRANE CAPACITIVE DEIONIZATION MEMBRANE CAPACITIVE DEIONIZATION Albert van der Wal and Hank Reinhoudt Voltea b.v., Wassenaarseweg 72, 2333 AL, Leiden, the Netherlands Presenter Hank Reinhoudt Corresponding author: Hank.Reinhoudt@voltea.com

More information

(c) Na is deposited at the cathode (d) Na appears at the anode

(c) Na is deposited at the cathode (d) Na appears at the anode year chemiry n0tes new CHAPTER 10 ELECTROCHEMISTRY MCQS Q.1 Electrolysis is the process in which a chemical reaction takes place at the expense of (a) chemical energy (b) electrical energy (c) heat energy

More information

A MIXED ELECTRIC DOUBLE LAYER MODEL AT THE SOLID (LIQUID) / ELECTROLYTE INTERFACE

A MIXED ELECTRIC DOUBLE LAYER MODEL AT THE SOLID (LIQUID) / ELECTROLYTE INTERFACE A MIXED ELECTRIC DOUBLE LAYER MODEL AT THE SOLID (LIQUID) / ELECTROLYTE INTERFACE Gh. Semenescu*, C. Cioacă **, Gh. Potcovaru *** abstract. The tension surface defined by Gibbs in treating the interface

More information

Electroplating/ Electrodeposition

Electroplating/ Electrodeposition Electroplating/ Electrodeposition Wei Yan ABC s of Electrochemistry 03/22/2012 OUTLINE Introduction Electroplating Setup Importance of Electrodeposition Electrochemistry Fundamentals Factors affecting

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell?

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell? Unit - 3 ELECTROCHEMISTRY 1. What is a galvanic cell? VSA QUESTIONS (1 - MARK QUESTIONS) 2. Give the cell representation for Daniell Cell. 3. Mention the purpose of salt-bridge placed between two half-cells

More information

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry 11.3 Electrolytic Cells Section Preview/ Specific Expectations In this section, you will identify the components of an electrolytic cell, and describe how they work describe electrolytic cells using oxidation

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Water pollution is one of the largest environmental problems facing society today. Each year, millions of tons of toxic pollutants are discharged into rivers, lakes, and oceans

More information

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium Portugaliae Electrochimica Acta 2010, 28(6), 397-404 DOI: 10.4152/pea.201006397 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic

More information

SEPARATION BY BARRIER

SEPARATION BY BARRIER SEPARATION BY BARRIER SEPARATION BY BARRIER Phase 1 Feed Barrier Phase 2 Separation by barrier uses a barrier which restricts and/or enhances the movement of certain chemical species with respect to other

More information

Removal of suspended and dissolved organic solids

Removal of suspended and dissolved organic solids Removal of suspended and dissolved organic solids Types of dissolved solids The dissolved solids are of both organic and inorganic types. A number of methods have been investigated for the removal of inorganic

More information

LlkJ-/ rpdf Pollution Prevention - Source Reduction with Electrodialytic Processes

LlkJ-/ rpdf Pollution Prevention - Source Reduction with Electrodialytic Processes w- LlkJ-/ rpdf Pollution Prevention - Source Reduction with Electrodialytic Processes by Daniel J. Vaughan This paper is focused on how not to make waste or how to prevent pollution at the source. I know

More information

3. Solids cannot conduct electricity because the ions cannot move freely 4. Electrolytic cell

3. Solids cannot conduct electricity because the ions cannot move freely 4. Electrolytic cell Chapter 6 Electrochemistry (Credits to Thennarasu Pannirselvam) Page 1 of 10 1. Electrolysis : Process where molten or aqueous state compounds are broken down into their constitute elements by passing

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Chapter 32. Electrolysis

Chapter 32. Electrolysis Chapter 32 Electrolysis 32.1 Electrolysis a type of redox reactions 32.2 Predicting preferential discharge of ions 32.3 Electrolysis of dilute sulphuric acid 32.4 Electrolysis of sodium chloride solution

More information

Electrochemistry and battery technology Contents

Electrochemistry and battery technology Contents Electrochemistry and battery technology Contents Introduction Redox overview voltaic cells, electrolytic cells, fuel cells, Primary and secondary batteries. Other batteries; Construction, working and applications

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 5 - Electricity and Chemistry Electrolysis You need to know that electrolysis is: - The breakdown of ionic substances into their constituent elements

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information

Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013

Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 ELECTROCHEMICAL RECOVERY OF THE ZINC PRESENT IN THE SPENT PICKLING BATHS COMING

More information

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ; i i : L4 0 t DSCLAMER Portions of this document may be illegible in electronic image products. mages are produced from the best available original document. EVALUATON OF THE HUMDFCATON REQTJREMENTS OF

More information

NRAO CHEMICAL LAB REPORT NO. 2 THEORY OF ELECTRODEPOSITED METALS. J. Lichtenberger

NRAO CHEMICAL LAB REPORT NO. 2 THEORY OF ELECTRODEPOSITED METALS. J. Lichtenberger NRAO CHEMICAL LAB REPORT NO. 2 THEORY OF ELECTRODEPOSITED METALS J. Lichtenberger National Radio Astronomy Observatory Charlottesville, Virginia November 1975 ABSTRACT A brief introduction to the theoretical

More information

2. Conductometry. Introduction This is a method of analysis based on measuring electrolytic conductance

2. Conductometry. Introduction This is a method of analysis based on measuring electrolytic conductance 2. Conductometry Introduction This is a method of analysis based on measuring electrolytic conductance Conductance: is the ability of the medium to carry the electric current. Electric current passes through

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK N.V. Dale 1,*, C. Y. Biaku 1, M. D. Mann 1, H. Salehfar 2, A. J. Peters 2 Abstract The low volumetric energy density of hydrogen

More information

Class 12 Important Questions for Chemistry Electrochemistry

Class 12 Important Questions for Chemistry Electrochemistry Class 12 Important Questions for Chemistry Electrochemistry Multiple Choice Questions (Type-I) 1. Which cell will measure standard electrode potential of copper electrode? o (i) Pt (s) H2 (g,0.1 bar) H

More information

Technology offer: Wastewater treatment by electrocoagulation (EC)

Technology offer: Wastewater treatment by electrocoagulation (EC) Technology offer: Wastewater treatment by electrocoagulation (EC) Technology offer Wastewater treatment by Electrocoagulation (EC) Reference: TO-ECOAG SUMMARY The Department of Physical Chemistry (Applied

More information

Experiment 28 DIRECT METHANOL FUEL CELL

Experiment 28 DIRECT METHANOL FUEL CELL Experiment 28 Direct methanol fuel cell 1 Experiment 28 DIRECT METHANOL FUEL CELL Objective The purpose of this experiment is to learn the principle of direct methanol fuel cell (DMFC) and set up a simple

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

Lesson on Electrolysis

Lesson on Electrolysis Lesson on Electrolysis This lesson package includes a lesson plan, a worksheet for students, and teachers notes on the worksheet. Activity Lesson 1 (50 min-2 Period lesson) Teacher explains (page 1 to

More information

Electrical Conduction. Electrical conduction is the flow of electric charge produced by the movement of electrons in a conductor. I = Q/t.

Electrical Conduction. Electrical conduction is the flow of electric charge produced by the movement of electrons in a conductor. I = Q/t. Electrical Conduction e- in wire e- out Electrical conduction is the flow of electric charge produced by the movement of electrons in a conductor. The rate of electron flow (called the current, I, in amperes)

More information

lect 26:Electrolytic Cells

lect 26:Electrolytic Cells lect 26:Electrolytic Cells Voltaic cells are driven by a spontaneous chemical reaction that produces an electric current through an outside circuit. These cells are important because they are the basis

More information

(c) dilute solution of glucose (d) chloroform 12 Which one of the following represents the same net reaction as the electrolysis of aqueous H2SO4

(c) dilute solution of glucose (d) chloroform 12 Which one of the following represents the same net reaction as the electrolysis of aqueous H2SO4 1 Electrolysis is the process in which a chemical reaction takes place at the expense of (a) chemical energy (b) electrical energy (c) heat energy (d) none of these 2 Standard hydrogen electrode has an

More information

Ion exchange (ionex) Ion exchange. Advantages. Disadvantages

Ion exchange (ionex) Ion exchange. Advantages. Disadvantages Ion exchange (ionex) 1 Ion exchange Separation method based on exchange of dissolved ions on functional groups fixed on matrix. Ionex (ion exchanger (IX)) - compound able to exchange ions inorganic (zeolites)

More information

The Electrochemical Isotope Effect Redox driven stable isotope fractionation

The Electrochemical Isotope Effect Redox driven stable isotope fractionation The Electrochemical Isotope Effect Redox driven stable isotope fractionation Redox reactions (involving an electron transfer) drive many chemical transformations in the environment and are vital in biological

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Cambridge IGCSE Chemistry. Topic 5: Electricity and chemistry. Notes.

Cambridge IGCSE Chemistry. Topic 5: Electricity and chemistry. Notes. Cambridge IGCSE Chemistry Topic 5: Electricity and chemistry Notes Define electrolysis as The breakdown of an ionic compound, molten or in aqueous solution, by the passage of electricity Describe the electrode

More information

PHYSICS. ElectroChemical Effects. Rishi Gopie

PHYSICS. ElectroChemical Effects. Rishi Gopie ElectroChemical Effects Rishi Gopie ELECTRO CHEMICAL EFFECTS Cells A cell is a device that converts chemical energy to electrical energy by producing electrons during chemical reactions. It gives a steady

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 11B Angel International School - Manipay 1 st Term Examination November, 2015 Chemistry - I Duration: 1.00 Hour Part 1 1) A liquid boils at a temperature of 100 o C. Which other property of the liquid

More information

YEAR 10 CHEMISTRY TIME: 1h 30min

YEAR 10 CHEMISTRY TIME: 1h 30min YEAR 10 CHEMISTRY TIME: 1h 30min NAME: CLASS: Useful data: Q = It. Faraday Constant = 96,500 C mol -1. Use the Periodic table, given below, where necessary. Marks Grid [For Examiners use only] Question

More information

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 96 (2016) DOI: 10.7763/IPCBEE. 2016. V96. 4 Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic

More information

REMEDIATION OF SALT IMPACTED GROUNDWATER WITH ELECTROKINETICS. Paper by: Sean Kelly, Rick Churko, Sean Frisky, Anjum Mullick, Stuart Torr.

REMEDIATION OF SALT IMPACTED GROUNDWATER WITH ELECTROKINETICS. Paper by: Sean Kelly, Rick Churko, Sean Frisky, Anjum Mullick, Stuart Torr. REMEDIATION OF SALT IMPACTED GROUNDWATER WITH ELECTROKINETICS. Paper by: Sean Kelly, Rick Churko, Sean Frisky, Anjum Mullick, Stuart Torr. Alberta Transportation is supporting leading research in the use

More information

Topic: APPLIED ELECTROCHEMISTRY. Q.1 What is polarization? Explain the various type of polarization.

Topic: APPLIED ELECTROCHEMISTRY. Q.1 What is polarization? Explain the various type of polarization. Topic: APPLIED ELECTROCHEMISTRY T.Y.B.Sc Q.1 What is polarization? Explain the various type of polarization. Ans. The phenomenon of reverse e.m.f. brought about by the presence of product of electrolysis

More information

Copper electrodeposition in presence and absence of EDTA using reticulated vitreous carbon electrode

Copper electrodeposition in presence and absence of EDTA using reticulated vitreous carbon electrode Copper electrodeposition in presence and absence of EDTA using reticulated vitreous carbon electrode P. H. Britto a, L. A. M. Ruotolo a,b a Department of Chemical Engineering, Federal University of São

More information

IV. Transport Phenomena. Lecture 23: Ion Concentration Polarization

IV. Transport Phenomena. Lecture 23: Ion Concentration Polarization IV. Transport Phenomena Lecture 23: Ion Concentration Polarization MIT Student (and MZB) Ion concentration polarization in electrolytes refers to the additional voltage drop (or internal resistance ) across

More information

Biochemistry. Biochemical Techniques. 01 Electrophoresis : Basic Concepts

Biochemistry. Biochemical Techniques. 01 Electrophoresis : Basic Concepts Description of Module Subject Name Paper Name 12 Module Name/Title 01 Electrophoresis: Basic Concept 1. Objectives 1.1 To understand basic concept of electrophoresis 1.2 To explain what determines charge

More information

7.1 Electrolyte and electrolytic solution

7.1 Electrolyte and electrolytic solution Out-class reading: Levine, pp. 294-310 Section 10.6 solutions of electrolytes Section 10.9 ionic association pp. 512-515 Section 16.6 electrical conductivity of electrolyte solutions. Contents of solution

More information

Study of the Transport of Multivalent Metal Cations through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy

Study of the Transport of Multivalent Metal Cations through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy Study of the Transport of Multivalent Metal Cations through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón Abstract In

More information

Chapter 3 Electrochemical methods of Analysis-Potentiometry

Chapter 3 Electrochemical methods of Analysis-Potentiometry Chapter 3 Electrochemical methods of Analysis-Potentiometry Electroanalytical chemistry Contents Introduction Galvanic and electrolytic cells Salt bridge Electrode potential and cell potential Indicator

More information

Supporting Information

Supporting Information Supporting Information Simultaneous hydrogen generation and waste acid neutralization in a Reverse Electrodialysis System Marta C. Hatzell 1, Xiuping Zhu 2, and Bruce E. Logan 2* 1 Department of Mechanical

More information

Instrumental Chemical Analysis. Dr. Abdul Muttaleb Jaber Professor Faculty of Pharmacy Philadelphia University Fall 2012/2013

Instrumental Chemical Analysis. Dr. Abdul Muttaleb Jaber Professor Faculty of Pharmacy Philadelphia University Fall 2012/2013 0510212 Instrumental Chemical Analysis Dr. Abdul Muttaleb Jaber Professor Faculty of Pharmacy Philadelphia University Fall 2012/2013 Chapter 1 Electroanalytical Methods Electroanalytical Chemistry Electroanalytical

More information

Ion transport through diffusion layer controlled by charge mosaic membrane. *Akira Yamauchi ABSTRACT

Ion transport through diffusion layer controlled by charge mosaic membrane. *Akira Yamauchi ABSTRACT The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Ion transport through diffusion layer controlled by charge mosaic membrane

More information

University of Groningen. Electrodialytic recovery of acids and bases Visser, Cornelis

University of Groningen. Electrodialytic recovery of acids and bases Visser, Cornelis University of Groningen Electrodialytic recovery of acids and bases Visser, Cornelis IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells Chapter 22 Bulk Electrolysis: Electrogravimetry and Coulometry Definition Bulk Electrolysis deals with methods that involve electrolysis producing a quantitative change in oxidation state Example: In a

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

Topic IV. Electrolysis

Topic IV. Electrolysis IV. Electrolysis Page 1 Topic IV. Electrolysis Reference Reading Integrated Chemistry Today, L.H.M. Chung, Book 1 pg. 316 335 Objectives 3.4 understand that electrical energy can cause redox reactions

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

Electrodes are normally made out of inert (unreactive) materials. Graphite and platinum are common electrode materials.

Electrodes are normally made out of inert (unreactive) materials. Graphite and platinum are common electrode materials. Electrolysis Electrolysis is using an electric current to break up an ionic compound to form elements. Covalent compounds can t be split up by electrolysis. Terms used in electrolysis: Electrolyte - the

More information

One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p.

One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p. 1 One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p.) Standard temperature is 0 0 C or 273K and standard

More information

Modeling of the 3D Electrode Growth in Electroplating

Modeling of the 3D Electrode Growth in Electroplating Modeling of the 3D Electrode Growth in Electroplating Marius PURCAR, Calin MUNTEANU, Alexandru AVRAM, Vasile TOPA Technical University of Cluj-Napoca, Baritiu Street 26-28, 400027 Cluj-Napoca, Romania;

More information

electrodeposition is a special case of electrolysis where the result is deposition of solid material on an electrode surface.

electrodeposition is a special case of electrolysis where the result is deposition of solid material on an electrode surface. Electrochemical Methods Electrochemical Deposition is known as electrodeposition - see CHEM* 1050 - electrolysis electrodeposition is a special case of electrolysis where the result is deposition of solid

More information

BUSIA SUB-COUNTY JET 2016

BUSIA SUB-COUNTY JET 2016 Name Index No.. School... 233/1 CHEMISTRY THEORY Paper 1 Time: 2 Hours BUSIA SUB-COUNTY JET 2016 Kenya Certificate of Secondary Education (K.C.S.E) INSTRUCTIONS TO CANDIDATES. Answer all the questions

More information

Adsorption at the solid/liquid interface

Adsorption at the solid/liquid interface 1. Ion exchanger Adsorption at the solid/liquid interface Ion exchange process means an exchange of ions between an electrolyte solution and a solid (ionite). In most cases the term is used to denote the

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

(i) Voltameter consist of a vessel, two electrodes and electrolytic solution.

(i) Voltameter consist of a vessel, two electrodes and electrolytic solution. Electrochemistry is the branch of physical chemistry which deals with the relationship between electrical energy and chemical changes taking place in redox reactions i.e., how chemical energy produced

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS Electrochemistry 1 ELECTROCHEMISTRY REDOX Reduction gain of electrons Cu 2+ (aq) + 2e > Cu(s) Oxidation removal of electrons Zn(s) > Zn 2+ (aq) + 2e HALF CELLS these are systems involving oxidation or

More information

For more information visit

For more information visit Electrochemistry is the branch of chemistry which deals with the chemical changes caused in the matter by passage of electric current and conversion of chemical energy into electrical energy and vice versa.

More information

METHODS FOR DETERMINATIONS OF ELECTROLYTES AND BLOOD GASES

METHODS FOR DETERMINATIONS OF ELECTROLYTES AND BLOOD GASES METHODS FOR DETERMINATIONS OF ELECTROLYTES AND BLOOD GASES ELECTROCHEMISTRY Basic principle Electrodes are used to selectively measure particular ions Instruments utilizing electrodes measure the potential

More information

Thermo Scientific Electrochemistry Products

Thermo Scientific Electrochemistry Products Comparing Performance of DO Methods The world leader in serving science in Water and Seawaters Thermo Scientific Electrochemistry Products Dissolved Oxygen Measurement Oxygen is essential for most of the

More information

4.07 Ions in Aqueous Solution (5 points)

4.07 Ions in Aqueous Solution (5 points) 2nd/3rd year Physical Chemistry Practical Course, Oxford University 4.07 Ions in Aqueous Solution (5 points) Outline In this experiment, you will (i) determine molar conductivities of electrolyte solutions

More information

Recovery of hydrochloric acid from metal pickling solutions by membrane distillation

Recovery of hydrochloric acid from metal pickling solutions by membrane distillation Separation and Purification Technology 22-23 (2001) 591 600 www.elsevier.com/locate/seppur Recovery of hydrochloric acid from metal pickling solutions by membrane distillation M. Tomaszewska *, M. Gryta,

More information

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell Electrochemistry Electrochemical Process The conversion of chemical energy into electrical energy and the conversion of electrical energy into chemical energy are electrochemical process. Recall that an

More information

Electrochemical cells. Section 21.1

Electrochemical cells. Section 21.1 Electrochemical cells Section 21.1 Electrochemical processes Chemical process either release energy or absorb energy This does not have to be solely heat or light - sometimes it can be in the form of electricity

More information

Porous silicon as base material of MEMS-compatible fuel cell components

Porous silicon as base material of MEMS-compatible fuel cell components Porous silicon as base material of MEMS-compatible fuel cell components José Geraldo Alves Brito Neto Tokyo University of Science - Faculty of Science and Technology Department of Mechanical Engineering

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS ELECTROCHEMICAL CELLS Electrochemistry 1. Redox reactions involve the transfer of electrons from one reactant to another 2. Electric current is a flow of electrons in a circuit Many reduction-oxidation

More information

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802 Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park,

More information

NANOCOMPOSITE CATION EXCHANGE MEMBRANE WITH FOULING RESISTANCE AND ENHANCED SALINITY GRADIENT POWER GENERATION FOR REVERSE ELECTRODIALYSIS

NANOCOMPOSITE CATION EXCHANGE MEMBRANE WITH FOULING RESISTANCE AND ENHANCED SALINITY GRADIENT POWER GENERATION FOR REVERSE ELECTRODIALYSIS NANOCOMPOSITE CATION EXCHANGE MEMBRANE WITH FOULING RESISTANCE AND ENHANCED SALINITY GRADIENT POWER GENERATION FOR REVERSE ELECTRODIALYSIS X I N T O N G, B O P E N G Z H A N G, A N D Y O N G S H E N G

More information

Electrochemical recovery of silver from waste aqueous Ag(I)/Ag(II) redox mediator solution used in mediated electro oxidation process

Electrochemical recovery of silver from waste aqueous Ag(I)/Ag(II) redox mediator solution used in mediated electro oxidation process Korean J. Chem. Eng., 26(4), 1053-1057 (2009) DOI: 10.2478/s11814-009-0175-x RAPID COMMUNICATION Electrochemical recovery of silver from waste aqueous Ag(I)/Ag(II) redox mediator solution used in mediated

More information

What is a Voltaic Cell? Voltaic Cells a.k.a. Electrochemical cells. May 25, Voltaic Cells 2018.notebook

What is a Voltaic Cell? Voltaic Cells a.k.a. Electrochemical cells. May 25, Voltaic Cells 2018.notebook What is a? s a.k.a. Electrochemical cells Aim: To analyze the process of a spontaneous chemical reaction that produces electricity. Voltaic cell: an electrochemical cell where chemical energy is spontaneously

More information

ph Electrode basics ph Electrodes Model 19 B /1 =1 m 24 B /1 =1 m

ph Electrode basics ph Electrodes  Model 19 B /1 =1 m 24 B /1 =1 m s ph electrodes are constructed from a special composition which senses the hydrogen ion concentration. This is typically composed of alkali metal ions. The alkali metal ions of the and the hydrogen ions

More information

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS Electrochemistry 1 ELECTROCHEMISTRY REDOX Reduction gain of electrons Cu 2+ (aq) + 2e > Cu(s) Oxidation removal of electrons Zn(s) > Zn 2+ (aq) + 2e HALF CELLS these are systems involving oxidation or

More information

New chalcogenide glass chemical sensors for S 2- and dissolved H 2 S monitoring

New chalcogenide glass chemical sensors for S 2- and dissolved H 2 S monitoring Water cience and Technology, 2003, Vol. 47, No. 2, pp. 135-140 New chalcogenide glass chemical sensors for 2- and dissolved H 2 monitoring M. Miloshova, D. Baltes and E. Bychkov LPCA, UMR CNR 8101, Université

More information

Synthesis and Characterization of Proton-Conducting Oxides as Hydrogen Transport Membranes

Synthesis and Characterization of Proton-Conducting Oxides as Hydrogen Transport Membranes Synthesis and Characterization of Proton-Conducting Oxides as ydrogen Transport Membranes Lin Li and Enrique Iglesia Department of Chemical Engineering, University of California at Berkeley, Division of

More information

Chapter 7 Electrochemistry

Chapter 7 Electrochemistry Chapter 7 Electrochemistry Outside class reading Levine: pp. 417 14.4 Galvanic cells: pp. 423 14.5 types of reversible electrodes 7.6.1 Basic concepts of electrochemical apparatus (1) Electrochemical apparatus

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Dr. Anand Gupta

Dr. Anand Gupta By Dr Anand Gupta Mr. Mahesh Kapil Dr. Anand Gupta 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Electrochemistry Electrolysis Electric energy Chemical energy Galvanic cell 2 Electrochemistry

More information

Electrochemistry SYBSc 2017

Electrochemistry SYBSc 2017 Electrochemistry SYBSc 2017 Definition It is a branch in chemistry which deals with the qualitative and quantitative studies of chemical changes brought about by the passage of electricity. It is also

More information

Contents. 2. Fluids. 1. Introduction

Contents. 2. Fluids. 1. Introduction Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Chapter - 8. Summary and Conclusion

Chapter - 8. Summary and Conclusion Chapter - 8 Summary and Conclusion The present research explains the synthesis process of two transition metal oxide semiconductors SnO 2 and V 2 O 5 thin films with different morphologies and studies

More information

9.1 Introduction to Oxidation and Reduction

9.1 Introduction to Oxidation and Reduction 9.1 Introduction to Oxidation and Reduction 9.1.1 - Define oxidation and reduction in terms of electron loss and gain Oxidation The loss of electrons from a substance. This may happen through the gain

More information

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS 4.1 INTRODUCTION Capacitive deionization (CDI) is one of the promising energy

More information

Electrochemical Cells Intro

Electrochemical Cells Intro Electrochemical Cells Intro Outcomes: Outline the historical development of voltaic (galvanic) cells. Explain the operation of a voltaic cell at the visual, particulate and symbolic levels. Vocabulary:

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information