A Conversation on NGSS: For Members, By Members

Size: px
Start display at page:

Download "A Conversation on NGSS: For Members, By Members"

Transcription

1 LIVE INTERACTIVE YOUR DESKTOP A Conversation on NGSS: For Members, By Members Presented by: Harold Pratt and Ted Willard January 22, :30 p.m. 8:00 p.m. Eastern time 1

2 Introducing today s presenters Howard Wahlberg Assistant Executive Director, Membership, NSTA Facilitating tonight s questions Ted Willard Director of NSTA s efforts around NGSS Harold Pratt Past President of NSTA 2

3 Your Total Membership Experience 3

4 NSTA Members Get Access to All the Journal Archives More than 1,000 articles from NSTA's four award-winning journals Elementary Educators Middle Level Educators High School Educators Higher Education Log in as a member to read and save any journal article from recent years Hundreds of new teaching tips, trends, and classroom strategies All free of charge!

5 NSTA Members Network Members can join any of our 14 subscription lists Newest one devoted solely to NGSS Share valuable knowledge from other science teaching professionals Dozens of answers to every question posed! Exclusive online social and professional networking community Groups like: Biology teachers Astronomy and space science educators Form your own group on the communities and change the observers to leaders!

6 More Member-Exclusives Save Money on Books 20% discount on items in the NSTA Science Store Access to Over 8,000 Peer-reviewed Websites SciLinks is normally only accessible to those using the linked textbooks in their classroom NSTA members can use them free of charge, regardless of which textbook they use Quick way to find pre-reviewed, topic- and-grade-specific websites that for your classroom

7 More Member-Exclusives Save on Do-it-Yourself Learning! Resources in the NSTA Learning Center Build your PD plan with My Professional Development Plan and Portfolio Track your activities with My Library Assess your progress with My Professional Development Indexer Your Guide to Membership Take your time getting familiar with all the benefits of NSTA membership NSTA Membership Guide (PDF). Your member experience is our top priority! Call:

8 NGSS and You

9 How familiar are you with NGSS? Use the virtual pen to mark your answer. I m new to this NGSS expert 9

10 To what extent were you involved in reviewing the first draft of NGSS? A. I didn t see the first draft. B. I looked at the first draft, but I didn t send in comments. C. I reviewed the first draft and sent in comments. D. I was a member of a review team for the first draft. E. I coordinated a review team for the first draft.

11 January 7 (How to Lead a Study Group) Did you attend this month s web seminars on NGSS? Use clip art to stamp your answer. January 9 (Introduction to NGSS Second Public Draft) January 15 (Engineering Practices in NGSS) 11

12 Are you planning to review the second draft of NGSS? A. I have reviewed/plan to review the second draft. B. I have submitted/plan to submit comments. C. I am a member of a review team for the second draft. D. I am coordinating a review team for the second draft. E. Other type in chat

13 What do you need to know about NGSS? Raise your hand to volunteer. First 5 volunteers - use your text box to type a question

14 Overview

15 15 Developing the Standards

16 Developing the Standards Assessments Curricula Instruction Teacher Development July

17 Developing the Standards July 2011

18 A Framework for K-12 Science Education Three-Dimensions: Scientific and Engineering Practices Crosscutting Concepts Disciplinary Core Ideas

19 Scientific and Engineering Practices 1. Asking questions (for science) and defining problems (for engineering) 2. Developing and using models 3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information 19

20 Crosscutting Concepts 1. Patterns 2. Cause and effect: Mechanism and explanation 3. Scale, proportion, and quantity 4. Systems and system models 5. Energy and matter: Flows, cycles, and conservation 6. Structure and function 7. Stability and change 20

21 Disciplinary Core Ideas Life Science LS1: From Molecules to Organisms: Structures and Processes LS2: Ecosystems: Interactions, Energy, and Dynamics LS3: Heredity: Inheritance and Variation of Traits LS4: Biological Evolution: Unity and Diversity Physical Science PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and Interactions PS3: Energy PS4: Waves and Their Applications in Technologies for Information Transfer Earth & Space Science ESS1: Earth s Place in the Universe ESS2: Earth s Systems ESS3: Earth and Human Activity Engineering & Technology ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society 21

22 Life Science Earth & Space Science Physical Science LS1: From Molecules to Organisms: Structures and Processes LS1.A: Structure and Function LS1.B: Growth and Development of Organisms LS1.C: Organization for Matter and Energy Flow in Organisms LS1.D: Information Processing LS2: Ecosystems: Interactions, Energy, and Dynamics LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C: Ecosystem Dynamics, Functioning, and Resilience LS2.D: Social Interactions and Group Behavior LS3: Heredity: Inheritance and Variation of Traits LS3.A: Inheritance of Traits LS3.B: Variation of Traits LS4: Biological Evolution: Unity and Diversity LS4.A: Evidence of Common Ancestry and Diversity LS4.B: Natural Selection LS4.C: Adaptation LS4.D: Biodiversity and Humans ESS1: Earth s Place in the Universe ESS1.A: The Universe and Its Stars ESS1.B: Earth and the Solar System ESS1.C: The History of Planet Earth ESS2: Earth s Systems ESS2.A: Earth Materials and Systems ESS2.B: Plate Tectonics and Large Scale System Interactions ESS2.C: The Roles of Water in Earth s Surface Processes ESS2.D: Weather and Climate ESS2.E: Biogeology ESS3: Earth and Human Activity ESS3.A: Natural Resources ESS3.B: Natural Hazards ESS3.C: Human Impacts on Earth Systems ESS3.D: Global Climate Change PS1: Matter and Its Interactions PS1.A:Structure and Properties of Matter PS1.B: Chemical Reactions PS1.C: Nuclear Processes PS2: Motion and Stability: Forces and Interactions PS2.A:Forces and Motion PS2.B: Types of Interactions PS2.C: Stability and Instability in Physical Systems PS3: Energy PS3.A: Definitions of Energy PS3.B: Conservation of Energy and Energy Transfer PS3.C: Relationship Between Energy and Forces PS3.D:Energy in Chemical Processes and Everyday Life PS4: Waves and Their Applications in Technologies for Information Transfer PS4.A:Wave Properties PS4.B: Electromagnetic Radiation PS4.C: Information Technologies and Instrumentation Engineering & Technology ETS1: Engineering Design ETS1.A: Defining and Delimiting an Engineering Problem ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution ETS2: Links Among Engineering, Technology, Science, and Society ETS2.A: Interdependence of Science, Engineering, and Technology ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World Note: In NGSS, the core ideas for Engineering, Technology, and the Application of Science are integrated with the Life Science, Earth & Space Science, and Physical Science core ideas

23 Developing the Standards Assessments Curricula Instruction Teacher Development July

24 Developing the Standards

25 Second Public Draft Second (and Final) Public Draft is now available for review More flexibility of viewing of the standards has been provided with two official arrangements of the performance expectations: by Topics and by Core Idea The public feedback survey has been completed revised Review period ends on January 29 th Final release is expected by the end of March 25

26 Conceptual Shifts in NGSS 1. K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World. 2. The Next Generation Science Standards are student performance expectations NOT curriculum. 3. The science concepts build coherently from K The NGSS Focus on Deeper Understanding of Content as well as Application of Content. 5. Science and Engineering are Integrated in the NGSS from K The NGSS and Common Core State Standards (Mathematics and English Language Arts) are Aligned. 26

27 Appendices A B C D E F G H I J K Conceptual Shifts Responses to May Public Feedback College and Career Readiness All Standards, All Students Disciplinary Core Idea Progressions in the NGSS Science and Engineering Practices in the NGSS Crosscutting Concepts in the NGSS Nature of Science Engineering Design, Technology, and the Applications of Science in the NGSS Model Course Mapping in Middle and High School Connections to Common Core State Standards in Mathematics 27

28 Inside the NGSS Box What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K 12 Science Education that were used to form the performance expectations Connection Box Other standards in the Next Generation Science Standards or in the Common Core State Standards that are related to this standard Based on the January 2013 Draft of NGSS Title and Code The titles of standard pages are not necessarily unique and may be reused at several different grade levels. The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses. Codes for Performance Expectations Codes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection. Performance Expectations A statement that combines practices, core ideas, and crosscutting concepts together to describe how students can show what they have learned. Clarification Statement A statement that supplies examples or additional clarification to the performance expectation. Assessment Boundary A statement that provides guidance about the scope of the performance expectation at a particular grade level. Engineering Connection (*) An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box.

29 Inside the NGSS Box Title and Code The titles of standard pages are not necessarily unique and may be reused at several different grade levels. The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses. What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K 12 Science Education that were used to form the performance expectations Connection Box Other standards in the Next Generation Science Standards or in the Common Core State Standards that are related to this standard Based on the January 2013 Draft of NGSS

30 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

31 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

32 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

33 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

34 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

35 Closer Look at a Performance Expectation MS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms, and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Developing and Using Models Modeling in 6 8 builds on K 5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. Use and/or develop models to predict, describe, support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d) Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-d) PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f) The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d) Energy and Matter Matter is conserved because atoms are conserved in physical and chemical processes. (MS-PS1-d) Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

36 Time for Questions

37 NSTA Resources About NGSS

38 NSTA Resources on NGSS

39 NSTA Resources on NGSS

40 NSTA Resources on NGSS New NGSS List Server

41 Community Forums

42 NSTA Print Resources NSTA Reader s Guide to the Framework NSTA Journal Articles about the Framework and the Standards

43 NSTA National Conference The place to be to learn about San Antonio, Texas April 11-14

44 Upcoming Web Seminars about NGSS Engineering Practices in the NGSS Mariel Milano, Orange County Public Schools & NGSS Writer 6:30-8:00, on Tuesday, January 15 th Using the NGSS Practices in the Elementary Grades Heidi Schweingruber, National Research Council and Deborah Smith, Pennsylvania State University 6:30-8:00, on Tuesday, January 29 th Connections between the Practices in NGSS, Common Core Math, and Common Core ELA Sarah Michaels, Clark University and author of Ready, Set, Science 6:30-8:00, on Tuesday, February 12 th

45 Web Seminars on Crosscutting Concepts Feb. 19: Patterns March 5: Cause and effect: Mechanism and explanation March 19: Scale, proportion, and quantity April 16: Systems and system models April 30: Energy and matter: Flows, cycles, and conservation May 14: Structure and function May 28: Stability and change All sessions will take place from 6:30-8:00 on Tuesdays Also, archives of last fall s web seminars about the Scientific and Engineering Practices are available

46 Thanks to today s presenters Howard Wahlberg Assistant Executive Director, Membership, NSTA Facilitating tonight s questions Ted Willard Director of NSTA s efforts around NGSS Harold Pratt Past President of NSTA 46

47 Thank you, NSTA members, for your involvement! We appreciate your participation in tonight s program and in the NGSS review process. 47 This web seminar contains information about programs, products, and services offered by third parties, as well as links to third-party websites. The presence of a listing or such information does not constitute an endorsement by NSTA of a particular company or organization, or its programs, products, or services.

48 National Science Teachers Association Gerry Wheeler, Interim Executive Director Zipporah Miller, Associate Executive Director, Conferences and Programs Al Byers, Ph.D., Assistant Executive Director, e-learning and Government Partnerships Flavio Mendez, Senior Director, NSTA Learning Center NSTA Web Seminars Brynn Slate, Manager Jeff Layman, Technical Coordinator 48

NGSS Crosscutting Concepts: Systems and System Models

NGSS Crosscutting Concepts: Systems and System Models LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Crosscutting Concepts: Systems and System Models Presented by: Ramon Lopez June 11, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org

More information

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013

An Introduction to The Next Generation Science Standards. NSTA National Conference San Antonio, Texas April 11-14, 2013 An Introduction to The Next Generation Science Standards NSTA National Conference San Antonio, Texas April 11-14, 2013 Science and Engineering Practices in the NGSS Colorado Science Education Network Denver,

More information

Using the NGSS Practices in the Elementary Grades

Using the NGSS Practices in the Elementary Grades LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Using the NGSS Practices in the Elementary Grades Presented by: Heidi Schweingruber, Deborah Smith, and Jessica Jeffries January 29, 2013 6:30 p.m. 8:00 p.m. Eastern

More information

NGSS Core Ideas: Matter and Its Interactions

NGSS Core Ideas: Matter and Its Interactions LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Core Ideas: Matter and Its Interactions Presented by: Joe Krajcik September 10, 2013 6:30 p.m. ET / 5:30 p.m. CT / 4:30 p.m. MT / 3:30 p.m. PT 1 2 http://learningcenter.nsta.org

More information

Introduction to the Next Generation Science Standards (NGSS) First Public Draft

Introduction to the Next Generation Science Standards (NGSS) First Public Draft LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Introduction to the Next Generation Science Standards (NGSS) First Public Draft Presented by: Dr. Gerry Wheeler and Dr. Stephen Pruitt May 15, 2012 NGSS First Public

More information

LS1 LS2. From Molecules to Organisms. Ecosystems

LS1 LS2. From Molecules to Organisms. Ecosystems LS1 LS2 From Molecules to Organisms Ecosystems Ecosystems From Molecules to Organisms LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C:

More information

NGSS Crosscutting Concepts: Scale, Proportion, and Quantity

NGSS Crosscutting Concepts: Scale, Proportion, and Quantity LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NGSS Crosscutting Concepts: Scale, Proportion, and Quantity Presented by: Amy Taylor and Kelly Riedinger March 19, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org

More information

The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate. Structure of the NGSS

The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate. Structure of the NGSS The Intersection of Measurement Model, Equating, and the Next Generation Science Standards Joseph A Martineau Senior Associate Structure of the NGSS The Next Generation Science Standards (NGSS) are multidimensional

More information

Developing the Next Generation Science Standards

Developing the Next Generation Science Standards 6/18/12 Developing the Next Generation Science Standards Chris Embry Mohr Olympia High School Stanford, Illinois Science and Agriculture Teacher, NGSS Writer chrisembry.mohr@olympia.org www.nextgenscience.org

More information

Electromagnetic Spectrum: Remote Sensing Ices on Mars

Electromagnetic Spectrum: Remote Sensing Ices on Mars LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Electromagnetic Spectrum: Remote Sensing Ices on Mars Presented by: Rudo Kashiri October 4, 2012 7:30 p.m. 9:00 p.m. Eastern time 1 Introducing today s presenter

More information

Next Generation Science Standards

Next Generation Science Standards The Next Generation Science Standards and the Life Sciences The important features of life science standards for elementary, middle, and high school levels Rodger W. Bybee Publication of the Next Generation

More information

BLUE VALLEY DISTRICT CURRICULUM Science Grade 3

BLUE VALLEY DISTRICT CURRICULUM Science Grade 3 BLUE VALLEY DISTRICT CURRICULUM Science Grade 3 ORGANIZING THEME/TOPIC Unit 1: Weather Patterns and Predictions Unit 3: Weather and Climate Lessons 1-5 Suggested Time Frame: 39 days Unit 2: Climates of

More information

High School Chemistry: Year at a Glance

High School Chemistry: Year at a Glance UNIT 1, STRUCTURE AND PRORTIES OF MATTER Instructional days: 40 Essential question: How can one explain the structure, properties, and interactions of matter? Unit abstract: Students are expected to develop

More information

Electromagnetic Spectrum: Remote Sensing Ices on Mars

Electromagnetic Spectrum: Remote Sensing Ices on Mars LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Electromagnetic Spectrum: Remote Sensing Ices on Mars Presented by: Rudo Kashiri February 21, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 Introducing today s presenter

More information

Next Generation Science Standards Public Release II

Next Generation Science Standards Public Release II Next Generation Science Standards Public Release II Building on the Past; Preparing for the Future Phase I" Phase II" 1990s" 1990s-2009" 7/2011 March 2013" 1/2010-7/2011" Read It For Yourself" hat s Different

More information

Career and College Readiness in Terms of Next Generation Science Standards (NGSS)

Career and College Readiness in Terms of Next Generation Science Standards (NGSS) Career and College Readiness in Terms of Next Generation Science Standards (NGSS) Michigan An NGSS Lead State Partner Next Generation Science Standards for Today s Students and Tomorrow s Workforce Building

More information

Analyzing Solar Energy Graphs: MY NASA DATA

Analyzing Solar Energy Graphs: MY NASA DATA LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Analyzing Solar Energy Graphs: MY NASA DATA Presented by: Alissa Keil September 12, 2011 MY NASA DATA Know your Earth video http://www.youtube.com/watch? v=d2kh_z720ia

More information

Science 8 th Grade Scope and Sequence

Science 8 th Grade Scope and Sequence Sample Science 8 th Grade Science 8 th Grade Scope and Sequence August - October = ESS1: Earth s Place in the Universe Essential Questions: What is Earth s place in the Universe? What makes up our solar

More information

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments: Fluence Learning HS-Biology NGSS Formative Assessments - NGSS Bundles Supporting Documents This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

More information

Astronomy Forensic Science. Chemistry Honors Chemistry AP Chemistry. Biology AP Biology. Physics. Honors Physiology & Anatomy.

Astronomy Forensic Science. Chemistry Honors Chemistry AP Chemistry. Biology AP Biology. Physics. Honors Physiology & Anatomy. HS PS1 1 HS PS1 2 HS PS1 3 HS PS1 4 HS PS1 5 HS PS1 6 HS PS1 7 HS PS1 8 HS PS2 1 HS PS2 2 HS PS2 3 HS PS2 4 Physical Science Use the periodic table as a model to predict the relative properties of elements

More information

Council of State Science Supervisors - National Conference

Council of State Science Supervisors - National Conference Council of State Science Supervisors - National Conference Christopher C. Lazzaro, Associate Director of Science Education clazzaro@collegeboard.org 212.520.8628 Provide an overview of the Science College

More information

Weather and Climate: Satellite Meteorology

Weather and Climate: Satellite Meteorology LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Weather and Climate: Satellite Meteorology Presented by: Rudo Kashiri April 4, 2013 6:30 p.m. 8:00 p.m. Eastern time 1 2 http://learningcenter.nsta.org NSTA Learning

More information

Reviewing the Alignment of IPS with NGSS

Reviewing the Alignment of IPS with NGSS Reviewing the Alignment of IPS with NGSS Harold A. Pratt & Robert D. Stair Introductory Physical Science (IPS) was developed long before the release of the Next Generation Science Standards (NGSS); nevertheless,

More information

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA

What is so different about NGSS? Chemistry PD. Joe Krajcik. CREATE for STEM. Michigan State University. Atlanta, GA What is so different about NGSS? Chemistry PD Joe Krajcik CREATE for STEM Michigan State University Atlanta, GA Institute for Collaborative Research in Education, Assessment, and Teaching Environments

More information

NES: Weather and Climate: Satellite Meteorology

NES: Weather and Climate: Satellite Meteorology LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Weather and Climate: Satellite Meteorology Presented by: Rudo Kashiri January 23, 2012 Weather and Climate: Satellite Meteorology Presented by Rudo Kashiri

More information

LIVE INTERACTIVE YOUR DESKTOP. NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Energy and the Polar Environment

LIVE INTERACTIVE YOUR DESKTOP. NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Energy and the Polar Environment LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Energy and the Polar Environment Thursday, November 13, 2008 Today s NSDL Experts Jessica Fries-Gaither,

More information

NES: Meterology: How Clouds Form

NES: Meterology: How Clouds Form LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Meterology: How Clouds Form Presented by: Rudo Kashiri August 30, 2011 Meteorology: How Clouds Form Rudo Kashiri NES Education Specialist Langley Research

More information

MESSENGER: Staying Cool My Angle on Cooling Effects of Distance and Inclination

MESSENGER: Staying Cool My Angle on Cooling Effects of Distance and Inclination LIVE INTERACTIVE LEARNING @ YOUR DESKTOP MESSENGER: Staying Cool My Angle on Cooling Effects of Distance and Inclination Presented by: Rudo Kashiri February 9, 2011 MESSENGER Mission to Mercury Presented

More information

Fairfield Public Schools Science Curriculum Draft Units Physics 40

Fairfield Public Schools Science Curriculum Draft Units Physics 40 Fairfield Public Schools Science Curriculum Draft Units Physics 40 1 Course: Description The study of natural phenomena and interactions between matter and energy using mathematical models and laws to

More information

BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM. Content Area: Middle School Science. Grade Level: Eighth Grade. 45 Days. 45 Days. 45 Days.

BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM. Content Area: Middle School Science. Grade Level: Eighth Grade. 45 Days. 45 Days. 45 Days. Content Area: Middle School Science Grade Level: BRICK TOWNSHIP PUBLIC SCHOOLS SCIENCE CURRICULUM Unit Timeframe Unit 1: Structure and Properties of Matter 45 Days Unit 2: Chemical Reactions 45 Days Unit

More information

National Aeronautics and Space Administration

National Aeronautics and Space Administration The Search for Life National Aeronautics and Space Administration Next Generation Science Standards Middle School Alignment Document The Search for Life Middle School Next Generation Science Standards

More information

NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review

NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review NSTA Science Content Analysis Form: Secondary Science Instructions for Preparing for Your Review The Tables below include the conceptual questions related to Disciplinary Core Ideas from the A Framework

More information

Next Generation Science Standards Correlations (1 of 6)

Next Generation Science Standards Correlations (1 of 6) Next Generation Science Standards Correlations (1 of 6) The Next Generation Science Standards (NGSS) were completed and published online (http://www.nextgenscience.org) in April 2013. The standards are

More information

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade

B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade B L U E V A L L E Y D I S T R I C T CURRI C U L U M Science 8 th grade ORGANIZING THEME/TOPIC UNIT 1: ENERGY Definitions of Energy Potential and Kinetic Energy Conservation of Energy Energy Transfer MS-PS3-1:

More information

Appendix III Disciplinary Core Idea Progression Matrix

Appendix III Disciplinary Core Idea Progression Matrix Appendix III Disciplinary Core Idea Progression Matrix Each disciplinary core idea spans pre-k to high school, with each grade span representing a reconceptualization or more sophisticated understanding

More information

NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Integrating Science and Literacy in the K-5 Classroom-- Physical Science from the Poles

NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Integrating Science and Literacy in the K-5 Classroom-- Physical Science from the Poles LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSDL/NSTA Web Seminar Beyond Penguins and Polar Bears: Integrating Science and Literacy in the K-5 Classroom-- Physical Science from the Poles Wednesday, October

More information

RESOURCES: Smithsonian Science and Technology. Concepts Motion and Design Unit Lessons 1-17

RESOURCES: Smithsonian Science and Technology. Concepts Motion and Design Unit Lessons 1-17 Quarter 1 Subject: STEM Science, Technology, Engineering, Mathematics MAP Grade 3 Means to the PS2.A Forces and Motion Each force acts on one particular object and has both strength and direction. An object

More information

A Focus on Physical Science

A Focus on Physical Science The Next Generation Science Standards A Focus on Physical Science By Joe Krajcik What should all students know about the physical sciences? Why should all students have a basic understanding of these ideas?

More information

NES: Newton s Laws of Motion: Lunar Nautics

NES: Newton s Laws of Motion: Lunar Nautics LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Newton s Laws of Motion: Lunar Nautics Presented by: Rudo Kashiri March 19, 2012 Newton s Laws of Motion LUNAR NAUTICS Rudo Kashiri NES Education Specialist

More information

Dear Teacher, Overview Page 1

Dear Teacher, Overview Page 1 Dear Teacher, You are about to involve your students in one of the most exciting frontiers of science the search for other worlds and life in solar systems beyond our own! Using the MicroObservatory telescopes,

More information

NES: Meteorology: How Clouds Form

NES: Meteorology: How Clouds Form LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Meteorology: How Clouds Form Presented by: Rudo Kashiri December 1, 2011 Meteorology: How Clouds Form Rudo Kashiri NES Education Specialist NASA Langley Research

More information

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments: Fluence Learning HS-Physics NGSS Formative Assessments - NGSS Bundles Supporting Documents This document includes the following supporting documentation to accompany the Grade 5 NGSS Formative Assessments:

More information

This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry in the Earth System:

This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry in the Earth System: Fluence Learning High School NGSS Formative Assessments - New York Supporting Documents This document includes the following supporting documentation to accompany the NGSS Formative Assessments for Chemistry

More information

NGSS Formative Assessments - California. High School - Chemistry in the Earth System

NGSS Formative Assessments - California. High School - Chemistry in the Earth System Fluence Learning NGSS Formative Assessments - California High School - Chemistry in the Earth System Supporting Documents This document includes the following supporting documentation to accompany the

More information

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined

Concepts Experimenting with Mixtures, chemical means. Lesson 6. SUBCONCEPT 5 Elements can be combined Quarter 1 PS21.A Structure and Properties of Matter Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to

More information

NES: Heat, Temperature and Energy: MESSENGER Cooling With Sunshades

NES: Heat, Temperature and Energy: MESSENGER Cooling With Sunshades LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Heat, Temperature and Energy: MESSENGER Cooling With Sunshades Presented by: Jordan Snyder November 10, 2011 6:30 p.m. - 8:00 p.m. Eastern time Mercury Surface

More information

NGSS Example Bundles. 1 of 15

NGSS Example Bundles. 1 of 15 Middle School Topics Model Course III Bundle 3 Mechanisms of Diversity This is the third bundle of the Middle School Topics Model Course III. Each bundle has connections to the other bundles in the course,

More information

GRAVITY AND KINETIC ENERGY Framework and NGSS. Contents

GRAVITY AND KINETIC ENERGY Framework and NGSS. Contents INTRODUCTION TO PERFORMANCE EXPECTATIONS The NGSS are standards or goals, that reflect what a student should know and be able to do; they do not dictate the manner or methods by which the standards are

More information

Biology: Year at a Glance

Biology: Year at a Glance UNIT 1: CELLS HS-LS1-1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized

More information

Analyze and interpret data from maps to describe patterns of Earth s features.

Analyze and interpret data from maps to describe patterns of Earth s features. Lesson: A Matter of Perspective 4.Earth's Systems: Processes that Shape the Earth 4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth s features. Planning and Carrying Out Investigations

More information

1 Adapted from The Leadership and Learning Center Rigorous Curriculum Design model.

1 Adapted from The Leadership and Learning Center Rigorous Curriculum Design model. Horace W. Porter School From Molecules to Organisms Subject(s) Science Grade/Course 7 PacingTBD Performance Expectations NGSS Students who demonstrate understanding can: MS-LS1-1. Conduct an investigation

More information

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures.

Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. CHEMISTRY OF MATERIALS OVERVIEW- NGSS Performance Expectation MS-PS1-1: Develop models to describe the atomic composition of simple molecules and extended structures. NGPEP11 DCI: Substances are made from

More information

Unit: Key Ideas: Standards: Assessment: Introduction to Science

Unit: Key Ideas: Standards: Assessment: Introduction to Science Unit: Key Ideas: Standards: Assessment: Introduction to Science Trophy Caper Case Intro to Chemistry Characteristics of Life LS1: From Molecules to Organisms Summative: Test Science as a Process SEP 1:

More information

Activities. Textbook alignment: Chapter 1: Plants and How They Grow- Lessons 1-4. Chapter 2: How Animals Live- Lessons 1 & 2

Activities. Textbook alignment: Chapter 1: Plants and How They Grow- Lessons 1-4. Chapter 2: How Animals Live- Lessons 1 & 2 *See Teacher Share- Grade 3 NGSS Curriculum for most supplementary texts and listed activities Process Skills/ Activities Standard Integration Evaluation Technology 1 From Molecules to Organisms, Structures

More information

NGSS = Career and College Ready

NGSS = Career and College Ready NGSS = Career and College Ready Making the Case Melanie Cooper Ryan Sweeder Susan Codere Kelly http://www.create4stem.msu.edu/ngss College and Career Ready Session Objectives Clarify CCR expectations (university

More information

GRADES To Our Solar System and Back. Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE

GRADES To Our Solar System and Back. Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE GRADES 6 12 To Our Solar System and Back Discover the STEM Behind Sustainable Rocketry DIGITAL EXPLORATION EDUCATOR GUIDE Using this Digital Exploration, students will act as planetary scientists who have

More information

Fairfield Public Schools Science Curriculum The Planet s Oceans

Fairfield Public Schools Science Curriculum The Planet s Oceans Fairfield Public Schools Science Curriculum The Planet s Oceans BOE Approved 5/8/2018 1 The Planet s Oceans: Description In this course, you will get to know the ocean world: plate tectonics, ocean currents,

More information

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets?

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets? This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Activitydevelop Hunting for Planets How

More information

Interdependent Relationships in Ecosystems

Interdependent Relationships in Ecosystems Standards Curriculum Map Bourbon County Schools Level: 3rd Grade and/or Course: Science Updated: 5/22/13 e.g. = Example only Days Unit/Topic Standards Activities Learning Targets ( I Can Statements) Days

More information

Middle School. Teacher s Guide MICROPLANTS MAJOR SPONSOR:

Middle School. Teacher s Guide MICROPLANTS MAJOR SPONSOR: Middle School Teacher s Guide MICROPLANTS MAJOR SPONSOR: Introduction As technology continues to rapidly evolve, scientists are able to collect and store more data. Some scientists find themselves with

More information

TASC Transition Curriculum Project

TASC Transition Curriculum Project TASC Transition Curriculum Project MODULE 3: WORKSHOP 9 REVIEWING THE CROSS-CUTTING CONCEPTS INVOLVED IN SOLVING PROBLEMS PLACED ON STUDENTS IN TASC ABOUT DISCIPLINARY CORE IDEAS POSED IN THE PHYSICAL

More information

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve

Next Generation Science Standards for California Public Schools, Kindergarten through Grade Twelve California Department of Education Clarification statements were created by the writers of NGSS to supply examples or additional clarification to the performance expectations and assessment boundary statements.

More information

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at High School Conceptual Progressions Model Course II Bundle 3 Matter and Energy in Organisms This is the third bundle of the High School Conceptual Progressions Model Course II. Each bundle has connections

More information

LAB-AIDS Correlations for NEXT GENERATION SCIENCE STANDARDS HIGH SCHOOL LEVEL, LIFE SCIENCE

LAB-AIDS Correlations for NEXT GENERATION SCIENCE STANDARDS HIGH SCHOOL LEVEL, LIFE SCIENCE LAB-AIDS Correlations for NEXT GENERATION SCIENCE STANDARDS HIGH SCHOOL LEVEL, LIFE SCIENCE Mark Koker, Ph D, Director of Curriculum &Professional Development, LAB-AIDS Oralia Gil, Curriculum Specialist,

More information

Jr. High Department. 8th Grade Science Curriculum Map Mrs. Danielle Coleman

Jr. High Department. 8th Grade Science Curriculum Map Mrs. Danielle Coleman Jr. High Department 8th Grade Science Curriculum Map 2016 17 Mrs. Danielle Coleman The universe is a place subject to fundamental scientific principles. An understanding of these principles will better

More information

EARTH S SYSTEMS: PROCESSES THAT SHAPE THE EARTH

EARTH S SYSTEMS: PROCESSES THAT SHAPE THE EARTH 9 Week Unit UNIT 2 EARTH S SYSTEMS: PROCESSES THAT SHAPE THE EARTH Fourth Grade Rogers Public Schools : Earth s Systems: Processes that Shape the Earth 9 weeks In this unit, students develop understandings

More information

NES: Lunar Nautics Presenter: Rudo Kashiri

NES: Lunar Nautics Presenter: Rudo Kashiri LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NES: Lunar Nautics Presenter: Rudo Kashiri July 21, 2011 LUNAR NAUTICS Rudo Kashiri NES Education Specialist NASA Langley research Center Presentation Outline Lunar

More information

South Dakota Content Standards Science Grade: 7 - Adopted: 2015

South Dakota Content Standards Science Grade: 7 - Adopted: 2015 Main Criteria: South Dakota Content Standards Secondary Criteria: Subjects: Science, Social Studies Grade: 7 Correlation Options: Show Correlated South Dakota Content Standards Science Grade: 7 - Adopted:

More information

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter Chariho Regional School District - Science Curriculum September, 2016 GRADE EIGHT CURRICULUM Unit 1: The Makeup and Interactions of Matter OVERVIEW Summary The performance expectations for this unit help

More information

Webinar Participation

Webinar Participation Webinar Participation As you enter, please review the Zoom controls below. Leave your audio and video off, unless prompted by a host. Chat: brief questions about technical issues. Q & A: used to hold a

More information

Mars Image Analysis. High School Alignment Document Next Generation Science Standards, Common Core State Standards, and 21st Century Skills

Mars Image Analysis. High School Alignment Document Next Generation Science Standards, Common Core State Standards, and 21st Century Skills National Aeronautics and Space Administration Mars Image Analysis High School Alignment Document Next Generation Science Standards, Common Core State Standards, and 21st Century Skills WHAT STUDENTS DO:

More information

Middle School Science Level Shifts

Middle School Science Level Shifts Middle School Science Level Shifts Life Science: Individual organism its place in an ecosystem development of these systems over time 6 th : Structure of cells and organisms: body systems, growth and development,

More information

Grade 5 Science. Scope and Sequence. Unit of Study 1: Properties of Matter (15 days)

Grade 5 Science. Scope and Sequence. Unit of Study 1: Properties of Matter (15 days) Unit of Study 1: Properties of Matter (15 days) Standards that appear this unit: 5-PS1-3, 5-PS1-1 5.Structure and Properties of Matter 5-PS1-3. Make observations and measurements to identify materials

More information

The Next Generation Science Standards (NGSS)

The Next Generation Science Standards (NGSS) The Next Generation Science Standards (NGSS) CHAPTER 6, LESSON 1: WHAT IS A CHEMICAL REACTION? MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact

More information

5.3 Astronomy Outline

5.3 Astronomy Outline 5.3 Astronomy Outline Enduring Understanding: The position of the Earth in the Solar System affects the conditions of life on our planet. Essential Question: How does the position of the Earth in the Solar

More information

A Correlation of. to the. Michigan K-12 Standards for Science High School - Life Science and Engineering Design

A Correlation of. to the. Michigan K-12 Standards for Science High School - Life Science and Engineering Design A Correlation of 2014 to the High School - Life Science and Engineering Design Introduction The following document demonstrates how 2014 supports the Michigan K- 12 Standards for High School Life Science

More information

INTRODUCTION TO PERFORMANCE EXPECTATIONS

INTRODUCTION TO PERFORMANCE EXPECTATIONS 2018-2019-C Copyright The Regents of the University of California Berkeley Not for resale, redistribution, or use other than classroom use without further permission. www.fossweb.com INTRODUCTION TO PERFORMANCE

More information

Assessing Three-Dimensional Learning in the Next Generation Science Standards

Assessing Three-Dimensional Learning in the Next Generation Science Standards Assessing Three-Dimensional Learning in the Next Generation Science Standards John Howarth & Maia Willcox SEPUP The Lawrence Hall of Science University of California, Berkeley Next Generation Science Standards

More information

Engineering Design. 6 th Grade Science Curriculum. Students who demonstrate understanding can

Engineering Design. 6 th Grade Science Curriculum. Students who demonstrate understanding can 6 th Grade Science Curriculum Engineering Design MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant

More information

NAME: EXPLORATION GUIDE. CTScienceCenter.org. 250 Columbus Blvd. Hartford, CT 06103

NAME: EXPLORATION GUIDE. CTScienceCenter.org. 250 Columbus Blvd. Hartford, CT 06103 NAME: EXPLORATION GUIDE CTScienceCenter.org 250 Columbus Blvd. Hartford, CT 06103 WEATHER: WILD & WACKY Objectives Students will investigate some extreme weather patterns, such as hurricanes and tornadoes.

More information

Looking for Signs of Life. Overview. Directions. Content Created by. Activitydevelop. How do scientists determine whether a planet has life?

Looking for Signs of Life. Overview. Directions. Content Created by. Activitydevelop. How do scientists determine whether a planet has life? This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Activitydevelop Looking for Signs of

More information

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10 5 th Grade Thematic Model - Bundle 3 Stability and Change in Earth s Systems This is the third bundle of the Fifth Grade Thematic Model. Each bundle has connections to the other bundles in the course,

More information

correlated to the Massachusetts Science Curriculum Framework, Grade 6-8

correlated to the Massachusetts Science Curriculum Framework, Grade 6-8 correlated to the Massachusetts Science Curriculum Framework, Grade 6-8 CONTENTS Correlation Massachusetts Science Curriculum Framework, 6-8 correlated to the McDougal Littell Science, Earth s Atmosphere

More information

Fingerprints of Life? Extremophiles: It s Just Right

Fingerprints of Life? Extremophiles: It s Just Right LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Fingerprints of Life? Extremophiles: It s Just Right Presented by: Rudo Kashiri October 27, 2010 Presented by Rudo Kashiri NASA Explorer Schools Agenda Searching

More information

Kaboom! Volunteers in Classrooms. Presentation Summaries and Related Next Generation Standards. Grades 3-5 PRESENTATION SUMMARIES

Kaboom! Volunteers in Classrooms. Presentation Summaries and Related Next Generation Standards. Grades 3-5 PRESENTATION SUMMARIES Kaboom! Volunteers in Classrooms Presentation Summaries and Related Next Generation Standards Grades 3-5 PRESENTATION SUMMARIES Mount St Helens 1980 Eruption This presentation begins by discussing tectonic

More information

The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way!

The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way! LIVE INTERACTIVE LEARNING @ YOUR DESKTOP The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way! Presented by: Dr. Sten Odenwald March 31, 2011 Exoplanet Exploration Dr. Sten Odenwald

More information

Unit 5: Types of Interactions. CONTENT AREA: General Physical Science GRADES: 6 UNIT: 5 of 7 Pacing: Approx. 1 Month (January)

Unit 5: Types of Interactions. CONTENT AREA: General Physical Science GRADES: 6 UNIT: 5 of 7 Pacing: Approx. 1 Month (January) Unit 5: Types of Interactions CONTENT AREA: General Physical Science GRADES: 6 UNIT: 5 of 7 Pacing: Approx. 1 Month (January) Science and Engineering Practices Using Mathematics and Computational Thinking

More information

All instruction should be three-dimensional. Performance Expectations. 1-ESS1-2 is partially assessable

All instruction should be three-dimensional. Performance Expectations. 1-ESS1-2 is partially assessable 1st Grade - Thematic Model - Bundle 1 Seeing Objects This is the first bundle of the 1 st Grade Thematic Model. Each bundle has connections to the other bundles in the course, as shown in the Course Flowchart.

More information

4.PS4.B: Electromagnetic Radiation

4.PS4.B: Electromagnetic Radiation DCI: Waves and Their Applications in Technologies for Information 4.PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade ORGANIZING THEME/TOPIC UNIT 1: CELLS Structure and Function of Cells MS-LS1-1. Conduct an investigation to provide evidence that

More information

1 Forces and Motion. 2 Forces at a Distance. 3 Energy Conversion. 4 Nuclear Processes. 5 Waves and Electromagnetic. Physics Course Map

1 Forces and Motion. 2 Forces at a Distance. 3 Energy Conversion. 4 Nuclear Processes. 5 Waves and Electromagnetic. Physics Course Map Physics 2018-19 Course Map Overview 1 Forces and Motion 2 Forces at a Distance 3 Energy Conversion 4 Nuclear Processes Students make predictions using Newton s Laws. Students mathematically describe how

More information

Science. Course Title Course # Term Grade(s) Prerequisite(s) Course Description

Science. Course Title Course # Term Grade(s) Prerequisite(s) Course Description Science Course Title Course # Term Grade(s) Prerequisite(s) Course Description Biology 26.0120000 Y 9 None such as the interdependence of organisms, the relationship of matter, energy, and organization

More information

Weathering and Erosion

Weathering and Erosion Unit abstract Overview In this unit of study, students are expected to develop understanding of the effects of weathering and the rate of erosion by water, ice, wind, or vegetation. The crosscutting concepts

More information

Alignment Guide PHYSICAL GLENCOE

Alignment Guide PHYSICAL GLENCOE Alignment Guide PHYSICAL GLENCOE Glencoe Science Your Partner in Understanding and Implementing NGSS* Ease the Transition to Next Generation Science Standards Meeting NGSS Glencoe Science helps ease the

More information

4.ESS1.C: The History of Planet Earth

4.ESS1.C: The History of Planet Earth Disciplinary Core Idea 4.ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and

More information

OKCPS-8th Grade Oklahoma Academic Standards and PASS (2011) Correlation

OKCPS-8th Grade Oklahoma Academic Standards and PASS (2011) Correlation This tool serves to help us analyze the gaps in our curriculum as we move to the new standards. The 8th grade OCCT ideal percentage of items aids in the vertical alignment to inform pacing that allows

More information

Miller & Levine Biology

Miller & Levine Biology A Correlation of Nebraska College and Career Ready Standards High School Life Science A Correlation of Introduction This document demonstrates how meets the Nebraska College and Career Ready. Correlation

More information

5-PS1-1 Matter and Its Interactions

5-PS1-1 Matter and Its Interactions 5-PS1-1 Matter and Its Interactions 5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include

More information

3-LS1-1 From Molecules to Organisms: Structures and Processes

3-LS1-1 From Molecules to Organisms: Structures and Processes 3-LS1-1 From Molecules to Organisms: Structures and Processes 3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction,

More information

NGSS Example Bundles. Page 1 of 14

NGSS Example Bundles. Page 1 of 14 Middle School Phenomenon Model Course 2 Bundle 2 Climate Diversity This is the second bundle of the Middle School Phenomenon Model Course 2. Each bundle has connections to the other bundles in the course,

More information