Shape Isomerism in 66Ni

Size: px
Start display at page:

Download "Shape Isomerism in 66Ni"

Transcription

1 Shape Isomerism in S. Leoni, B. Fornal, N. Marginean, M. Sferrazza, Y. Tsunoda, T. Otsuka, et al., University of Milano and INFN sez. Milano, Italy IFJ-PAN, The Ins=tute of Nuclear Physics, Krakow, Poland IFIN HH, Bucharest, Romania Departement de Physique, Universite libre de Bruxelles, Belgium Center for Nuclear Study, University of Tokyo, Japan

2 o Introduction Outline isomers in molecular chemistry o Atomic nucleus shell structure, deformation, potential energy surpace (PES) o Discovery of nuclear fission (shape) isomers o Experimental search for shape coexistence/shape isomers o The unique case of o Relevance for THEORY SHELL Model MICROSCOPIC origin of Nuclear Deformation

3 ISOMERS in chemistry In chemistry, an isomer is a molecule with the same molecular formula as another molecule, but with different arrangement of the atoms. Subgroup: stereoisomers or spa=al isomers Sub-subgroup: conforma=onal isomers (conformers) Sub-sub-subgroup: rotamers

4 Butane molecule C 4 H 10 Conformational isomers C 60 C C rotation C free energy CH 3 CH 3 C C H H 60 rotation H CH 3 C C CH 3 H H H H H Free energy diagram of butane as a function of dihedral angle Rotation about single bond of butane

5 Potential energy surface (PES) of a nucleus Parametriza<on of the NUCLEAR SHAPE R( θ, ϕ) = R0[1 + a lm Ylm( θ, ϕ)] l, m If we consider only quadrupole deforma<on a 20 = β cosγ a = (1 22 2)β sinγ β > 0 β < 0 Z Z TWO-dimensional contour ONE-dimensional representation ENERGY Spheroidal Deforma<on β

6 Where do we find secondary minima in the nuclear chart considering only sta<c deforma<on? (no addi=onal degree of freedom involved angular momentum, excita=ons )

7 1953 Already in 1953, Hill and Wheeler discussed possible consequences of the existence of two well separated minima in the potential energy surface for the ground state of the system. Cigare form becoms stable

8 discovery of the first spontaneously fissioning isomer in 242 Am with a half-life 14 msec C. M. Polikanov et al., Zh. Eksp. Teor. Fiz. 42, 1464 (1962) [Sov. Phys.- JETP 15, 1016 (1962)]

9 Liquid Drop Model

10 Shape isomers in actinides o HIGH Poten<al BARRIER o Nucleus trapped In the second minimum o Spontaneous fission from the second minimum TWO EXCEPTIONS

11 SHAPE ISOMERS very peculiar metastable states o HIGH Poten<al BARRIER o Nucleus trapped In the minimum o very retarded photon decay (10 7 hindrance) 236,238 U 95% γ 5% B(E2)=1.54 x10-7 W.u.!!! Structures living in separate worlds MAIN FINGER PRINT: hindrance of deexcisng transisons Can OTHER (lighter) nuclei exhibit these features?

12 SEARCH for SHAPE ISOMERS in LIGHTER nuclei: o MOST CLEAR-CUT cases of SHAPE Coexistence o a PROBE of MICROSCOPIC origin of nuclear deforma<on within a pure SHELL Model Approach Ideal Cases are 0 + states to avoid ambiguity given by spin effects (Ac<nides are NOT doable by SHELL Model )

13 SHAPE Coexistence in Atomic Nuclei Appearence of different shapes at low excitason energy K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011) Spherical Oblate Prolate 186Pb Shape Isomers in acsnides Polikanov A. Andreyev et al., Nature 405 (2000) Through the last 40 years of experimental acsvises, the concept has evolved: 1) exo<c rarity (1970 ) 2) islands of occurrence (1990 ) 3) current believe: occurrence in all (but the lightest) nuclei

14 Z= U target 0.3 Z=28 N=50 N= Pu target 0.2 N= Zr B(E2) W.u B(E2) 63 W.u. 0 + B(E2) 69 W.u Sr 100 Zr 102 Mo

15 Z= U target E. Clément, M. Zielińska et al., Phys.Rev. Lej. 116, (2016) N= Pu target N=60 N=50 B(E2)=16 W.u. 96 Sr 98 Sr B(E2)=93 W.u. No retardason in γ decay is observed!!!! Poten<al barrier NOT sizable enough to prevent fast shape changes

16 PredicSons for SHAPE ISOMERS - Mean Field Based Macro-Microscopic Model P. Moeller et al Global Calculation Searching for Nuclear Shape Isomers Study of 7206 nuclei from A=31 to A= actinides 1989 Microscopic Hartree-Fock plus BCS calculations 1989 Barrier hight Energy of second minimum 64 Cr Fe Zn

17 PredicSons for SHAPE ISOMERS SHELL Model Based [Otsuka group and Nowacki, Lenzi, Poves, ] state-of-the-art SHELL Model: possible for A <= 100 new calcula<ons scheme, very powerfull computer Inves<ga<on of MICROSCOPIC NATURE - wave func<ons, B(Eλ/Mλ), Monte Carlo SHELL Model (T. Otsuka s Group K computer 10 6 processors) 78 : FULL pf + g 9/2 + d 5/2 for both neutrons and protons oblate oblate prolate prolate Z= stable N=40 N=50 Y. Tsunoda et al., PRC 89 (2014) R

18 Experimentally No retardason is found in 68 and 70 B(E2) 2.4 W.u. prolate B(E2) oblate 7 W.u. prolate B. P. Crider et al., Phys. LeP. B 763, 108 (2016)

19 PredicSons of four models à shape isomerism in Microscopic Hartree-Fock-Bogoliubov Microscopic Hartree-Fock plus BCS 1989 Barrier hight 1989 Energy of second minimum 64 Cr Fe Zn Macro-Microscospic Model Monte Carlo Shell Model

20 MONTE CARLO SHELL MODEL Calculations Y. Tsunoda and T. Otsuka, Univ. of Tokyo State-of-the-art Shell Model calculations possible by employing new calculations schemes and very powerful computing systems (K computer processors) prolate W.u FULL pf + g 9/2 + d 5/2 for both neutrons and protons W.u. 4.1 W.u. oblate Detailed Microscopic Inves<ga<on: o Wave func<ons o B(Eλ/Mλ), 0 +1

21 MONTE CARLO SHELL MODEL Calculations Y. Tsunoda and T. Otsuka, Univ. of Tokyo 0 +4 prolate W.u W.u. 4.1 W.u. oblate Circles: MCSM basis vectors projected on PES (T-Plot) A quadruplet of 0 + states!!!! 0 +1

22 Decay Scheme of R. Broda et al., Phys. Rev. C 86, (2012) Monte Carlo SHELL Model 0.15(2) W.u (7) W.u (9) W.u (9) W.u (t,p) prolate oblate (4) W.u Excited states energies à One-to-one correspondence (including 0 + states!) B(E2/M1) (from our Bucharest EXP) à very well reproduced!!

23 β-decay populason of D. Pauwels, P. Van Duppen et al., ARIS-2011 Conference Monte Carlo SHELL Model 3.1(6) 5.3(2) prolate 29(3) 4.4(1) (1) 5.5(4) oblate 63(4) 4.8(1) I β (%) log(l) EXP 4.3 log(l) MCSM General agreement with β-decay branches Feà Co à 0 +1 model predicsons: popula<on of 0 + and 2 + states from Co g.s

24 Our Bucharest Experiment HH) 18O + 64 à 16O + (2n Transfer - 1 MeV below Coulomb Barrier) σ() few mb - FUSION strongly suppressed Z=28 64 ROSPHERE N=40 γ 64 18O (39 MeV) 16O γ 14 HPGe - 1.1% eff 11 LaBr3(Ce) % eff o THICK Target 5 mg/cm2 o PLUNGER - 12 distances From 10 to 3000 µm v/c 2.2 % TOF of 155 ps in 1 mm > 1.5 month 30 pna beam current

25 18 O+ 64 à 16 O+ E beam = 39 MeV 2n transfer below Coulomb Barrier at IFIN HH Bucarest THICK TARGET gate: 1425 kev 1.4 ps (DSAM) (t,p) THICK TARGET, gate: 1425 kev ps ps 1245 All transi<ons belong to!!

26 18 O+ 64 à 16 O+ E beam = 39 MeV 2n transfer below Coulomb Barrier at IFIN HH Bucarest THICK TARGET gate: 1425 kev 1.4 ps (DSAM) (t,p) THICK TARGET, gate: 1425 kev ps ps ps 1245 All transi<ons belong to!!

27 0 +4 prolate (7) ps 134(9) ps 7.6(8) ps W.u W.u. 4.1 W.u. oblate

28 !!!!!!!!!!!!! B(E2) ~ 0.2 Wu B(E2) = 0.1 Wu B(E2) = 4.3 Wu 2 TRANSITIONS BELOW 1 W.u.!!!! W.u W.u. 4.1 W.u. prolate oblate

29 PROTON NEUTRON B(E2) ~ 0.2 Wu B(E2) = 0.1 Wu B(E2) = 4.3 Wu 2 TRANSITIONS BELOW 1 W.u.!!!! W.u W.u. 4.1 W.u. prolate oblate is (very similar to 0 + 1): HINDRANCE due to cancellason of matrix elements à independent measurement of τ(0 + 3) at ISOLDE - B. Olaizola, L. Fraile et al., PRC95, (R) (2017) Shell Model with LNPS interac=on A. Poves and F. Nowacki 0 +1

30 PROTON NEUTRON PROTON NEUTRON B(E2) ~ 0.2 Wu B(E2) = 0.1 Wu B(E2) = 4.3 Wu 2 TRANSITIONS BELOW 1 W.u.!!!! W.u W.u. 4.1 W.u. SHAPE ISOMER Like!! prolate oblate is prolate: HINDRANCE due to shape change through high poten<al barrier!!!!

31 PROTON NEUTRON PROTON NEUTRON 0 +4 SHAPE ISOMER Like!! prolate Type II SHELL EvoluSon (tensor force) s 1/2 d 5/2 f 5/2 STABILIZATION of DEFORMED Local Minima ê SHAPE COEXISTENCE W.u W.u. 4.1 W.u. oblate WITHIN the SAME nucleus change of major configura=ons: sizable excita=ons of ν in g 9/2 reduced proton spin-orbit spli`ng is prolate: HINDRANCE due to shape change through high poten<al barrier!!!

32 : lightest and unique example - apart from the ac=nides of 0 + deformed state deexci<ng via HINDERED γ transi<on a SHAPE-ISOMER-like structure!!!! A probe of TYPE II SHELL EvoluSon: rearrengement of nucleons in orbitals causes emergence of deforma<on ** Thank You for the Attention ** BORMIO

33 PRIZES for Young Speakers offered by CAEN Deadline for ABSTRACT Submission 20 Sep Organizers: A. Bracco, F. Camera, G. Colò, S. Leoni; Scient. Secretaries: F. Crespi, X. Roca-Maza Web-Page:

Shell evolution and nuclear forces

Shell evolution and nuclear forces 1 st Gogny Conference Campus Teratec, Bruyères-le-Châtel Dec. 8-11 (9), 2015 Shell evolution and nuclear forces Takaharu Otsuka University of Tokyo / MSU / KU Leuven Priority Issue project (field 9) by

More information

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60 E.Clément-GANIL IS451 Collaboration Shape Transition at N=60 P. Campbell, I.D. Moore, M.R. Pearson Progress in Particle and Nuclear

More information

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010 Structure of Neutron-Rich Nuclei near N=40 Silvia M. Lenzi University of Padova and INFN 10th International Spring Seminar on Nuclear Physics Vietri sul Mare, May 21-25, 2010 Collaboration Theory: F. Nowacki,

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Repulsive aspects of pairing correlation in nuclear fusion reaction

Repulsive aspects of pairing correlation in nuclear fusion reaction 4C EOS and Heavy Nuclei, ARIS2014 2014.6.6 (Fri.) @ Univ. of Tokyo Repulsive aspects of pairing correlation in nuclear fusion reaction Shuichiro Ebata Meme Media Laboratory, Hokkaido Univ. Nuclear Reaction

More information

Recent developments and perspectives in NUCLEAR STRUCTURE by gamma and particle spectroscopy

Recent developments and perspectives in NUCLEAR STRUCTURE by gamma and particle spectroscopy Milano, -29 June 17 Recent developments and perspectives in NUCLEAR STRUCTURE by gamma and particle spectroscopy Silvia Leoni UNIMI/INFN: A. Bracco, F. Camera, F.C.L. Crespi, S. Bottoni, S. Leoni, A. Mentana,

More information

DEFORMED STRUCTURES AND SHAPE COEXISTENCE IN 98 ZR

DEFORMED STRUCTURES AND SHAPE COEXISTENCE IN 98 ZR DEFORMED STRUCTURES AND SHAPE COEXISTENCE IN 98 ZR Bruno Olaizola University of Guelph, ON, Canada TRIUMF INPC2016 Adelaide, Australia 12 September 2016 Overview Shape coexistence in Zr isotopes High-statistics

More information

DSAM lifetime measurements at ReA - from stable Sn to exotic Ca. Hiro IWASAKI (NSCL/MSU)

DSAM lifetime measurements at ReA - from stable Sn to exotic Ca. Hiro IWASAKI (NSCL/MSU) DSAM lifetime measurements at ReA - from stable to exotic Ca Hiro IWASAKI (NSCL/MSU) 8/20/2015 ReA3 upgrade workshop 1 Evolution of halo properties N=28 pf-shell N>40 gds-shell E0,E? Efimov? 62 Ca? N=8

More information

Probing the evolution of shell structure with in-beam spectroscopy

Probing the evolution of shell structure with in-beam spectroscopy Probing the evolution of shell structure with in-beam spectroscopy Alexandra Gade National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy at Michigan State University, East

More information

Montecarlo simulation of the decay of warm superdeformed nuclei

Montecarlo simulation of the decay of warm superdeformed nuclei Montecarlo simulation of the decay of warm superdeformed nuclei E. Vigezzi INFN Milano Understanding the dynamics in the SD well: probing γ strength functions, energy barriers, level densities, residual

More information

Warm superdeformed nuclei:

Warm superdeformed nuclei: S. Leoni University of Milano and INFN Warm superdeformed nuclei: Probes of Nuclear Structure and Tunneling Processes At the Onset of Chaos Oslo WS May 29 Outline: 1- INTRO: Warm Superdeformed Nuclei 2-

More information

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen I. General introduction to the atomic nucleus Charge density, shell gaps, shell occupancies, Nuclear forces, empirical monopoles, additivity,

More information

Nuclear Spectroscopy I

Nuclear Spectroscopy I Nuclear Spectroscopy I Augusto O. Macchiavelli Nuclear Science Division Lawrence Berkeley National Laboratory Many thanks to Rod Clark, I.Y. Lee, and Dirk Weisshaar Work supported under contract number

More information

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach Shape coexistence and beta decay in proton-rich A~ nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline

More information

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar. Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory C. R. Praharaj Institute of Physics. India INT Workshop Nov 2007 1 Outline of talk Motivation Formalism HF calculation

More information

The shape distribution of nuclear level densities in the shell model Monte Carlo method

The shape distribution of nuclear level densities in the shell model Monte Carlo method The shape distribution of nuclear level densities in the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method and level densities Nuclear deformation

More information

Large scale shell model calculations for neutron rich fp-shell nuclei

Large scale shell model calculations for neutron rich fp-shell nuclei Large scale shell model calculations for neutron rich fp-shell nuclei Physical Research Laboratory, Ahmedabad-380 009, India Collaborators: I. Mehrotra (Allahabad) P.Van Isacker (GANIL, France) V.K.B.

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics 1/3 S.PÉRU The nucleus a complex system? What is the heaviest nucleus? How many nuclei do exist? What about the shapes of the nuclei? I) Some features about the nucleus discovery radius, shape binding

More information

Shape Coexistence in Neutron-rich Strontium Isotopes at N=60

Shape Coexistence in Neutron-rich Strontium Isotopes at N=60 Shape Coexistence in Neutron-rich Strontium Isotopes at N=60 GANIL, CEA/DRF-CNRS/IN2P3, F-14076 Caen Cedex 05, France E-mail: clement@ganil.fr M. Zielińska Irfu, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette,

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions The basic aim of the present thesis was to understand the interplay between single particle and collective degrees of freedom and underlying nuclear phenomenon in mass

More information

Deformation of the N=Z nucleus 72 Kr via beta decay

Deformation of the N=Z nucleus 72 Kr via beta decay Deformation of the N=Z nucleus Kr via beta decay José Antonio Briz Monago 1,2 1 Instituto de Estructura de la Materia, CSIC, 2 Subatech Laboratory, CNRS/IN2P3, University of Nantes, Ecole des Mines de

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Systematics of the α-decay fine structure in even-even nuclei

Systematics of the α-decay fine structure in even-even nuclei Systematics of the α-decay fine structure in even-even nuclei A. Dumitrescu 1,4, D. S. Delion 1,2,3 1 Department of Theoretical Physics, NIPNE-HH 2 Academy of Romanian Scientists 3 Bioterra University

More information

Entrance-channel potentials in the synthesis of the heaviest nuclei

Entrance-channel potentials in the synthesis of the heaviest nuclei Entrance-channel potentials in the synthesis of the heaviest nuclei Vitali Yu. DENISOV 1,2 and Wolfgang Nörenberg 1,3 1 Gesellschaft für Schwerionenforschung, Darmstadt, Germany 2 Institute for Nuclear

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes Outline: Alain Astier, CSNSM Orsay, France Motivations Experimental conditions

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

arxiv: v1 [nucl-th] 18 Jan 2018

arxiv: v1 [nucl-th] 18 Jan 2018 Nuclear deformation in the configuration-interaction shell model arxiv:181.6175v1 [nucl-th] 18 Jan 218 Y. Alhassid, 1 G.F. Bertsch 2,3 C.N. Gilbreth, 2 and M.T. Mustonen 1 1 Center for Theoretical Physics,

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Probing shell evolution with large scale shell model calculations

Probing shell evolution with large scale shell model calculations Probing shell evolution with large scale shell model calculations Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of Tokyo Nuclear structure

More information

ISOMER BEAMS. P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK

ISOMER BEAMS. P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK International Journal of Modern Physics E c World Scientific Publishing Company ISOMER BEAMS P.M. WALKER Department of Physics, University of Surrey, Guildford GU2 7XH, UK p.@surrey.ac.uk Received (received

More information

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer Production of superheavy elements Seminar: Key experiments in particle physics 26.06.09 Supervisor: Kai Schweda Thorsten Heußer Outline 1. Introduction 2. Nuclear shell model 3. (SHE's) 4. Experiments

More information

Mapping Fission in Terra Incognita in the neutron-deficient lead region

Mapping Fission in Terra Incognita in the neutron-deficient lead region Mapping Fission in Terra Incognita in the neutron-deficient lead region Andrei Andreyev University of York, UK Japan Atomic Energy Agency (JAEA, Tokai, Japan) 200,202,204 Fr N/Z~1.25 192,194,196 At 186,188

More information

Magdalena Matejska-Minda HIL, University of Warsaw. NUSPIN 2017, June 2017, GSI

Magdalena Matejska-Minda HIL, University of Warsaw. NUSPIN 2017, June 2017, GSI Magdalena Matejska-Minda HIL, University of Warsaw NUSPIN 2017, 26-29 June 2017, GSI AGENDA Why Sc? Overview Experimental setup Gosia analysis Results Summarize and next steps Why Sc? Z=20 Sc N=20 N=28

More information

HEIDI WATKINS. Plunger Measurements of Shape Coexistence in the Neutron Deficient 174 Pt Nuclei

HEIDI WATKINS. Plunger Measurements of Shape Coexistence in the Neutron Deficient 174 Pt Nuclei Plunger Measurements of Shape Coexistence in the Neutron Deficient 174 Pt Nuclei HEIDI WATKINS 2009 IoP NUCLEAR PHYSICS CONFERENCE UNIVERSITY OF BIRMINGHAM OVERVIEW Physics Motivation. Shape Coexistence

More information

Shape coexistence in light Krypton isotopes

Shape coexistence in light Krypton isotopes Shape coexistence in light Krypton isotopes Introduction : Shape coexistence Safe Coulomb excitation of RIBs RDDS Lifetime measurement Results and conclusions Andreas Görgen DAPNIA / Service de Physique

More information

The f 7/2 shell: an optimum test bench

The f 7/2 shell: an optimum test bench The f 7/2 shell: an optimum test bench Mirror Symmetry Silvia Lenzi Silvia M. Lenzi Department of Physics and Astronomy Galileo Galilei University of Padova and INFN University of Padova and INFN One of

More information

First results with PARIS array

First results with PARIS array First results with PARIS array Michał Ciemała (IFJ PAN Krakow) et al. (on behalf of the PARIS collaboration) Colloque GANIL, 16.10.2017 PARIS Steering Committee (by nominations of the MoU partners): IN2P3

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods Isospin symmetry breaking in mirror nuclei Experimental and theoretical methods Silvia M. Lenzi Dipartimento di Fisica dell Università and INFN, Padova, Italy 2. Experimental techniques for mirror spectroscopy

More information

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy. Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy Hiroshi Watanabe Outline Prospects for decay spectroscopy of neutron-rich

More information

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information

CHEM 312 Lecture 7: Fission

CHEM 312 Lecture 7: Fission CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions

More information

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse 'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse 7/05/2009 Mark Huyse 1 The program Laser spectroscopy Masses Theory Decay

More information

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco Rotational motion in thermally excited nuclei S. Leoni and A. Bracco 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

Low-spin structure of 210 Bi

Low-spin structure of 210 Bi Low-spin structure of 21 Bi investigated in cold-neutron capture reaction on 29 Bi Natalia Cieplicka, S. Leoni, B. Fornal INFN, Sezione di Milano 5th orkshop on Nuclear Level Density and Gamma Strength,

More information

arxiv:nucl-th/ v1 14 Nov 2005

arxiv:nucl-th/ v1 14 Nov 2005 Nuclear isomers: structures and applications Yang Sun, Michael Wiescher, Ani Aprahamian and Jacob Fisker Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre

More information

TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS

TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS Romanian Reports in Physics, Vol. 59, No. 2, P. 523 531, 2007 Dedicated to Prof. Dorin N. Poenaru s 70th Anniversary TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS M. MIREA Horia Hulubei National Institute

More information

Radiative Capture Reaction

Radiative Capture Reaction A New Decay Path in the C+16O Radiative Capture Reaction Institut Pluridisciplinaire Hubert Curien, Strasbourg, France Outline Narrow Resonances, C +16O Detailed study of the C(16O,γ)28Si resonant radiative

More information

Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions

Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions 14 th International Conference on Nuclear Reaction Mechanisms Varenna, June 15-19, 2015 Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions Fabio Crespi Università

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

4. Rotational motion in thermally excited nuclei *

4. Rotational motion in thermally excited nuclei * 4. Rotational motion in thermally excited nuclei * 4.1. Introduction The study of the nucleus at the limits of excitation energy and angular momentum is one of the central topics addressed with EUROBALL

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Lesson 5 The Shell Model

Lesson 5 The Shell Model Lesson 5 The Shell Model Why models? Nuclear force not known! What do we know about the nuclear force? (chapter 5) It is an exchange force, mediated by the virtual exchange of gluons or mesons. Electromagnetic

More information

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 509 514 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca DONG

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

INVESTIGATION OF THE EVEN-EVEN N=106 ISOTONIC CHAIN NUCLEI IN THE GEOMETRIC COLLECTIVE MODEL

INVESTIGATION OF THE EVEN-EVEN N=106 ISOTONIC CHAIN NUCLEI IN THE GEOMETRIC COLLECTIVE MODEL U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 1, 2017 ISSN 1223-7027 INVESTIGATION OF THE EVEN-EVEN N=106 ISOTONIC CHAIN NUCLEI IN THE GEOMETRIC COLLECTIVE MODEL Stelian St. CORIIU 1 Geometric-Collective-Model

More information

Mapping Low-Energy Fission with RIBs (in the lead region)

Mapping Low-Energy Fission with RIBs (in the lead region) Mapping Low-Energy Fission with RIBs (in the lead region) Andrei Andreyev University of York, UK Japan Atomic Energy Agency (JAEA), Tokai, Japan Low-energy fission in the new regions of the Nuclear Chart

More information

Microscopic description of fission in the neutron-deficient Pb region

Microscopic description of fission in the neutron-deficient Pb region Microscopic description of fission in the neutron-deficient Pb region Micha l Warda Maria Curie-Sk lodowska University, Lublin, Poland INT Seattle, 1-1-213 Fr 87 At 85 Rn 86 Po 84 Bi 83 Pb 82 Tl 81 Pb

More information

Bogdan Fornal. Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland. PARIS Workshop, October 14-16, 2009, Kraków, Poland

Bogdan Fornal. Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland. PARIS Workshop, October 14-16, 2009, Kraków, Poland Bogdan Fornal Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland PARIS Workshop, October 14-16, 2009, Kraków, Poland V ( r ) = V WS ( r ) + V ls R 2 0 1 r dv ( r) dr L ˆ S ˆ appearence

More information

Nuclear isomers: stepping stones to the unknown

Nuclear isomers: stepping stones to the unknown Nuclear isomers: stepping stones to the unknown P.M. Walker Department of Physics, University of Surrey, Guildford GU2 7XH, UK Abstract. The utility of isomers for exploring the nuclear landscape is discussed,

More information

Auxiliary-field quantum Monte Carlo methods in heavy nuclei

Auxiliary-field quantum Monte Carlo methods in heavy nuclei Mika Mustonen and Yoram Alhassid (Yale University) Introduction Auxiliary-field quantum Monte Carlo methods in heavy nuclei Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Fast-Timing with LaBr 3 :Ce Detectors and the Half-life of the I π = 4 Intruder State in 34 P

Fast-Timing with LaBr 3 :Ce Detectors and the Half-life of the I π = 4 Intruder State in 34 P Fast-Timing with LaBr 3 :Ce Detectors and the Half-life of the I π = 4 Intruder State in 34 P P.J.R. Mason University of Surrey Seminar, 11th October 2011 Outline Characteristics of LaBr 3 detectors Fast-timing

More information

AGATA campaigns at GANIL and future plans. Colloque du GANIL 2017

AGATA campaigns at GANIL and future plans. Colloque du GANIL 2017 AGATA campaigns at GANIL and future plans Colloque du GANIL 2017 Shell evolution far from stability Isospin symmetry breaking Three-body forces clusterization p-n pairing High-resolution gamma-ray spectroscopy

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Self-consistent approach to deformation of intruder states in neutron-deficient Pb and Po

Self-consistent approach to deformation of intruder states in neutron-deficient Pb and Po Physics Letters B 569 (2003) 151 158 www.elsevier.com/locate/npe Self-consistent approach to deformation of intruder states in neutron-deficient Pb and Po N.A. Smirnova a,b, P.-H. Heenen c,g.neyens a a

More information

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons 200 160 Phenomenological heavy-ion potential 60 Ni + 89 Y point Coulomb potential V (MeV) 120 80 40 total heavy-ion potential

More information

Spherical-deformed shape coexistence for the pf shell in the nuclear shell model

Spherical-deformed shape coexistence for the pf shell in the nuclear shell model PHYSICAL REVIEW C, VOLUME 63, 044306 Spherical-deformed shape coexistence for the pf shell in the nuclear shell model Takahiro Mizusaki, 1 Takaharu Otsuka, 2,3 Michio Honma, 4 and B. Alex Brown 5 1 Department

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50 Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N= IPN Orsay: D. Verney, M. Niikura, F. Aziez, S. Franchoo, F. Ibrahim, F. Le Blanc, I. Matea, I. Stefan CSNSM Orsay: A. Korichi

More information

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Humboldt Kolleg entitled "Interacting Structure and Reaction Dynamics in the Synthesis of the Heaviest Nuclei" Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Lu Guo University

More information

Aligned neutron-proton pairs in N=Z nuclei

Aligned neutron-proton pairs in N=Z nuclei Aligned neutron-proton pairs in N=Z nuclei P. Van Isacker, GANIL, France Motivation Shell-model analysis A model with high-spin bosons Experimental tests Neutron-proton correlations, UHK, Hong Kong, July

More information

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers

New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers PHYSICAL REVIEW C 70, 044314 (2004) New T=1 effective interactions for the f 5/2 p 3/2 p 1/2 g 9/2 model space: Implications for valence-mirror symmetry and seniority isomers A. F. Lisetskiy, 1 B. A. Brown,

More information

Spectroscopy of 252No to Investigate its K-isomer

Spectroscopy of 252No to Investigate its K-isomer Spectroscopy of to Investigate its K-isomer Edward Parr Motivation in Superheavies PROTONS Single Particle Energy (MeV) Single Particle Energy (MeV) NEUTRONS Next shell gaps predicted for Superheavy spherical

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Study of shell structure and order-to-chaos transition in warm rotating nuclei with the radioactive beams of SPES

Study of shell structure and order-to-chaos transition in warm rotating nuclei with the radioactive beams of SPES Study of shell structure and order-to-chaos transition in warm rotating nuclei with the radioactive beams of SPES G.Benzoni, S.Leoni, A.Bracco, N.Blasi, F.Camera, F.C.L.Crespi, B.Million,O. Wieland, P.F.

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1:

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1: Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART : The 34 Si a bubble nucleus? Probing the neutron SO interaction using the 34 Si nucleus

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

Nuclear shapes. The question of whether nuclei can rotate became an issue already in the very early days of nuclear spectroscopy

Nuclear shapes. The question of whether nuclei can rotate became an issue already in the very early days of nuclear spectroscopy Shapes Nuclear shapes The first evidence for a non-spherical nuclear shape came from the observation of a quadrupole component in the hyperfine structure of optical spectra The analysis showed that the

More information

Report on the benchmarking of the event generator for fusion-evaporation reactions

Report on the benchmarking of the event generator for fusion-evaporation reactions Report on the benchmarking of the event generator for fusion-evaporation reactions The main aim of this project is the creation of the module of the GEANT4 platform for the description of the fusion-evaporation

More information

arxiv: v2 [nucl-th] 8 May 2014

arxiv: v2 [nucl-th] 8 May 2014 Oblate deformation of light neutron-rich even-even nuclei Ikuko Hamamoto 1,2 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, Lund Institute of Technology at the

More information

arxiv: v3 [nucl-ex] 12 Jan 2012

arxiv: v3 [nucl-ex] 12 Jan 2012 Fast-timing measurements in 95,96 Mo arxiv:2.539v3 [nucl-ex] 2 Jan 202 S Kisyov, S Lalkovski, N Mǎrginean 2, D Bucurescu 2, L Atanasova 3, D Balabanski 3, Gh Cata-Danil 2, I Cata-Danil 2, D Deleanu 2,

More information

Status and perspectives of the GANIL Campaign ACC meeting - Venice

Status and perspectives of the GANIL Campaign ACC meeting - Venice Status and perspectives of the GANIL Campaign 2016 ACC meeting - Venice The GANIL Campaign Charged particles detectors for Coulex and nucleon transfer Post-accelerated RIB from SPIRAL1 Neutron and charged

More information

The rotational γ -continuum in the mass region A 110

The rotational γ -continuum in the mass region A 110 Nuclear Physics A 673 (2000) 64 84 www.elsevier.nl/locate/npe The rotational γ -continuum in the mass region A 110 A. Bracco a, S. Frattini a,s.leoni a, F. Camera a, B. Million a,n.blasi a, G. Falconi

More information

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone A Predictive Theory for Fission A. J. Sierk Peter Möller John Lestone Support This research is supported by the LDRD Office at LANL as part of LDRD-DR project 20120077DR: Advancing the Fundamental Understanding

More information

Some Aspects of Nuclear Isomers and Excited State Lifetimes

Some Aspects of Nuclear Isomers and Excited State Lifetimes Some Aspects of Nuclear Isomers and Excited State Lifetimes Lecture 2: at the Joint ICTP-IAEA Workshop on Nuclear Data : Experiment, Theory and Evaluation Miramare, Trieste, Italy, August 2016 Paddy Regan

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

High-spin states in 90 Ru and the projected shell model description

High-spin states in 90 Ru and the projected shell model description PHYSICAL REVIEW C 69, 064319 (2004) High-spin states in 90 Ru and the projected shell model description D. Bucurescu, 1 N. Mărginean, 2,1 C. Rossi Alvarez, 3 Y. Sun, 4,5 C. A. Ur, 3,1 L. C. Mihăilescu,

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Annax-I. Investigation of multi-nucleon transfer reactions in

Annax-I. Investigation of multi-nucleon transfer reactions in Annax-I Investigation of multi-nucleon transfer reactions in 40 Ca on 68,70 Zn at and near the Coulomb barrier. Abstract We will study the multi-nucleon transfer between two medium-heavy nuclei to find

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Spectroscopy of odd-mass cobalt isotopes toward the N = 40 subshell closure and shell-model description of spherical and deformed states

Spectroscopy of odd-mass cobalt isotopes toward the N = 40 subshell closure and shell-model description of spherical and deformed states PHYSICAL REVIEW C 85, 064305 (2012) Spectroscopy of odd-mass cobalt isotopes toward the N = 40 subshell closure and shell-model description of spherical and deformed states F. Recchia, 1,2 S. M. Lenzi,

More information