CHEM 122 CHEMICAL KINETICS CHAP 14 ASSIGN

Size: px
Start display at page:

Download "CHEM 122 CHEMICAL KINETICS CHAP 14 ASSIGN"

Transcription

1 CHEM 122 CHEMICAL KINETICS CHAP 14 ASSIGN PLACE THE LETTER REPRESENTING THE BEST ANSWER TO EACH QUESTION ON THE APPROPRIATE LINE ON THE ANSWER SHEET. FOR OTHER QUESTIONS, CLEARLY WRITE THE ANSWER, INCLUDING UNITS WHEN NECESSARY, ON THE ANSWER SHEET. CLEARLY SHOW ALL WORK ON SCRAP PAPER. HAND IN ASSIGNMENT, ANSWER SHEET, AND SCRAP WORK. 1. A gas chromatograph can be used to determine the relative amounts of reactants and products by A) measuring the changes in pressure as the reaction proceeds. B) analyzing the intensity of the transmitted light. C) separating the components of the mixture, which results in an individual peak for each component and the peaks are quantified. D) measuring the degree of the polarization of light. E) measuring the change in temperature of the reaction. 2. Write a balanced reaction for which the following rate relationships are true. Rate = = = - A) N2 + O2 N2O B) 2 N2O 2 N2 + O2 C) N2O N2 + 2 O2 D) N2O N2 + O2 E) 2 N2 + O2 2 N2O 3. What is the overall order of the following reaction, given the rate law? NO(g) + O3(g) NO2(g) + O2(g) Rate = k[no][o3] A) 1st order B) 2nd order C) 3rd order D) 1 order E) 0th order 4. A rate is equal to M/s. If [A] = M and rate = k[a]0[b]2, what is the new rate if the concentration of [A] is increased to M? A) M/s B) M/s C) M/s D) M/s E) M/s 5. A rate is equal to M/s. If [A] = M and rate = k[a]2[b]2, what is the new rate if the concentration of [A] is increased to M? A) M/s B) M/s C) M/s D) M/s E) M/s 6. Determine the rate law and the value of k for the following reaction using the data provided. CO(g) + Cl2(g) COCl2(g) [CO]i (M) [Cl2]i (M) Initial Rate (M-1s-1) A) Rate = 11 M-3/2s-1 [CO][Cl2]3/2 B) Rate = 36 M-1.8s-1 [CO][Cl2]2.8 C) Rate = 17 M-2s-1 [CO][Cl2]2 D) Rate = 4.4 M-1/2s-1 [CO][Cl2]1/2 E) Rate = 18 M-3/2s-1 [CO]2[Cl2]1/2 1 P a g e

2 7. Determine the rate law and the value of k for the following reaction using the data provided. NO 2 (g) + O3(g) NO 3 (g) + O 2 (g) [NO2]i (M) [O3]i (M) Initial Rate (M-1s-1) A) Rate = 1360 M -2.5 s -1 [NO 2 ] 2.5 [O 3 ] B) Rate = 227 M -2.5 s -1 [NO 2 ][O 3 ] 2.5 C) Rate = 43 M -1 s -1 [NO 2 ][O 3 ] D) Rate = 430 M -2 s -1 [NO 2 ] 2 [O 3 ] E) Rate = 130 M -2 s -1 [NO 2 ][O 3 ] 2 8. Determine the rate law and the value of k for the following reaction using the data provided. 2 NO(g) + O 2 (g) 2 NO 2 (g) [NO]i (M) [O 2 ]i (M) Initial Rate (M -1 s -1 ) A) Rate = 57 M -1 s -1 [NO][O 2 ] B) Rate = 3.8 M -1/2 s -1 [NO][O 2 ] 1/2 C) Rate = M -3 s -1 [NO] 2 [O 2 ] 2 D) Rate = M -2 s -1 [NO] 2 [O 2 ] E) Rate = M -2 s -1 [NO][O 2 ] 2 9. Which of the following statements is FALSE? A) The average rate of a reaction decreases during a reaction. B) It is not possible to determine the rate of a reaction from its balanced equation. C) The rate of zero-order reactions is not dependent on concentration. D) The half-life of a first-order reaction is dependent on the initial concentration of reactant. E) None of the statements is FALSE. 10. The rate constant for the first-order decomposition of N2O is 3.40 s-1. What is the half-life of the decomposition? A) s B) s C) s D) s E) s 11. The half-life for the second-order decomposition of HI is 15.4 s when the initial concentration of HI is 0.67 M. What is the rate constant for this reaction? A) M-1s-1 B) M-1s-1 C) M-1s-1 D) M-1s-1 E) M-1s The first-order decomposition of N2O at 1000 K has a rate constant of 0.76 s-1. If the initial concentration of N2O is 10.9 M, what is the concentration of N2O after 9.6 s? A) M B) M C) M D) M E) M 13. The first-order decay of radon has a half-life of days. How many grams of radon decompose after 5.55 days if the sample initially weighs grams? A) 83.4 g B) 16.6 g C) 50.0 g D) 36.6 g E) 63.4 g 2 P a g e

3 14. The second-order decomposition of NO2 has a rate constant of M-1s-1. How much NO2 decomposes in 4.00 s if the initial concentration of NO2 (1.00 L volume) is 1.33 M? A) 1.8 mol B) 0.85 mol C) 0.48 mol D) 0.77 mol E) 0.56 mol 15. For a reaction, what generally happens if the temperature is increased? A) A decrease in k occurs, which results in a faster rate. B) A decrease in k occurs, which results in a slower rate. C) An increase in k occurs, which results in a faster rate. D) An increase in k occurs, which results in a slower rate. E) There is no change with k or the rate. 16. A reaction is followed and found to have a rate constant of M -1 s -1 at 344 K and a rate constant of 7.69 M -1 s -1 at 219 K. Determine the activation energy for this reaction. A) 23.8 kj/mol B) 42.0 kj/mol C) 11.5 kj/mol D) 12.5 kj/mol E) 58.2 kj/mol 17. If the activation energy for a given compound is found to be 103 kj/mol, with a frequency factor of s -1, what is the rate constant for this reaction at 398 K? A) 1.2 s -1 B) 8.2 s -1 C) s -1 D) s -1 E) s Which of the following statements is TRUE? A) The rate constant does not depend on the activation energy for a reaction where the products are lower in energy than the reactants. B) A catalyst raises the activation energy of a reaction. C) Rate constants are temperature dependent. D) The addition of a homogeneous catalyst does not change the activation energy of a given reaction. E) None of the above is true. 19. Identify a heterogeneous catalyst. A) CFCs with ozone B) Pd in H2 gas C) KI dissolved in H2O2 D) H2SO4 with concentrated HCl E) H3PO4 with an alcohol 20. What is the overall order of the following reaction, given the rate law? 2X + 3Y 2Z Rate = k[x]1[y]2 A) 3rd order B) 5th order C) 2nd order D) 1st order E) 0th order 21. In the hydrogenation of double bonds, a catalyst is needed. In the last step, the reactants must escape from the surface into the gas phase. This step is known as A) adsorption. B) diffusion. C) reaction. D) desorption. E) none of the above 22. At one point during an analysis of the reaction shown below, compound W was used up at a rate of 0.4 moll -1 s -1. At what rate was compound Y being formed? 2W + 4X 3Y + 2Z A. 0.2 B. 0.3 C. 0.4 D. 0.6 E What is the rate of the reaction described in question 1? A. 0.2 B. 0.3 C. 0.4 D. 0.6 E P a g e

4 Questions refer to the following reaction diagram for a chemical reaction with and without a catalyst. 24. In the potential energy diagram shown above, which letter shows the activation energy for the uncatalyzed reaction? 25. In the potential energy diagram shown above, which letter shows the activation energy for the catalyzed reaction? 26. In the potential energy diagram shown above, which letter shows the heat of the reaction? 27. Given the following rate law, how does the rate of reaction change if the concentration of Y is doubled? Rate = k[x] 4 [Y]3 A) The rate of reaction will increase by a factor of 6. B) The rate of reaction will decrease by a factor of 4. C) The rate of reaction will increase by a factor of 8. D) The rate of reaction will increase by a factor of 4. E) The rate of reaction will remain unchanged. 28. If the concentration of a reactant is 6.25%, how many half-lives has it gone through? A) 7 B) 10 C) 3 D) 4 E) The rate constant for a first-order reaction is 0.54 s-1. What is the half-life of this reaction if the initial concentration is 0.33 M? A) s B) 1.8 s C) 0.31 s D) 5.6 s E) 1.3 s 30. For a particular first-order reaction, it takes 24 minutes for the concentration of the reactant to decrease to 25% of its initial value. What is the value for rate constant (in s-1) for the reaction? A) s-1 B) s-1 C) s-1 D) s The second-order reaction 2 Mn(CO)5 Mn2(CO)10, has a rate constant equal to M-1 s-1 at 25 C. If the initial concentration of Mn(CO)5 is M, how long will it take for 90.% of the reactant to disappear? A) s B) s C) s D) s 32. Given the following proposed mechanism, predict the rate law for the overall reaction. A2 + 2 B 2 AB (overall reaction) Mechanism A2 2 A A + B AB fast slow A) Rate = k[a] 1/2 [B] 2 B) Rate = k[a2][b] C) Rate = k[a2] 2 [B] 1/2 D) Rate = k[a2] 1/2 E) Rate = k[a2]1/2[b] 4 P a g e

5 EXTRA CREDIT 33. A reaction is found to have an activation energy of 38.0 kj/mol. If the rate constant for this reaction is M -1 s -1 at 249 K, what is the rate constant at 436 K? A) M -1 s -1 B) M -1 s -1 C) M -1 s -1 D) M -1 s -1 E) M -1 s In aqueous solution, hypobromite ion, BrO-, reacts to produce bromate ion, BrO3 -, and bromide ion, Br-, according to the following chemical equation. 3 BrO-(aq) BrO3 - (aq) + 2 Br-(aq) A plot of 1/[BrO-] vs. time is linear and the slope is equal to M-1s-1. If the initial concentration of BrO- is 0.80 M, how long will it take one-half of the BrO- ion to react? A) s B) 7.1 s C) 12 s D) 22 s 35. Derive an expression for a "1/4-life" for a first-order reaction. A B C D E NAME DATE ANSWER SHEET CHEM 122 CHAP 14 ASSIGN SPRING P a g e

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics Name AP CHEM / / Chapter 12 Outline Chemical Kinetics The area of chemistry that deals with the rate at which reactions occur is called chemical kinetics. One of the goals of chemical kinetics is to understand

More information

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2:

Exam 2 Sections Covered: (the remaining Ch14 sections will be on Exam 3) Useful Information Provided on Exam 2: Chem 101B Study Questions Name: Chapters 12,13,14 Review Tuesday 2/28/2017 Due on Exam Thursday 3/2/2017 (Exam 2 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction CHAPTER 17 REVIEW Reaction Kinetics SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Refer to the energy diagram below to answer the following questions. D Energy C d c d

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

AP Chapter 13: Kinetics Name

AP Chapter 13: Kinetics Name AP Chapter 13: Kinetics Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 13: Kinetics 2 Warm-Ups (Show your work for credit) Date 1.

More information

CHEM 122 CHEMICAL EQUILIBRIUM CHAP 15 ASSIGN

CHEM 122 CHEMICAL EQUILIBRIUM CHAP 15 ASSIGN CHEM 122 CHEMICAL EQUILIBRIUM CHAP 15 ASSIGN PLACE THE LETTER REPRESENTING THE BEST ANSWER TO EACH QUESTION ON THE APPROPRIATE LINE ON THE ANSWER SHEET. FOR OTHER QUESTIONS, CLEARLY WRITE THE ANSWER, INCLUDING

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary:

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary: Summary: Lecture (3) The expressions of rate of reaction and types of rates; Stoichiometric relationships between the rates of appearance or disappearance of components in a given reaction; Determination

More information

CH Practice Exam #4 (Fall 2017) - Answers

CH Practice Exam #4 (Fall 2017) - Answers H1810 - Practice Exam #4 (Fall 2017) - nswers Name: Part I (~5 points each) Score: Multiple hoice - hoose the best answer and place the letter corresponding to the answer in the space provided N on the

More information

CH Practice Exam #3 -

CH Practice Exam #3 - CH1810 - Practice Exam # - Name: Score: Part I (~ points each) Multiple Choice - Choose the best answer and place the letter corresponding to the answer in the space provided AND on the Scantron form.

More information

Please pass in this completed answer sheet only on the day of the test.

Please pass in this completed answer sheet only on the day of the test. CHM-202 General Chemistry and Laboratory II Unit #2 Take Home Test Due March 14, 2019 Please pass in this completed answer sheet only on the day of the test. CHM-202 General Chemistry and Laboratory II

More information

Dr. Steward s Spring 2014 Exam #1 Kinetics, Equilibrium Review

Dr. Steward s Spring 2014 Exam #1 Kinetics, Equilibrium Review Caveat Lector: This review cannot possibly cover all of the types of problems that could be on the exam. Use this review as a good starting point to study. Dr. Steward s Spring 2014 Exam #1 Kinetics, Equilibrium

More information

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A?

Kinetics. 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? Kinetics 1. Consider the following reaction: 3 A 2 B How is the average rate of appearance of B related to the average rate of disappearance of A? A. [A]/ t = [B]/ t B. [A]/ t = (2/3)( [B]/ t) C. [A]/

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Kinetics CHAPTER IN THIS CHAPTER

Kinetics CHAPTER IN THIS CHAPTER CHAPTER 14 Kinetics IN THIS CHAPTER Summary: Thermodynamics often can be used to predict whether a reaction will occur spontaneously, but it gives very little information about the speed at which a reaction

More information

Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1

Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1 Chem 112 PRACTICE EXAM 2 Adapted from Spring 2015 Kinetics, Thermo Part 1 1. When N 2 O 5 (g) decomposes as shown below at a fixed temperature, the rate of formation of NO 2 is 3.7 10 3 M/s. 2 N 2 O 5

More information

the following equilibrium constants. Label the thermodynamic and kinetic regions.

the following equilibrium constants. Label the thermodynamic and kinetic regions. REACTION RATES 1. Distinguish between kinetic and thermodynamic regions of a reaction. 2. How does an increase in pressure affect the rate of a gas-phase reaction? What effect on the rate would doubling

More information

Go on to the next page. Chemistry 112 Name Exam I Form A Section February 1,

Go on to the next page. Chemistry 112 Name Exam I Form A Section February 1, Chemistry 112 Name Exam I Form A Section February 1, 2012 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white cover

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

3. The osmotic pressure of a ml solution of an unknown nonelectrolyte is 122 torr at 25 C. Determine the molarity of the solution.

3. The osmotic pressure of a ml solution of an unknown nonelectrolyte is 122 torr at 25 C. Determine the molarity of the solution. 1. Which of the following has a correct van t Hoff factor indicated? A. Al 2 (SO 4 ) 3, i = 5 C. CaBr 2, i = 2 B. Na 2 CO 3, i = 6 D. C 6 H 12 O 6, i = 3 2. Calculate the vapor pressure of a solution containing

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate. Rate Laws The rate law describes the way in which reactant concentration affects reaction rate. A rate law is the expression that shows how the rate of formation of product depends on the concentration

More information

1) Define the following terms: a) catalyst; b) half-life; c) reaction intermediate

1) Define the following terms: a) catalyst; b) half-life; c) reaction intermediate Problems - Chapter 19 (without solutions) 1) Define the following terms: a) catalyst; b) half-life; c) reaction intermediate 2) (19.10) Write the reaction rate expressions for the following reactions in

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Theoretical Models for Chemical Kinetics

Theoretical Models for Chemical Kinetics Theoretical Models for Chemical Kinetics Thus far we have calculated rate laws, rate constants, reaction orders, etc. based on observations of macroscopic properties, but what is happening at the molecular

More information

Spring 2014 Chemistry II Chapter 13

Spring 2014 Chemistry II Chapter 13 CHAPTER 13 - Chemical Kinetics: Rates of Reactions 01-[13z]. Review the data below for the catalytic cracking of cyclohexane at 500 C. What is the order of the reaction? Concentration of Cyclohexane, M

More information

Dr. Arrington Exam 4 (100 points), ChemActivities Thursday, April 21, 2011

Dr. Arrington Exam 4 (100 points), ChemActivities Thursday, April 21, 2011 Chemistry 124 Honor Pledge: Dr. Arrington Exam 4 (1 points), ChemActivities 57-63 Thursday, April 21, 211 Show all work on numeric problems in Section II to receive full or partial credit. Give all answers

More information

Rates of Chemical Reactions

Rates of Chemical Reactions Rates of Chemical Reactions Jim Birk 12-1 Questions for Consideration 1. What conditions affect reaction rates? 2. How do molecular collisions explain chemical reactions? 3. How do concentration, temperature,

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

Chapter 12 - Chemical Kinetics

Chapter 12 - Chemical Kinetics Chapter 1 - Chemical Kinetics 1.1 Reaction Rates A. Chemical kinetics 1. Study of the speed with which reactants are converted to products B. Reaction Rate 1. The change in concentration of a reactant

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics 1. Which one of the following units would not be an acceptable way to express reaction rate? A) M/s B) M min 1 C) L mol 1 s 1 D) mol L 1 s 1 E) mmhg/min 3. For the reaction BrO 3 + 5Br + 6H + 3Br 2 + 3H

More information

Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems. Include: mass action expression.

Write equilibrium law expressions from balanced chemical equations for heterogeneous and homogeneous systems. Include: mass action expression. Equilibrium 1 UNIT 3: EQUILIBRIUM OUTCOMES All important vocabulary is in Italics and bold. Relate the concept of equilibrium to physical and chemical systems. Include: conditions necessary to achieve

More information

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur?

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS LECTURE 11: CHEMICAL KINETICS 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS C(s, diamond) C(s, graphite) G

More information

1002_1st Exam_

1002_1st Exam_ 1002_1st Exam_1010321 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Consider the following reaction: POCl3(g) POCl(g) + Cl2(g) Kc = 0.450 A sample

More information

CHEM Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K. Beer-Lambert Law: A log bc. Michaelis-Menten Equation: v0 M

CHEM Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K. Beer-Lambert Law: A log bc. Michaelis-Menten Equation: v0 M CHEM 1423 - Exam 1 February 11, 2016 Constants and Equations: R = 8.31 J/mol-K Io Beer-Lambert Law: A log bc I Vm[ S] Michaelis-Menten Equation: v0 K [ S] M CHEM 1423 - Exam 1 February 11, 2016 Name (60)

More information

2. For the reaction H 2 (g) + Br 2 (g) 2 HBr, use the table below to determine the average [Br 2 ] from 20.0 to 30.0 seconds.

2. For the reaction H 2 (g) + Br 2 (g) 2 HBr, use the table below to determine the average [Br 2 ] from 20.0 to 30.0 seconds. 1. The rate of the reaction A X is defined as A. Δ[A]/Δtime. B. the time it takes to convert all of A to X. C. [A] initial /Δtime. D. ([X]-[A])/Δtime. 2. For the reaction H 2 (g) + Br 2 (g) 2 HBr, use

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License Ch. 2: Kinetics An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chemistry: OpenStax Creative Commons License Images and tables in this file have

More information

B. The rate will increase by a factor of twelve. C. The rate will increase by a factor of twenty-four. D. The rate will decrease by a factor of six.

B. The rate will increase by a factor of twelve. C. The rate will increase by a factor of twenty-four. D. The rate will decrease by a factor of six. 1. If O 2 (g) disappears at a rate of 0.250 M/s at a particular moment in the reaction below, what is the rate of appearance of H 2 O(g) at the same time? C 3 H 8 (g) + 5 O 2 (g) 3 CO 2 (g) + 4 H 2 O(g)

More information

Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question.

Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question. Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question. The data above was obtained for a reaction in which X + Y Z. Which of the following is the rate law for the reaction?

More information

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2 Questions 1-3 relate to the following reaction: 2N2O5(g) 4NO2(g) + O2(g) 1. The rate law for decomposition of N2O5(g) in the reaction above A. is rate = k[n2o5] B. is rate = k[n2o5] 2 C. is rate = [NO2]

More information

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14 Properties of Solutions and Kinetics Unit 8 Chapters 4.5, 13 and 14 Unit 8.1: Solutions Chapters 4.5, 13.1-13.4 Classification of Matter Solutions are homogeneous mixtures Solute A solute is the dissolved

More information

What we learn from Chap. 15

What we learn from Chap. 15 Chemical Kinetics Chapter 15 What we learn from Chap. 15 15. The focus of this chapter is the rates and mechanisms of chemical reactions. The applications center around pesticides, beginning with the opening

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Equilibrium & Reaction Rate

Equilibrium & Reaction Rate Equilibrium & Reaction Rate 1. One of the important reactions in coal gasification is the catalytic methanation reaction: CO(g) + H (g) H O(g) + CH 4 (g) H 06 kj a) Predict the direction in which this

More information

1. Given the system at equilibrium: Fe 3+ (aq) + SCN (aq)

1. Given the system at equilibrium: Fe 3+ (aq) + SCN (aq) 1. Given the system at equilibrium: A) Fe 3+ (aq) + SCN (aq) FeSCN 2+ (aq) What happens to the concentrations of the three ions when some Fe 3+ ion is removed by precipitation from this aqueous solution,

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

14.1 Factors That Affect Reaction Rates

14.1 Factors That Affect Reaction Rates 14.1 Factors That Affect Reaction Rates 1) 2) 3) 4) 14.2 Reaction Rates How does increasing the partial pressures of the reactive components of a gaseous mixture affect the rate at which the compounds

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2 General Chemistry III 1046 E Exam 1 1. Cyclobutane, C 4 H 8, decomposes as shown: C 4 H 8 (g)! 2 C 2 H 4 (g). In the course of a study of this reaction, the rate of consumption of C 4 H 8 at a certain

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT PART 1

CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT PART 1 NAME CHEMISTRY 102 FALL 2009 EXAM 2 FORM B SECTION 501 DR. KEENEY-KENNICUTT Directions: (1) Put your name on PART 1 and your name and signature on PART 2 of the exam where indicated. (2) Sign the Aggie

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics 14.1 Factors that Affect Reaction Rates The speed at which a chemical reaction occurs is the reaction rate. Chemical kinetics is the study of how fast chemical reactions occur.

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

1. Increasing the pressure above a liquid will cause the boiling point of the liquid to:

1. Increasing the pressure above a liquid will cause the boiling point of the liquid to: JASPERSE CHEM 210 PRACTICE TEST 1 VERSION 2 Ch. 11 Liquids, Solids, and Materials Ch. 10 Gases Ch. 15 The Chemistry of Solutes and Solutions Ch. 13 Chemical Kinetics 1 Constants and/or Formulas Formulas

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 2 Chemical Kinetics Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

Chemistry 12 Provincial Workbook Unit 01: Reaction Kinetics. Multiple Choice Questions

Chemistry 12 Provincial Workbook Unit 01: Reaction Kinetics. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 01), P. 1 / 68 Chemistry 1 Provincial Workbook Unit 01: Reaction Kinetics Multiple Choice Questions 1. Which of the following describes what happens

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d).

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). Homework #4 Chapter 5 Chemical Kinetics 8. Arrhenius Equation Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d). 4. a) d) b) c) e) 5. Rate has units

More information

CHEMISTRY 202 Hour Exam III. Dr. D. DeCoste T.A. 21 (16 pts.) 22 (21 pts.) 23 (23 pts.) Total (120 pts)

CHEMISTRY 202 Hour Exam III. Dr. D. DeCoste T.A. 21 (16 pts.) 22 (21 pts.) 23 (23 pts.) Total (120 pts) CHEMISTRY 202 Hour Exam III December 1, 2016 Dr. D. DeCoste Name Signature T.A. This exam contains 23 questions on 12 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information

Examples of fast and slow reactions

Examples of fast and slow reactions 1 of 10 After completing this chapter, you should, at a minimum, be able to do the following. This information can be found in my lecture notes for this and other chapters and also in your text. Correctly

More information

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2 Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term rate of reaction. 2. Mention the units of rate of reaction. 3. Express the rate of reaction in terms of Br (aq) as reactant

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions Chemical Kinetics The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products Chapter 3: Chemical Kinetics: Rates of Reactions

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that reaction orders may be determined

More information

10.02 PE Diagrams. 1. Given the equation and potential energy diagram representing a reaction:

10.02 PE Diagrams. 1. Given the equation and potential energy diagram representing a reaction: 10.02 PE Diagrams 1. Given the equation and potential energy diagram representing a reaction: 3. Given the potential energy diagram and equation representing the reaction between substances A and D : If

More information

Chem. 1A Final. Name. Student Number

Chem. 1A Final. Name. Student Number Chem. 1A Final Name Student Number All work must be shown on the exam for partial credit. Points will be taken off for incorrect or no units. Calculators are allowed. Cell phones may not be used for calculators.

More information

Chemistry 1B Fall 2016

Chemistry 1B Fall 2016 Chemistry 1B Fall 2016 Topic 23 [more] Chemical Kinetics 1 goals for topic 23 kinetics and mechanism of chemical reaction energy profile and reaction coordinate activation energy and temperature dependence

More information

Chem 6 sample exam 1 (100 points total)

Chem 6 sample exam 1 (100 points total) Chem 6 sample exam 1 (100 points total) @ This is a closed book exam to which the Honor Principle applies. @ The last page contains several equations which may be useful; you can detach it for easy reference.

More information

DEPARTMENT OF CHEMISTRY AND CHEMICAL TECHNOLOGY CHEMISTRY OF SOLUTIONS 202-NYB-05 15/16 TEST 3 MAY 2, 2012 INSTRUCTOR: I. DIONNE.

DEPARTMENT OF CHEMISTRY AND CHEMICAL TECHNOLOGY CHEMISTRY OF SOLUTIONS 202-NYB-05 15/16 TEST 3 MAY 2, 2012 INSTRUCTOR: I. DIONNE. DEPARTMENT OF CHEMISTRY AND CHEMICAL TECHNOLOGY CHEMISTRY OF SOLUTIONS 202-NYB-05 15/16 TEST 3 MAY 2, 2012 INSTRUCTOR: I. DIONNE Print your name: Answers INSTRUCTIONS: Answer all questions in the space

More information

How fast or slow will a reaction be? How can the reaction rate may be changed?

How fast or slow will a reaction be? How can the reaction rate may be changed? Part I. 1.1 Introduction to Chemical Kinetics How fast or slow will a reaction be? How can the reaction rate may be changed? *In order to understand how these factors affect reaction rates, you will also

More information

Chapter 17. Preview. Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A

Chapter 17. Preview. Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A Preview Lesson Starter Objectives Reaction Mechanisms Collision Theory Activation Energy The Activated Complex Sample Problem A Section 1 The Reaction Process Lesson Starter The reaction H 2 + I 2 2HI

More information

Exam I. Rate Laws Activation Energies Mechanisms Radioactive Decay

Exam I. Rate Laws Activation Energies Mechanisms Radioactive Decay Exam I Rate Laws Activation Energies Mechanisms Radioactive Decay Kinetics and Activation Energy 1) Rate information was obtained for the following reaction at 5C and 33C; Cr(H O) 6 3+ + SCN - ---> Cr(H

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs Chemical Kinetics Chemistry: The Molecular Science Moore, Stanitski and Jurs The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to

More information

CHE 113 MIDTERM EXAMINATION October 25, 2012

CHE 113 MIDTERM EXAMINATION October 25, 2012 CHE 113 MIDTERM EXAMINATION October 25, 2012 University of Kentucky Department of Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely important that you fill in the

More information

AP Chemistry Practice Problems Module 9: Kinetics and Equilibrium

AP Chemistry Practice Problems Module 9: Kinetics and Equilibrium AP Chemistry Practice Problems Module 9: Kinetics and Equilibrium The headings on these problems correspond to the headings on your content pages. You should work on these throughout the unit. Be sure

More information

Chemical Kinetics Ch t ap 1 er

Chemical Kinetics Ch t ap 1 er Chemical Kinetics Chapter 13 1 Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does a reaction proceed? Reaction rate is the change in the concentration of a reactant or

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded

Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded Chem 116 POGIL Worksheet - Week 6 Kinetics - Concluded Why? The half-life idea is most useful in conjunction with first-order kinetics, which include many chemical reactions and all nuclear decay processes.

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Chemistry 12 Dr. Kline 28 September 2005 Name

Chemistry 12 Dr. Kline 28 September 2005 Name Test 1 first letter of last name Chemistry 12 Dr. Kline 28 September 2005 Name This test consists of a combination of multiple choice and other questions. There should be a total of 24 questions on 8 pages;

More information

Practice test Chapter 12 and 13

Practice test Chapter 12 and 13 Practice test Chapter 12 and 13 1. Which of the following pure liquids is the best solvent for carbon disulfide? A) C6H6(l) B) NH3(l) C) CH3OH(l) D) H2O(l) E) HBr(l) 2. How does the solubility of a gas

More information

CHAPTER 10 CHEMICAL KINETICS

CHAPTER 10 CHEMICAL KINETICS CHAPTER 10 CHEMICAL KINETICS Introduction To this point in our study of chemistry, we have been concerned only with the composition of the equilibrium mixture, not the length of time required to obtain

More information

Chemistry 142 (Practice) MIDTERM EXAM II November. Fill in your name, section, and student number on Side 1 of the Answer Sheet.

Chemistry 142 (Practice) MIDTERM EXAM II November. Fill in your name, section, and student number on Side 1 of the Answer Sheet. Chemistry 4 (Practice) MIDTERM EXAM II 009 November (a) Before starting, please check to see that your exam has 5 pages, which includes the periodic table. (b) (c) Fill in your name, section, and student

More information

Rate Equations and Kp

Rate Equations and Kp Rate Equations and Kp 8 Areas outside the will not be scanned for marking 3 Propanone and iodine react in acidic conditions according to the following equation. C 3 COC 3 + I 2 IC 2 COC 3 + I A student

More information

Review for Exam 2 Chem 1721/1821

Review for Exam 2 Chem 1721/1821 Review for Exam 2 Chem 1721/1821 The following are the major concepts with which you should be well acquainted from Chapters 13, 14, 15, 16.1-16.3: Chapter 13: Chemical Kinetics Reaction Rates The rate

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers

Advanced Higher Chemistry KINETICS. Learning Outcomes Questions & Answers Advanced Higher Chemistry Unit 2 - Chemical Reactions KINETICS Learning Outcomes Questions & Answers KHS Chemistry Dec 2006 page 1 6. KINETICS 2.128 The rate of a chemical reaction normally depends on

More information

Homework 07. Kinetics

Homework 07. Kinetics HW07 - Kine!cs Started: Mar at 10:56am Quiz Instruc!ons Homework 07 Kinetics Question 1 Consider the reaction: O (g) 3O (g) rate = k[o ] [O ] 3 3 What is the overall order of the reaction and the order

More information

Chapter Chemical Kinetics

Chapter Chemical Kinetics CHM 51 Chapter 13.5-13.7 Chemical Kinetics Graphical Determination of the Rate Law for A Product Plots of [A] versus time, ln[a] versus time, and 1/[A] versus time allow determination of whether a reaction

More information

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET:

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: 40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: **THIS IS NOT A COMPLETE REVIEW. CONTINUE TO READ ALL COURSE NOTES, GO OVER ALL WORKSHEETS, HANDOUTS, AND THE UNIT TESTS TO BE BETTER PREPARED. To prepare

More information

CHEMpossible. Final Exam Review

CHEMpossible. Final Exam Review CHEMpossible Final Exam Review 1. Given the following pair of reactions and their equilibrium constants: 2NO 2 (g) 2NO (g) + O 2 (g) K c = 15.5 2NO (g) + Cl 2 (g) 2 NOCl (g) K c = 3.20 10-3 Calculate a

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Chapter Test A. Chapter: Chemical Equilibrium

Chapter Test A. Chapter: Chemical Equilibrium Assessment Chapter Test A Chapter: Chemical Equilibrium In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A 15.0 ml volume

More information

Chemistry 1B, Fall 2016 Topic 23

Chemistry 1B, Fall 2016 Topic 23 Chemistry 1B Fall 016 [more] Chemical Kinetics 1 goals for topic 3 kinetics and mechanism of chemical reaction energy profile and reaction coordinate activation energy and temperature dependence of rate

More information