Nustar Seminar

Size: px
Start display at page:

Download "Nustar Seminar"

Transcription

1 Fritz Peter Heßberger GSI Helmholtzzentrum für f r Schwerionenforschung mbh, D Darmstadt, Germany Helmholtz Institut Mainz, D-5599 D Mainz, Germany Nustar Seminar Version:

2 First Prediction of Superheavy Elements A. Sobiczewski, F. Gareev, B.N. Kalinkin, Phys. Lett. 22, 5 (1966) Calculations of energies of proton and neutron levels for heavy nuclei A > 2 show gaps for Z = 82 (known) and Z = 114, as well as for N = 126 (known) and N = 184 (and also N = 228); gaps in the sequence of single particle levels can be interpreted as signature for shell closures

3 Predictions of Superheavy Elements (164) (164) Proton number Proton number Macroscopic Microscopic Calculations E gs < 1 MeV 1-2 MeV 2-3 MeV 3-4 MeV 4-5 MeV 5-6 MeV 6-7 MeV >7 MeV Z=114 Z=18 < Z= Z= >.25 N =152 N=152 N =162 N=162 N =184 N= H. Meldner Arkiv fys. 36,593 (1967) Neutron number R.Smolanczuk, A. Sobiczewski Proc. EPS Conf. Low Energy Nucl. Dyn., St. Petersburg, Russia, 1995 & priv. comm. konferenzen/tour_912/sobi

4 Predictions of Superheavy Elements Self-consistent Hartree-Fock-Bogoliubov (HFB) calculation using forces of Skyrme- or Gogny type and Relativistic Mean Field (RMF) calculations, using different parametrizations. SHF: SkP, SkI3, SLy6, SkI4; Gogny: D1S and RMF: NL3, NL-Z2. Results different for different parametrizations, also different from macroscopic-microscopic calculations: SkP predicts proton shell Z=126, other SHF param. rather Z=12, SkI4 shows also stromg shell effects at Z=114; SHF predict neutron shell essentially at N=184, partly strong shell effects also at N=172 RMF predict proton shell at Z=12 and strong neutron shell rather at N=172. From: M.Bender et al. Phys. Lett. B 515, 42 (21)

5 Predictions of Superheavy Elements Are superheavy nuclei different? Yes! Competition between short-range nuclear forces and long-range electrostatic repulsion results in the Coulomb frustration effects Electromagnetic interaction is highly non pertubative - gives rise to huge self-consistent polarization effects / rearrangement Is the concept of magicity useful in superheavy nuclei? Probably not! Because of very high level density and the Coulomb frustration effects (from: W. Nazarewicz, Contribution to FUSHE 212) Shell structure and Coulomb frustration E [MeV] j 13/2 4s 1/2 3d 5/2 3d 3/2 2g 7/2 1j 15/2 2g 9/ s 1/ E [MeV] j 13/2 3d 3/2 3d 5/2 2g 7/2 1j 15/2 2g 9/2 172 SLy6 E [MeV] j 13/2 4s 1/2 3d 3/2 3d 5/2 2g 7/ j 15/2 2g 9/2 RMF + BCS +QVC -12 From: E.Litvinova Contr. to FUSHE E [MeV] j 13/2 4s 1/2 3d 3/2 3d 5/2 2g 7/2 1j 15/2 2g 9/2 184

6 Physics Motivation for Nuclear Structure Investigations in the Region of SHE Why Nuclear structure investigations? Atomic nucleus is quantum mechanical ensemble of nucleons (p, n) Understanding nuclear structure of SHE is Properties determined by fundamental interactions - nucleon nucleon interaction - Coulomb interaction - spin orbit interaction -. essential for understanding their properties and stability Understanding nuclear structure Understanding fundamental interactions Superheavy nuclei (SHE) ensembles of extremely i.e. the large limits numbersof protons our world and neutrons despite of high density of nuclear levels gaps between single particle states occur at certain numbers of Z and N indicating shell closures no macroscopic ( collective ) fission barrier any more, stability against prompt disruption due to shell effects ; B f depends on single particle levels shell structure determines nuclear mass excess determines Q-values for α- and β- decay

7 Probing Shell crossing by α - decay Q α values reflect differences in masses and are thus extremely sensitive to changes in shell effects strong changes of Q α values when crossing shell; effect strongest when crossing p-shell at n-shell; effect diminishs at departing from n-shell At N = 172,17 no significant effect of p-shell Z=114 on Q α values expected Q / MeV chain going through N = 158 at Z = Z N s -4 (Q (Z) - Q (Z-2)) / MeV 1,,8,6,4,2, N s Z Q / MeV chains going at Z = 82 through N = 126 (shell) N = 12 N = Z (Q (Z) - Q (Z-2)) / MeV Z Q / MeV chains going at Z=114 through N = 184 (shell) 6 N = 172 N = (Q (Z) - Q (Z-2)) / MeV Z Z

8 Alpha - decay energies of SHE Q / MeV Z=112 Z=114 Z=12 Z=118 Z=11 Z=116 Z=18 Z=16 Z=14 Δ(Q α (exp) - Q α (theo)) mean = -.32 MeV at Z= symbols: exp. values lines calc. Sobiczewski & Smolanczuk neutron number graph/vortrag/qalfshe

9 E α - and T 1/2- values expected for Z = 12 isotopes E / MeV ,1,1 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 Myers, Swiatecki et al. Smolanczuk, Sobiczewski Typel, Brown, HFB-SKX Cwiok et al., HFB-SLy4 Litvinova, RMF Litvinova, RMF+VC 248 Cm( 54 Cr,4n) : E 1 α (expected) = MeV T α = 5.1 μs 249 Cf( 5 Ti,3n) : E 1 α (expected) = MeV T α = 1.5 μs 249 Cf( 5 Ti,4n) : E α (expected) = MeV T α = 1.3 μs T /s Separation times SHIP: ca. 2.1 s TASCA: ca..7 s Neutron number

10 Shape of α spectra of superheavy nuclei O Even even nuclei have quite simple α-spectra; one main transition gs gs O weak transitions into gs rotational band are only visuble as shoulders as E2 transitions within band are converted O at low statistics considerable straggling of α-particle energies must be considered even for a single transition 48 Ca + 28 Pb, E = 4.55 MeV/u counts Lr(1) 253 Lr(2) 54 Cr + 29 Bi --> 261 Bh + 2n 257 Db(2) 257 Db(2) 257 Db(1) 261 Bh E / kev 25 A Z (ee) 254 No 2 <1% 15-2% 8-85% 25 Fm Counts A-4 Z-2 FWHM = 22 kev Cf 254 Fm E / kev

11 Alpha decay of of 27 Ds 27 Ds Scattering of α-energies of 27 Ds within MeV; Energies > 11 MeV attributed to α-decay of K isomer; energies < 11 MeV to α decayof gs But: fine structure in gs decay indicated gs K - isomer counts counts counts Ds, t(er- ) > 1 ms 1,5 11, 11,5 12, 12, E / MeV 27 Ds, t(er- ) < 1 ms Fit: FWHM = 4 kev 1,9 11, 11,1 11,2 11, E / MeV 266 Hs Fit: FWHM = 4 kev 2 D.Ackermann, GSI-Scientific Reports 21 & 211 and to be published 1,1 1,2 1,3 1,4 1,5 E / MeV

12 Production at GSI Alpha decay of 288 Fl (Z=114) of decay spectrum of 288 Fl (Z=114) TASCA: 244 Pu( 48 Ca,4n) 288 Fl 11 decays (8 fully stopped in FPD) detector res. 25 kev (FWHM) (J.M. Gates et al. PRC 83, (211)) SHIP: 248 Cm( 48 Ca,4n) 292 Lv α 288 Fl 4 decays (2 fully stopped in FPD) detector res. 24 kev (FWHM) (S. Hofmann et al. EPJ A 48:62 (212)) Alpha spectrum cannot be described by a single transition line half-lives are in agreement within error bars Fine structure in the alpha decay?? (not expected) Isomer decaying by alpha emission??? (not expected) calibration effect?? (two independent experiments) counts counts TASCA - Data, J.M. Gates et al. PRC 83, (211) SHIP - Data, S. Hofmann et al. EPJA (212), 48:62 SHIP + TASCA - Data, BINS = 1 kev, Gaussians: FWHM = 4 kev / -.1 s / -.16 s E / kev

13 Playground for Nuclear Structure Investigations in Transfermium Region Proton number Proton number 1 < < < < < < <.5.5 < <.1.1 < < < < discovered < <.2 at SHIP -.2 < < -.5 < < -.2 =< < Fm < <.25 new or improved decay >.25 data measured at SHIP 18 - or X-rays measured new isomeric states discovered 241 Fm 251 Lr 25 No Lr 25 No Nuclear Structure investigations 252 Lr 253 Lr 254 Lr 255 Lr 256 Lr 257 Lr 258 Lr 259 Lr 26 Lr 261 Lr 262 Lr require a large number (>>1) of 251 No events; 252 No 253 No 254 No presently 255 No 256 No 257 No 258 No can 259 No 26 No be 262 No reached in reasonable 256 Md irradiation 257 Md 258 Md 259 Md 26 Md times up to 152 Z = 11, 162where cross-18sections 82 are in the range 2 μb (254No) 152 to 15 pb (27Ds) P.Möller et al. At. Data and Nucl. Data Tab. 59, 185 (1995) Neutron Number 26 Bh 258 Sg 259 Sg 269 Ds 27 Ds 271 Ds 266 Mt 268 Mt 27 Mt 263 Hs 264 Hs 265 Hs 266 Hs 267 Hs 268 Hs 269 Hs 27 Hs 261 Bh 262 Bh 264 Bh Bh 266 Bh 267 Bh 26 Sg 261 Sg 262 Sg 263 Sg 264 Sg 265 SgBh Sg Bh 255 Db 256 Db 257 Db 258 Db 259 Db 26 Db 261 Db 262 Db 263 Db 267 Db 253 Rf 254 Rf 255 Rf 256 Rf 257 Rf 258 Rf 259 Rf 26 Rf 261 Rf 262 Rf 263 Rf 252 Lr 253 Lr 254 Lr 255 Lr 256 Lr 257 Lr 251 No 252 No 253 No 254 No 255 No 256 No 257 No 258 No 259 No 26 No 262 No 245 Md 246 Md 247 Md 248 Md 249 Md 25 Md 251 Md 252 Md 253 Md 254 Md 255 Md 256 Md 257 Md 258 Md 259 Md 26 Md 243 Fm 244 Fm 245 Fm 246 Fm 247 Fm 248 Fm 249 Fm 25 Fm 251 Fm 252 Fm 253 Fm 254 Fm 255 Fm 256 Fm 257 Fm 258 Fm 259 Fm Bh 258 Sg 259 Sg Neutron number 269 Ds 27 Ds 271 Ds 266 Mt 268 Mt 27 Mt 263 Hs 264 Hs 265 Hs 266 Hs 267 Hs 268 Hs 269 Hs 27 Hs Lr 259 Lr 26 Lr 261 Lr 262 Lr Sg 261 Sg 262 Sg 263 Sg Bh 265 Bh 266 Bh 267 Bh 255 Db 256 Db 257 Db 258 Db 259 Db 26 Db 261 Db 262 Db 263 Db 253 Rf 254 Rf 255 Rf 256 Rf 257 Rf 258 Rf 259 Rf 26 Rf 261 Rf 262 Rf 263 Rf 245 Md 246 Md 247 Md 248 Md 249 Md 25 Md 251 Md 252 Md 253 Md 254 Md 255 Md 243 Fm 244 Fm 245 Fm 246 Fm 247 Fm 248 Fm 249 Fm 25 Fm 251 Fm 252 Fm 253 Fm 254 Fm 255 Fm 256 Fm 257 Fm 258 Fm 259 Fm 264 Sg 265 Sg 266 Sg 267 Sg Db 162

14 Velocity separator SHIP SHIP Separation time: 1 2 μs Transmission: 2 5 % Background: 1 5 Hz Det. E. resolution: kev Det. Pos. resolution: 15 μm Dead time: 25 μs

15 Schematic Experimental Set-up for SHE Decay measurments Target Separator Focal Plane Detectors Beam ER Beam Detectors, CE (in beam spectroscopy) TOF (anti-coincidence) 'Backward' 'Stop' - ray, CE (segmented) sf sf

16 Experimental Set-up Detector system T 1 TOF T 2 'Backward - Detector' Basic principle: a) Nuclei are stopped in a silicon detector (pos. sens., strip-detector, pixel detector), in which α-particles, CE, fission fragments are measured b) Ge-detector for γ-measurements (Clover, planar Ge-detectors) c) Backward ( Box ) detecors for measuring particles escaping the stop detector ( E + E R ) 'Stop-Detector' CE (E CE ) VETO ' -Clover -Det.') (E + E CE ) (E ) t flight = (T 2 -T 1 ) ER ER (E ) 'light particle (lp)' (,p) E lp E lp anticoincidence 'Backward - Detector' d) TOF detectors for mass discrimination of incoming particles (together with E-measurement in stop detector) and anticoincidence (discrimination of incoming particles from decays in the stop detector) e) (optional: VETO detectors for discrimination of decays and light particles (p,α..) from target area

17 Ereignisse Energy summing α-particles and CE IC K (Fm) IC IC 249 Fm (84) 9/2-[624] 11/2+ 9/2+ 7/2+[624] No F.P. Heßberger et al. EPJ A 29, (26) Implant. counts Fm 255 No 256 No E / kev F.P.Heßberger E / kev coinc (x.33) coinc (x.17) coinc M. Asai et al. PRC 83, (211) He-Jet counts E / kev F.P.Heßberger

18 Features of Nuclear Structure Investigations Single particle levels - systematic trends in odd-mass Es isotopes - relation to nuclear deformation - relation to supposed proton shell Z = 114 Quasiparticle states in even even N = 152 isotones - systematics of K isomers Nuclear structure and fission properties - spin dependence of the fission barrier - relation between spin/parity and fission hindrance in odd mass nuclei (?) Ground state properties - nuclear structure investigation and ground-state mass determination

19 Systematics of Nilsson-Levels in Es - Nuclei Studied by α-γ Coincidence Measurements of Md-Isotopes Counts Ar + 29 Bi, E = 4.66 AMeV γ-rays in coincidence with -decays of 247 Md counts E / kev Counts Ca + 27 Pb, E = ( ) AMeV -rays coinc. E + E = ( ) MeV coinc. 'escape' -particles from 253 No ( = 9 nb) 222 kev 28 kev 253 Md ( eff = 2 nb) 34 kev 353 kev E / kev E / kev konferenzen/tan97/md253alga F.P.Heßberger

20 Decay schemes of odd-mass Md-isotopes (simplified) 247 Md 7/2 - [514] 249 Md 7/2 [514] 251 Md 7/2 [514] 253 Md 7/2 [514] 255 Md /2 [514] HF~1 826 HF~1 754 HF~3 71 HF~ / /2 [514] (E1) 7/2 [514] (E1) - 7/2 [514] (E1) - 7/2 [514] (E1?) - 7/2 [514] (E1) 45.2 (E1) 9/2+ 9/2 + 9/ /2 9/2 7/2 + [633] 7/2 + [633] 7/2 + [633] + 7/2 + [633] 7/2 [633] 243 (3/2- [521]?) (3/2- [521]?) Es (3/2 [521]?) 3/2 [521] Es 245 Es Es 251 Es graph/demo/nivmend F.P.Heßberger

21 Nilsson levels in odd-mass Es isotopes Nilsson single proton levels 5,3 45 theory: P.Möller et al. ADND59, 185 (1995), , ,225 f 5/ /2-[514] E / kev 2 7 E((7/2-[514])-(7/2+[633])),2 f 7/2 i 13/2 1 1/2-[521] 6 4,75 h 9/2 96 3/2-[521] 7/2+[633] 5, E((9/2+)-(7/2+)), Mass Number, Mass Number StrukturSWK/Abbildungen/Es_Isotope_deformation

22 Nilsson states in odd-mass Es - isotopes StrukturSWK/Abbildungen/Niv_Md_Vergleich_neu, experiment (f 5/2 ) E* / kev x1 +x1 243 Es 253+x2 +x2 245 Es 294+x3 +x3 247 Es 249 Es 1/2-[521] 251 Es 7/2-[514] 3/2-[521] 7/2+[633] 253 Es (h 9/2 ) (f 7/2 ) (i 13/2 ) E* / kev 6 4 3/2-[521] 7/2-[514] HFB - SLy4 (Chatillon et al. EPJ A3, 397 (26)) E* / kev 6 4 1/2-[521] cranked shell model (Zhang et al. PRC85,14324 (212)) 2 7/2+[633] 1/2-[521] 2 7/2-[514] 3/2-[521] 7/2+[633] 243 Es 245 Es 247 Es 249 Es 251 Es 253 Es 245 Es 247 Es 249 Es 251 Es 253 Es macros.-micros. (Parkhomenko & Sobiczewski, Act. Phys. pol. B35,2447 (24)) 6 7/2-[514] 6 macros. - micros (+TCSM) Adamian et al. PRC82,5434 (21) E* / kev 4 1/2-[521] E* / kev 4 9/2+[624] 7/2-[514] 5/2-[523] 2 3/2-[521] 2 7/2+[633] 243 Es 245 Es 247 Es 249 Es 251 Es 253 Es 255 Es 3/2-[521] 7/2+[633] 243 Es 245 Es 247 Es 249 Es 251 Es 253 Es 255 Es

23 Systematics of Nilsson levels in N=149 isotones 27 Pb( 48 Ca,2n) 253 No : σ 18 nb ; 33 α-decays collected in 96 h irrad. time counts 12k 11k 1k 9k 8k 7k 6k 5k 4k 3k 2k 1k K-x-rays (Fm) 151 kev 222 kev 28 kev counts kev 58 kev 128 kev 29 kev E / kev 297 kev 67 kev E / kev hess/konferenzen/tan_97/no253_r239_r26 F.P.Heßberger,

24 Decay Properties of N=151 Isotones Z = 1 Z = 12 Z = 14 9/2 - [734] 251 Fm 9/2 - [734] 253 No 9/2 - [734] 255 Rf 8 7/2 - [743] (6639,.6) (6834,.87) 7/2 - [743] (6929,.18) (762,.1) E * / kev 6 4 9/2 - [734] 7/2 + 5/2 + [622] (84,.96) (878,.4) (873, >.9) E1 (.24) E1 (.57) E1 (.19) 9/2 - [734] 2 11/2 + M1 5/2 + [622] 11/2 + E1 (.23) E1 (.63) 9/2 + 9/2 + 9/2 + 7/2 + [624] 7/2 + [624] 7/2 + [624] 247 Cf E1 (.14) 249 Fm M1 9/2 - [734] E1 (.45) E1 (.55) 251 No I. Ahmad et al. PR C 8, 737 (1973) F.P. Heßberger EPJ D 45, 33 (27) F.P.Heßberger et al. EPJ A 3, 561 (26)

25 Systematics of low lying Nilsson-levels levels in N=149 isotones Theory (A.Parkhomenko, A.Sobiczewski, Act. Phy. Pol. B 36, 3115 (25)) 6 7/2 - [743] Experiment 1/2 + [631] 5 7/2 - [743] 5 E * / kev 4 3 E * / kev 4 3 9/2 - [734] 1/2 + [631] 5/2 + [622] /2 + [622] 9/2 - [734] s 7/2 + [624] 243 Pu 245 Cm 247 Cf 249 Fm 251 No 253 Rf 255 Sg 7/2 + [624] 243 Pu 245 Pu 247 Cf 249 Fm 251 No

26 Counts Decay of a K-Isomeric state in 26 Pb( 48 Ca,2n) 252m No 17 (4+ --> 2+) (line dublett) K (+ 123?) (6+ --> 4+) 224 (8+ --> 6+) No in No 252 No (25) 1229 (7-) (6-) 173 (5-) (4-) 966 (3-) 929 (2-) 1 ms 1254 kev (8 _ ) 5 No252iso F.P.Heßberger E / kev No252_KIsomer_1486 F.P.Heßberger ,5-,8-9/2+ 7/2-1/2-7/2+ 3/2-1/ /2+ 1/2+ 7/2+ 11/2-9/2-7/2+ 5/2+ Z N B. Sulignano et al. EPJ A 33, 327 (27) 8-

27 K-isomers in N=15 isotones E* / kev quasi p 2-quasi n calc. J.-P. Delaroche et al. Nucl. Phys. A 771, 13 (26) 8+ (7/2-,9/2-) 4+ (1/2+,7/2+) 7- (5/2+,9/2-) 4- (3/2-,5/2+) exp. 8- T 1/2 =? 8- (7/2+,9/2-) 246 Cm 3- (1/2-,5/2+) 6+ (5/2+,7/2+) 5- (3/2-,7/2+) 2+ (1/2-,3/2-) 248 Cf 4+ (1/2-,7/2-) 7- (7/2+,7/2-) 1.8 s 4- (1/2-,7/2+) 25 Fm 4+ (1/2-,7/2-).1 s 252 No Decay schemes of 252 No and 25 Fm similar; but different to that of 254 No!! Suggests similar structure of isomers in 252 No and 25 Fm. Supported by calculations; lowest 2quasi particle configuration predicted as 2quasi neutron state with I π = 8 -. Common trend in N=15 isotones? next heavier candidate is 254 Rf (T 1/2 = 23 μs (sf)); If 2quasi neutron state K isomer should be expected!

28 K isomer in odd-mass nucleus 251 No counts counts (92.2) K (No) K (No) E / kev F.P.Heßberger et al. EPJ A 3, 561 (26) Pb( 48 Ca,3n) 251 No γ s coincident ER Pb( 5 Ti,2n) 255 Rf γ s coinc. -decay 255 Rf tentative decay scheme E * / kev /2 + [613]? 9/2 - [734] 1/2 + [631] 9/2 + 7/2 + [624] ca. 2 s, > s.8 s? (782) (714) ~ 23.6 E1 251 No 9/2 - [734] (E1) Rf

29 EC decay study of of 253 No -- Energy levels in 253 No Production: 253 No EC ( 5%) 253 Md EC ( 99%) 253 Fm 76.1 K (Fm) coinc. K -X-rays (Fm) counts/kev K (Md) K (Md) 15 ( 253 Fm) 188 ( 253 Fm) in 253 Fm 253 Fm Coinc. K -X-rays of Md 394 ( 253 Md) 451 ( 253 Md) 12 coinc. E =15.2 kev E / kev counts coinc. E =187.5 kev Counts CE coinc. K X-ray - - coincidences (E = 15.2, kev) E CE (mean) = 19 kev CE coinc. K X-ray - K X-ray coincidences E / kev E CE / kev

30 EC decay study of of 253 No -- Energy levels in 253 No in 253 Fm 253 Fm 11/2-[725] isomeric state identified; decay pattern established on the basis of systemtics ( 251 Cf) No connections to low energy level studied by Asai et al. via -decay of 257 No established CE energy suggests 7/2+[613] at 14 kev strong X-ray X-ray coincidences suggest also EC-decay in a so far not identified level E / kev counts 16 8 T 1/2 =.56 ±.6 s t( (188 kev) - CE) / rel. units Fm253_TAC_E t(ce - gamma) / rel. units Md 7/2-[514]?.5±.3 s Fm S. Antalic et al. EPJA 47:62 (211)? x+398 9/2+[615] x /2-[725] x /2+ x+61 x ~ /2+[613] / /2+[622] /2+ 5/2+ 3/2+ 1/2+[62]

31 Nuclear Structure and spontaneous fission Due to angular momentum conservation fission of nuclei with odd Z, odd N Cannot follow the most energetic favourable path effective enhancement of fission barrier ( specalisation energy ) enhancement of fission life-times hindrance of fission for nuclei with odd numbers of n and/or p J. Randrup et al. NPA 217, 221 (1973) Spin, Parity established; T sf of neighboring ee nuclei known Spin, Parity uncertain and/or T sf of neighboring ee nuclei from theory (End-)members of chains from hot fusion HF D. Vretenar Priv. comm. (212) /StrukturSWK/Abbildungen/sf_BHF; F.P.Heßberger Z 2 / A

32 Nuclear Structure Effects on Hindrance Factors No evidence for relation between HF and spin/parity of fissioning level In spin-up states ( ) HF of more fissile nuclei tends to be lower, while in spin-down states ( ) HF of more fissile nuclei tends to be higher accidential or nuclear structure effect?? Rf, 1/2 + [62] 259 Sg, 1/2 + [62] 239 Pu, 1/2 + [631] 261 Rf, 3/2 + [622] 261 Sg, 3/2 + [622] 241 Pu, 5/2 + [622] 243 Cm, 5/2 + [622] 255 Fm, 7/2 + [613] 235 U, 7/2 - [743] 245 Cm, 7/2 + [624] 251 No, 7/2 + [624] 249 Cf, 9/2 - [734] 255 Rf, 9/2 - [734] 257 Fm, 9/2 + [615] 243 Am, 5/2 + [523] 241 Am, 5/2 + [523] 249 Bk, 7/2 + [633] 253 Es, 7/2 + [633] Hindrance Factor /StrukturSWK/Abbildungen/sf_BHF; F.P.Heßberger

33 SHIPTRAP 9 Mean time of flight / s No Excitation frequency / Hz Stopping Cell 1 2 Extraction RFQ 1. deceleration 2. cooling 3. accumulation 4. purifucation 5. storage 6. detection fusion products from SHIP Buncher 3 Purification Trap 4 Measurement Trap 6 5 Detector Downstream Experiments Masses Measured 252,253,254,255 No 255,256 Lr

34 Masses of odd-a N-Z Z = 51 Nuclei Symbiosis of Mass Measurements and Spectroscopy 245 Cf 249 Fm 253 No ca Rf Sg /2+[624] 1/2+[631] 265 Hs ca /2-[734] 7/2+[624] 269 Ds 143 5/2+[622] 9/2-[734] /2+[622] 1/2+[62] 7/2+ 3/2+[622] (1/2+[62]?) tentative (1/2+[62]?) (7/2+[613]?) (9/2+[615]?) tentative strukturswk/abb_wmf/reserve/niveausnz51 F.P.Heßberger counts ( m exp - m AME3 )c 2 / MeV) Ds - rays coincident 225 with 4 -decays of 253 No Hs Sg Rf E / kev No Fm Cf E / kev 75, ( m exp - m theo )c 2 mc 2 / MeV F.P. Heßberger et al. EPJ A 48:75 (212) 7/2 - [743] / MeV) 9/2 - [734],2, -,2 5/2 + [622] 11/2 + 2, 1, ,,5, 9/2 + 7/2 + [624] (E1,.27) (HF = 48) E / kev Möller et al Liran et al (E1,.61) (E2) 29.3 (M1) (M1) 9/2 - [734] (762,.25) 249 Fm (84,.96, HF = 3.1) 15.4 (E1,.12) 253 No (875,.42, HF = 139) Atomic number Decay scheme: F.P. Heßberger et al. EPJ A 48:75 (212)

35 New Detector Set-up - TASISpec Configuration of TASISpec (TASCA in Small Image Mode Spectroscopy) Double sided Si-strip detector (DSSSD); implantation detector, 32x32 strips, active area 58 mm x 58 mm;.31 mm thickn. Box of 4 single sided strip detectors (SSSSD) 6 mm x 6 mm active aream 1. mm thickn. 1 seven-crystal Ge - Cluster detector (behind implantation detector) 4 four-crystal Ge-Clover detectors expected γ-efficiency 4 % at 2 kev L.L. Andersson, D. Rudoph et al., NIM A 622, 164 (21)

36 TRAP assisted spectroscopy First Commissioning Experiment in September 29: 17 Er( 48 Ca,5n) 213 Ra Main features: Clean samples, mass separated (no admixtures with isotones) Avoid energy summing of α-particles with conversion electrones D. Rudolph et al. GSI Annual Report 29, NUSTAR-SHE-8, 177 (21)

37 Next steps?? Limited beamtime available 213 / 214 2x4 weeks for experiments Experiments should be GSI unique -> 5 Ti beam Nuclear structure investigations of Rf- and Db isotopes 5 Ti Pb, 29 Bi; σ (2 (2-15) nb; requires 5-1 days of beamtime / experiment

38 Exists a K-Isomer in 254 Rf? in T 1/2 = 23 ±3 s 26 Pb( 5 Ti,2n) 254 Rf K isomer, T 1/2 = x ms 5 counts Deadtime of DAQ T 1/2 = 9 +9/-3 ms Or is K-isomer unstable against fission with τ < 23 μs?? 28 T 1/2 = /-.3 s Pb( 5 Ti,2n) 256 Rf? (contamination) 26 Pb( 5 Ti,n) 255 Rf 1E-3,1, t(er-sf) / ms gs, T 1/2 = 23 s ms sf-activity probably 256 Rf from 28 Pb target contamination Intensity would 26 be very low: i(k-isomer)/i(gs) <.25 Pb( 5 Ti,2n) 254 Rf Is lifetime of theσ 2.4 isomernb only some (tens) of μs or lower?? Is 23 μs activity 7 K-isomer sf/day lifetime 1pμA of gs much lower?? sf 23 s sf x ms New measurement at TASCA (April 212); Data are under evaluation (J. Khuyagbaatar) F.P.Heßberger et al. Z.Phys. A359, 415 (1997)

39 Decay Properties of N=151 Isotones Z = 1 Z = 12 Z = 14 E * / Ereignisse kev /2 - [743] 9/2 - [734] 7/2 + 5/2 + [622] 11/2 + 9/2 - [734] E1 (.24) E1 (.57) (6639,.6) E1 (.19) M1 251 Fm 27 Pb( 5 Ti,2n) 255 Rf σ 1 nb b α 5 % 1 1pμA (6834,.87) 7/2 - [743] (6929,.18) 9/2 - [734] 5/2 + [622] 11/2 + 9/2 - [734] E1 (.23) E1 (.63) (762,.1) E1 (.14) (84,.96) M1 253 No (878,.4) 9/2 - [734] 9/2 + 9/2 + 9/2 + 7/2 + [624] 7/2 + [624] 7/2 + [624] 247 Cf 86 K (No) Fm E1 (.45) 9/2 - [734] E1 (.55) 251 No (873, >.9) 255 Rf E / kev 24 StrukturSWK/Abbildungen/Rf255_alga_R218_R273 Stand: I. Ahmad et al. PR C 8, 737 (1973) F.P. Heßberger EPJ D 45, 33 (27) F.P.Heßberger et al. EPJ A 3, 561 (26)

40 Identification 11/2-[725] level in 11/2-[725] (1/2+) (9/2+) (3/2+) (5/2+, 7/2+) 5/2+[622] 11/2-9/2-11/2-9/2-[734] (E2) 91 (M1) 167 M2 (+E3) E * / kev α(8155 kev) / 1pμA No (8155, 4%) 19/2-17/2- (24±2 s) 2 15/2-13/ No (~55 s)? 255 (56 s) >15 ~15 s? (845) 7.51±.5.58±.6 (.99±.1) 28 Pb( 5 Ti,n) 257 Rf σ 1 8 nb i( 257m Rf) 6% 851 (1) 78 (M1) 9/2-[734] 11/2-[725] 1/2+[62] (M1) 257 Rf 615 (E2) (M1) 82 (M1) ±.5.58± (.99±.1) (1).65± ±.7 s 5.5±.4 s 15/ / /2-877 (11/2 - [725]) 21/2-19/ /2-3 γ(877 kev) / 1pμA /hess/strukurswk/abbildungen/no253m1testschema F.P.Heßberger, in 253 StrukturSWK/Abbildungen/Rf257_Zerfall_112 F.P.Heßberger, No 253 No

41 Decay of of 258 Db 258 Db (Running project: U278 (L.-L. Andersson et al.) 29 Bi( 5 Ti,n) 258 Db σ 4.3 nb α(7%), EC (3%) 7 α/day pμa s) α(9166) 254 Lr α 35 SF/day 258 Db 1pμA s) α(915) γ(221.5) 254 Lr 258 Db (3.6 s) EC 258 Rf sf 2 α-decaying levels in 258 Db and 254 Lr??? 258 Db (2. s) α(9196) 254 Lr α 258 Db (1.8 s) α(9196) 254 Lr EC 254 No α 258 Db (1.8 s) α(914,9134) γ(156.8) 254 Lr

42 7.5 AMeV cw LINAC for the GSI SHE Program Proposal submitted September 29 (W. Barth, GSI) (not yet funded) Cooperation: GSI Darmstadt, Helmholtz Institute Mainz, Inst. Applied Phys. Goethe Universität Frankfurt Main Features: ( new 28 MHZ ECR source, in progress) ( new RFQ, in commissioning) energy range AMEV 1% duty cycle (presently 25%) intensity increase (> x1) improved beam quality Upgrade presently in progress 28 GHz ECR source + High Charge Injector (RFQ, IH)

43 The velocity filter SHIP (1976) Small entrance aperture of 2.7 msr since it was believed to produce SHE in symmetric reactions 2,6 2,4 2,2 2, 1,8 1,6 1,4 1,2 1,,8,6,4 22 Ne Au, 5.2 AMeV, R267, (mp /m t )=.112 ( 214 Ac) / SCC (relative) TP: normal, SHIP normal, Target: 324 g/cm 2 TP: normal, SHIP Popeko, Target: 324 g/cm 2 TP: normal, SHIP Popeko, Target: 324 g/cm 2 TP: normal, SHIP normal, Target: 396 g/cm 2 TP: normal, SHIP Popeko, Target: 396 g/cm 2 TP: +3 SHIP, SHIP normal, Target: 324 g/cm 2, D5=1.325 TP: +3 SHIP, SHIP normal, Target: 324 g/cm 2, D5=1.3 TP: +3 SHIP, SHIP Popeko, Target: 324 g/cm 2, D5=1.35 2,4 2,2 2, 1,8 1,6 1,4 1,2 Data from: F.P.Heßberger et al., Lecture Notes in Physics 317, 289 (1988) D. Ackermann, Diploma Thesis, 1988 Experiment (ER from 4 Ar Yb, E = 4.6 AMeV) 'Original' (1976) SHIP target position +17% +15% transmission / rel. units Monte Carlo Simulation present Targetposition (79.5 cm) 1,,2, hess/strukturswk/abb/ship/targetverschiebung distance from von 'original' - target position / cm Nr. Measurement StrukturSWK/Abb_WMF/EffSHIP_NeAuTV

44 New Separators Replacement of SHIP, in operation since 1976 (under consideration) Target ('high power' targets) (for i > 1 p A) (z p > 6.2 x 1 13 /s) A/q - Separator (A/q) / (A/q) = (3-4) to SHIPTRAP, Laser spectroscopy, MultiTOF primary beam Preseparator beam focussing intensity distribution clean energy (remove scattered particles) Wienfilter 2 - stage aperture >1 msr (variable) accpted charge width >±15 % accepted velocity width >±5 %? Detectorsystem ER,, CE, sf ( >4%) fast, t(ev n -ev n+1 )<.5 s digital electronics StrukturSWK/Abbildungen/SuperSHIP F.P. Heßberger, Proc. Int. Conf. Beyond 21, Cape Town, SA, Feb. 21, (World Scienfic), 675 (211)

45 Conclusions Nuclear structure investigations are the powerful tools to understand the properties of heaviest nuclei in terms of, e.g. nuclear forces Coulomb interaction in strong fields residual interactions like spin-orbit interaction ordering of nuclear levels identification of proton and neutron shells the nuclear fission process the stabilty of (multi) quasi-particle states mod. beam-times needed for nuclear structure investigations (2-15 d) Search for new elements requires >>1 d However, times of naivety are over; further investigations require more beamtime (detailed studies Z 16, studies at Z > 16) higher beam intensities ( cw Linac ) fast digital electronic (for small halflives) higher γ-efficiency (e.g. TASISPEC) new, efficient separators (high transmission, low charged particle background, low γ- and neutron background, mass selectivity )

46 SHIP SHE Spectroscopy Collaboration: GSI, Darmstadt D.Ackermann, M.Block, S.Heinz, F.P.H., S.Hofmann, B.Kindler, I.Kojouharov, J.Khuyagbaatar, B.Lommel, R.Mann, B.Sulignano, M. Dworschak (former members) Helmholtz Institut Mainz L.-L.Andersson, E. Minaya, M. Laatiaoui Comenius University Bratislava, Slovakia S. Antalic, Z.Kalininova, S.Saro, M.Venhart, B.Streicher (former members) Ernst-Moritz-Arndt Universität Greifswald, Germany C. Droese University Jyväskylä, Finland M.Leino, J.Uusitalo FLNR JINR Dubna, Russia A.G.Popeko, A.Yeremin JAEA Tokai, Japan K. Nishio University of Lund, Sweden D. Rudolph Theory Support: A. Sobiczewski (NCNR Warsaw, Poland) E. Litvinova (EMMI Darmstadt, Germany; MSU East Lansing, USA) D. Vretenar, Lu Bingnan (Univ. Zagreb, Croatia)

Nuclear Structure of Superheavy Nuclei Investigated at GSI

Nuclear Structure of Superheavy Nuclei Investigated at GSI Nuclear Structure of Superheavy Nuclei Investigated at GSI Fritz Peter Heßberger GSI Helmholtzzentrum für Schwerionenforschung mbh, D-64291 Darmstadt, Germany Helmholtz Institut Mainz, D-5599 Mainz, Germany

More information

Fritz Peter Heßberger

Fritz Peter Heßberger Fritz Peter Heßberger GSI Helmholtzzentrum für Schwerionenforschung mbh, D-64291 Darmstadt, Germany Helmholtz Institut Mainz D-55099 Mainz, Germany International Conference Beyond 2010 Cape Town, South

More information

ASRC International Workshop Perspectives in Nuclear Fission

ASRC International Workshop Perspectives in Nuclear Fission Fit Fritz Peter Heßberger GSI Helmholtzzentrum für Schwerionenforschung mbh, D-64291 Darmstadt, Germany Helmholtz Institut Mainz, D-55099 Mainz, Germany ASRC International Workshop Perspectives in Nuclear

More information

Gamma spectroscopy in the fermium region at SHIP

Gamma spectroscopy in the fermium region at SHIP Nuclear Structure Physics with Advanced Gamma- Detector Arrays, Padova June 10-12, 2013 Gamma spectroscopy in the fermium region at SHIP Stanislav Antalic Comenius University, Bratislava Collaboration

More information

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests setup description installation of the PC (position check) detector & electronics next steps completion of the detector

More information

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt. Nuclear Reactions Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.) scattered particles detector solid angle projectile target transmitted

More information

What do we know experimentally about the N=149, N=151 and N=153 isotones?

What do we know experimentally about the N=149, N=151 and N=153 isotones? What do we know experimentally about the N=149, N=151 and N=153 isotones? - Introduction - Experimental review - Issues & questions - Conclusions A. Lopez-Martens Region of interest 118 117 1.8 ms 11.65

More information

Spectroscopy of 252No to Investigate its K-isomer

Spectroscopy of 252No to Investigate its K-isomer Spectroscopy of to Investigate its K-isomer Edward Parr Motivation in Superheavies PROTONS Single Particle Energy (MeV) Single Particle Energy (MeV) NEUTRONS Next shell gaps predicted for Superheavy spherical

More information

Synthesis of New Elements and New Approaches in SHE Research

Synthesis of New Elements and New Approaches in SHE Research ECOS Town Meeting Orsay 2014 Synthesis of New Elements and New Approaches in SHE Research Michael Block GSI Darmstadt and Helmholtz Institute Mainz Courtesy Ch.E. Düllmann Superheavy Elements Current Status

More information

* * TASCA in Small Image Mode Spectroscopy

* * TASCA in Small Image Mode Spectroscopy TAS ISpec TASCA in Small Image Mode Spectroscopy * * * * * Introducing the set up TASCA SIM settings Commissioning experiments Characteristics Future: Missing parts / preparations Experiments Why TAS ISpec?

More information

The Synthesis of Super Heavy Elements (SHE) requirements for the synthesis of SHE. the basic technical requirement: beam intensity

The Synthesis of Super Heavy Elements (SHE) requirements for the synthesis of SHE. the basic technical requirement: beam intensity The Synthesis of Super Heavy Elements (SHE) D. Ackermann, University of Mainz/GSI Future of Gamma Spectroscopy at LNL: GASP and CLARA Arrays GAMMA2004 March 3 rd 2004 requirements for the synthesis of

More information

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements Perspectives for Penning Trap Mass Measurements of Super Heavy Elements Michael Block GSI Workshop on Rare Atoms Ann Arbor 2009 Introduction to Super Heavy Elements Production of SHE Mass determination

More information

What do we measure, and how do we measure it?

What do we measure, and how do we measure it? What do we measure, and how do we measure it? Production of transactinides Isolation of nuclei of interest Instrumentation and measurements K. Hauschild Production of Transactinides N-capture + β-decay

More information

Nuclear Structure Studies with Penning Traps

Nuclear Structure Studies with Penning Traps ASRC Workshop Tokai 2014 Nuclear Structure Studies with Penning Traps Michael Block Unique Combination for SHE Studies ECR/PIG + UNILAC Stable targets SHIP SHIPTRAP Beam TRIGA- Actinide targets TASCA TASISpec

More information

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN INT 13-3, Workshop, Seattle,

More information

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer Production of superheavy elements Seminar: Key experiments in particle physics 26.06.09 Supervisor: Kai Schweda Thorsten Heußer Outline 1. Introduction 2. Nuclear shell model 3. (SHE's) 4. Experiments

More information

RITU and the GREAT Spectrometer

RITU and the GREAT Spectrometer RITU and the GREAT Spectrometer Cath Scholey Department of Physics University of Jyväskylä 19 th March 2006 3rd TASCA Detector Group Meeting, GSI Darmstadt C. Scholey (JYFL, Finland) RITU and the GREAT

More information

Superheavy elements* Yury Ts. Oganessian. Pure Appl. Chem., Vol. 76, No. 9, pp , IUPAC

Superheavy elements* Yury Ts. Oganessian. Pure Appl. Chem., Vol. 76, No. 9, pp , IUPAC Pure Appl. Chem., Vol. 76, No. 9, pp. 1715 1734, 2004. 2004 IUPAC Superheavy elements* Yury Ts. Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Moscow,

More information

Quantum-State Selective Decay Spectroscopy of 213 Ra and 53 Co m

Quantum-State Selective Decay Spectroscopy of 213 Ra and 53 Co m Quantum-State Selective Decay Spectroscopy of 213 Ra and 53 Co m Ch. Lorenz 1, L.G. Sarmiento 1, D. Rudolph 1, C. Fahlander 1, U. Forsberg 1, P. Golubev 1, R. Hoischen 1, N. Lalović 1,2, A. Kankainen 3,

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Lightest Isotope of Bh Produced Via the 209Bi(52Cr,n)260Bh Reaction Permalink https://escholarship.org/uc/item/8t91n79j

More information

Production of Super Heavy Nuclei at FLNR. Present status and future

Production of Super Heavy Nuclei at FLNR. Present status and future ECOS 2012,Loveno di Menaggio, 18-21 June 2012 Production of Super Heavy Nuclei at FLNR. Present status and future M. ITKIS Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research BASIC

More information

PHL424: Nuclear fusion

PHL424: Nuclear fusion PHL424: Nuclear fusion Hot Fusion 5 10 15 5 10 8 projectiles on target compound nuclei 1 atom Hot fusion (1961 1974) successful up to element 106 (Seaborgium) Coulomb barrier V C between projectile and

More information

Correlation between alpha-decay energies of superheavy nuclei

Correlation between alpha-decay energies of superheavy nuclei Correlation between alpha-decay energies of superheavy nuclei J. M. Dong, W. Zuo*, W. Schied, J. Z. Gu Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou,China Institute for Theoretical

More information

Towards TASCA

Towards TASCA TASCA Workshop 2009 Towards SHIPTRAP @ TASCA Michael Block SHIPTRAP Physics Program High-Precision Mass Measurements Trap-Assisted Nuclear Spectroscopy In-Trap Nuclear Spectroscopy Laser Spectroscopy Chemistry?

More information

MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy

MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy Purpose of SlowSHE 118 Alpha decay 117 Spontaneous Fission Beta Decay / Electron Capture Directly Synthesizable / T

More information

Present status of the heaviest elements study using GARIS at RIKEN

Present status of the heaviest elements study using GARIS at RIKEN Present status of the heaviest elements study using GARIS at RIKEN Kosuke Morita Superheavy Element Laboratory RIKEN Nishina Center for Accelerator Based Science 2006/9/29 TASCA06 Garching,, Germany 1

More information

Citation EPJ Web of Conferences (2014), provided the original work is prope

Citation EPJ Web of Conferences (2014), provided the original work is prope TitleStudy of heavy-ion induced fission Nishio, K.; Ikezoe, H.; Hofmann, S. Ackermann, D.; Antalic, S.; Aritomo Düllman, Ch.E.; Gorshkov, A.; Graeg Author(s) J.A.; Hirose, K.; Khuyagbaatar, J.; Lommel,

More information

Method of active correlations in the experiment 249 Cf+ 48 Ca n

Method of active correlations in the experiment 249 Cf+ 48 Ca n Method of active correlations in the experiment 249 Cf+ 48 Ca 297 118 +3n Yu.S.Tsyganov, A.M.Sukhov, A.N.Polyakov Abstract Two decay chains originated from the even-even isotope 294 118 produced in the

More information

Radioactivity at the limits of nuclear existence

Radioactivity at the limits of nuclear existence Radioactivity at the limits of nuclear existence Zenon Janas Institute of Experimental Physics University of Warsaw Chart of nuclei - stable - β + - β - - α - fission - p p and 2p radioactivty proton radioactivity

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator Svirikhin A.I. Joint Institute for Nuclear Research, Dubna, Russia Manipal University,

More information

The new isotopes 240 Es and 236 Bk

The new isotopes 240 Es and 236 Bk The new isotopes 240 Es and 236 Bk Joonas Konki Department of Physics University of Jyväskylä TASCA 16 The 15th Workshop on Recoil Separator for Superheavy Element Chemistry 26.8.2016 GSI, Darmstadt, Germany

More information

SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS

SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS eremin@jinr.ru SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS Yu. Ts. Oganessian, A.V. Yeremin, O.N. Malyshev, A.G. Popeko, A. Lopes-Martens, K. Hauschild Super Heavy Nuclei and O. Dorvaux

More information

Alpha Decay of Superheavy Nuclei

Alpha Decay of Superheavy Nuclei Alpha Decay of Superheavy Nuclei Frank Bello, Javier Aguilera, Oscar Rodríguez InSTEC, La Habana, Cuba frankl@instec.cu Abstract Recently synthesis of superheavy nuclei has been achieved in hot fusion

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Subbarrier cold fusion reactions leading to superheavy elements( )

Subbarrier cold fusion reactions leading to superheavy elements( ) IL NUOVO CIMENTO VOL. 110 A, N. 9-10 Settembre-Ottobre 1997 Subbarrier cold fusion reactions leading to superheavy elements( ) A. G. POPEKO Flerov Laboratory of Nuclear Reactions, JINR - 141980 Dubna,

More information

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique A. Jungclaus 1, J. Leske 2, K.-H. Speidel 3, V. Modamio 1, J. Walker 1, P. Doornenbal

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Super-Heavy Nuclei: Current Status and Future Developments

Super-Heavy Nuclei: Current Status and Future Developments International Symposium Super-Heavy Nuclei" Super-Heavy Nuclei: Current Status and Future Developments Sigurd Hofmann GSI Darmstadt and University Frankfurt Texas A&M University, College Station, Texas

More information

Conversion Electron Spectroscopy in Transfermium Nuclei

Conversion Electron Spectroscopy in Transfermium Nuclei Conversion Electron Spectroscopy in Transfermium Nuclei R.-D. Herzberg University of iverpool, iverpool, 69 7ZE, UK Abstract Conversion electron spectroscopy is an essential tool for the spectroscopy of

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS

Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS Production and decay studies of 261 Rf, 262 Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS RIKEN Nishina Center Hiromitsu Haba for RIKEN SHE Chemistry Collaboration CONTENTS 1.

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Synthesis of SHE with S3

Synthesis of SHE with S3 Ch. Stodel et al, GANIL, Caen, France Programm of SHE research abroad υ Riken υ GSI υ Dubna Propositions with LINAG/S3 υ Confirmation of observed isotopes: υ υ Φ Φ Increase production rate (same system)

More information

Shell structure of superheavy elements

Shell structure of superheavy elements Shell structure of superheavy elements Michael Bender Université Bordeaux 1; CNRS/IN2P3; Centre d Etudes Nucléaires de Bordeaux Gradignan, UMR5797 Chemin du Solarium, BP120, 33175 Gradignan, France Workshop

More information

Nuclear Structure from Decay Spectroscopy

Nuclear Structure from Decay Spectroscopy Nuclear Structure from Decay Spectroscopy Most nuclei decay. Provides complementary information to reaction studies. Studies can be done at the lowest count rates access furthest from stability. Alpha,

More information

Decay studies of 170,171 Au, Hg, and 176 Tl

Decay studies of 170,171 Au, Hg, and 176 Tl PHYSICAL REVIEW C 69, 054323 (2004) Decay studies of 170,171 Au, 171 173 Hg, and 176 Tl H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M.

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1:

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1: Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART : The 34 Si a bubble nucleus? Probing the neutron SO interaction using the 34 Si nucleus

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes Center for Nuclear Study, the University of Tokyo Rin Yokoyama INPC 2016 at Adelaide, Australia Sep. 13, 2016 Sep. 13,

More information

Mapping Fission in Terra Incognita in the neutron-deficient lead region

Mapping Fission in Terra Incognita in the neutron-deficient lead region Mapping Fission in Terra Incognita in the neutron-deficient lead region Andrei Andreyev University of York, UK Japan Atomic Energy Agency (JAEA, Tokai, Japan) 200,202,204 Fr N/Z~1.25 192,194,196 At 186,188

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Impact of fission on r-process nucleosynthesis within the energy density functional theory Impact of fission on r-process nucleosynthesis within the energy density functional theory Samuel A. Giuliani, G. Martínez Pinedo, L. M. Robledo, M.-R. Wu Technische Universität Darmstadt, Darmstadt, Germany

More information

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information

New data on β decay of exotic nuclei close to 100 Sn:

New data on β decay of exotic nuclei close to 100 Sn: New data on β decay of exotic nuclei close to 1 Sn: 94 Ag and 1 In C. Plettner 1, I. Mukha 1, J. Döring 1, L. Batist 2, H. Grawe 1, A. Blazhev 1,3, C. R. Hoffman 4, Z. Janas 5, R. Kirchner 1, M. La Commara

More information

Mass measurements of n-rich nuclei with A~70-150

Mass measurements of n-rich nuclei with A~70-150 Mass measurements of n-rich nuclei with A~70-150 Juha Äystö Helsinki Institute of Physics, Helsinki, Finland in collaboration with: T. Eronen, A. Jokinen, A. Kankainen & IGISOL Coll. with theory support

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

A Comparison between Channel Selections in Heavy Ion Reactions

A Comparison between Channel Selections in Heavy Ion Reactions Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 55 A Comparison between Channel Selections in Heavy Ion Reactions S. Mohammadi Physics Department, Payame Noor University, Mashad 91735, IRAN (Received

More information

Thesis and PhD themes

Thesis and PhD themes Thesis and PhD themes DETERMINATION OF MASSES OF THE SUPER HEAVY ELEMENTS IN THE EXPERIMENTS ON SYNTHESIS OF 112 AND 114 ELEMENTS USING THE REACTIONS 48 CA+ 238 U AND 48 CA+ 242 PU Traditionally, in experiments

More information

Composite Nucleus (Activated Complex)

Composite Nucleus (Activated Complex) Lecture 10: Nuclear Potentials and Radioactive Decay I. Nuclear Stability and Basic Decay Modes A. Schematic Representation: Synthesis Equilibration Decay X + Y + Energy A Z * Z ( 10 20 s) ( ~ 10 16 10

More information

* On leave from FLNR / JINR, Dubna

* On leave from FLNR / JINR, Dubna * On leave from FLNR / JINR, Dubna 1 Introduction: Keywords of this experimental program Search for new isotopes The limits of nuclear stability provide a key benchmark of nuclear models The context of

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

HALF-LIVES OF NUCLEI AROUND THE SUPERHEAVY NUCLEUS

HALF-LIVES OF NUCLEI AROUND THE SUPERHEAVY NUCLEUS v.2.1r20180507 *2018.6.26#58fe9efc HALF-LIVES OF NUCLEI AROUND THE SUPERHEAVY NUCLEUS 304 120 A. O. SILIŞTEANU 1,3, C. I. ANGHEL 1,2,, I. SILIŞTEANU 1 1 Horia Hulubei National Institute of Physics and

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Probing the evolution of shell structure with in-beam spectroscopy

Probing the evolution of shell structure with in-beam spectroscopy Probing the evolution of shell structure with in-beam spectroscopy Alexandra Gade National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy at Michigan State University, East

More information

Status of the magnetic spectrometer PRISMA

Status of the magnetic spectrometer PRISMA Status of the magnetic spectrometer PRISMA E. Fioretto INFN Laboratori Nazionali di Legnaro 1 PRISMA in vacuum mode Dipole 50 cm 120 cm 60 +130 Quadrupole 30 cm Beam Target 2-20 Rotating platform PRISMA:

More information

Magic Numbers of Ultraheavy Nuclei

Magic Numbers of Ultraheavy Nuclei Physics of Atomic Nuclei, Vol. 68, No. 7, 25, pp. 1133 1137. Translated from Yadernaya Fizika, Vol. 68, No. 7, 25, pp. 1179 118. Original Russian Text Copyright c 25 by Denisov. NUCLEI Theory Magic Numbers

More information

CHEM 312 Lecture 7: Fission

CHEM 312 Lecture 7: Fission CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions

More information

Paving the way to the island of stability - superheavy element research at GSI and beyond

Paving the way to the island of stability - superheavy element research at GSI and beyond Paving the way to the island of stability - superheavy element research at GSI and beyond Helmholtzzentrum für Schwerionenforschung GmbH SHE investigations stable and exotic beams - outline 152 162 184

More information

and shape coexistence

and shape coexistence Aspects University of nuclear of Surrey isomerism and shape coexistence - historical introduction - energy storage - enhanced stability - high-k isomers - neutron-rich A 190 isomers Phil Walker Isomer

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Measurements of cross sections for the fusion-evaporation reactions 244 Pu 48 Ca,xn 292 x 114 and 245 Cm 48 Ca,xn 293 x 116

Measurements of cross sections for the fusion-evaporation reactions 244 Pu 48 Ca,xn 292 x 114 and 245 Cm 48 Ca,xn 293 x 116 PHYSICAL REVIEW C 69, 054607 (2004) Measurements of cross sections for the fusion-evaporation reactions 244 Pu 48 Ca,xn 292 x 114 and 245 Cm 48 Ca,xn 293 x 116 Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V.

More information

The limits of the nuclear chart set by fission and alpha decay

The limits of the nuclear chart set by fission and alpha decay The limits of the nuclear chart set by fission and alpha decay Peter Möller a P. Moller Scientific Computing and Graphics, Inc., PO Box 144, Los Alamos, NM 87544, USA Abstract. I will review how our picture

More information

The Island of of Inversion from a nuclear moments perspective

The Island of of Inversion from a nuclear moments perspective The Island of of Inversion from a nuclear moments perspective Gerda Neyens Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Belgium the LISE-NMR collaboration @ GANIL: E437 (,32,33 g-factors) E437a

More information

α-decay of the new isotope 187 Po: Probing prolate structures beyond the neutron mid-shell at N = 104

α-decay of the new isotope 187 Po: Probing prolate structures beyond the neutron mid-shell at N = 104 PHYSICAL REVIEW C 73, 044324 (2006) α-decay of the new isotope 187 Po: Probing prolate structures beyond the neutron mid-shell at N = 104 A. N. Andreyev, 1,7 S. Antalic, 2 D. Ackermann, 3,8 S. Franchoo,

More information

SPIN-PARITIES AND HALF LIVES OF 257 No AND ITS α-decay DAUGHTER 253 Fm

SPIN-PARITIES AND HALF LIVES OF 257 No AND ITS α-decay DAUGHTER 253 Fm NUCLEAR PHYSICS SPIN-PARITIES AND HALF LIVES OF 5 No AND ITS α-decay DAUGHTER 5 Fm P. ROY CHOWDHURY, D. N. BASU Saha Institute of Nuclear Physics, Variable Energy Cyclotron Centre, /AF Bidhan Nagar, Kolkata

More information

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock Direct identification of the elusive 229m Th isomer: Milestone towards a Nuclear Clock P.G. Thirolf, LMU München 229m Th properties and prospects Experimental approach & setup Measurements on 229m Th:

More information

ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs

ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs C.I. ANGHEL 1,2, I. SILISTEANU 1 1 Department of Theoretical Physics, IFIN_HH, Bucharest - Magurele, Romania, 2 University

More information

Mapping Low-Energy Fission with RIBs (in the lead region)

Mapping Low-Energy Fission with RIBs (in the lead region) Mapping Low-Energy Fission with RIBs (in the lead region) Andrei Andreyev University of York, UK Japan Atomic Energy Agency (JAEA), Tokai, Japan Low-energy fission in the new regions of the Nuclear Chart

More information

RIKEN GARIS for Superheavy Element Chemistry

RIKEN GARIS for Superheavy Element Chemistry RIKEN GARIS for Superheavy Element Chemistry Nishina Center, RIKEN Hiromitsu Haba CONTENTS 1. Introduction 2. Present status of GARIS 2.1. Developments in 2008 Rotating 248 Cm target and new gas-jet chamber

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Fission Barriers of Neutron-Deficient Nuclei

Fission Barriers of Neutron-Deficient Nuclei Fission Barriers of Neutron-Deficient Nuclei M. Veselsky1,6, A.N. Andreyev2, P. Van Duppen3, M. Huyse3, K. Nishio4, S. Antalic5, M. Venhart1 1Institute of Physics, Slovak Academy of Sciences, Bratislava,

More information

Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions

Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions arxiv:0904.2994v1 [nucl-th] 20 Apr 2009 Zhao-Qing Feng a, Jun-Qing Li a, Gen-Ming Jin a a Institute of Modern

More information

The effect of the tensor force on the predicted stability of superheavy

The effect of the tensor force on the predicted stability of superheavy epl draft The effect of the tensor force on the predicted stability of superheavy nuclei E.B. Suckling 1 and P.D. Stevenson 1 1 Department of Physics, University of Surrey, Guildford, Surrey, GU 7XH, UK

More information

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. sub-barrier fusion reactions 2. Coupled-channels approach and barrier distributions 3. Application

More information

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S Clemens Herlitzius TU München (E12) Prof. Shawn Bishop Clemens Herlitzius,

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University Nuclear Symmetry Energy Constrained by Cluster Radioactivity Chang Xu ( 许昌 ) Department of Physics, Nanjing University 2016.6.13-18@NuSym2016 Outline 1. Cluster radioactivity: brief review and our recent

More information

ISOMER BEAMS. P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK

ISOMER BEAMS. P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK International Journal of Modern Physics E c World Scientific Publishing Company ISOMER BEAMS P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK p.@surrey.ac.uk Received (received

More information

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University Exotic Nuclei II Neutron-rich nuclides Michael Thoennessen FRIB/NSCL Michigan State University Most neutron-rich nuclides N/Z = 1 n X not a nuclide but a nucleon N/Z = 3 8 He 11 Li: N/Z = 2.67 N/Z = 3

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

Stability Peninsulas at the Neutron Drip Line

Stability Peninsulas at the Neutron Drip Line Stability Peninsulas at the Neutron Drip Line Dmitry Gridnev 1, in collaboration with v. n. tarasov 3, s. schramm, k. A. gridnev, x. viñas 4 and walter greiner 1 Saint Petersburg State University, St.

More information

arxiv:nucl-th/ v1 24 Nov 2004

arxiv:nucl-th/ v1 24 Nov 2004 LETTER TO THE EDITOR On stability of the neutron rich Oxygen isotopes arxiv:nucl-th/4119v1 24 Nov 24 K.A. Gridnev 1,2, D.K. Gridnev 1,2, V.G. Kartavenko 2,3, V.E. Mitroshin, V.N. Tarasov, D.V. Tarasov

More information