S1. Materials and Methods

Size: px
Start display at page:

Download "S1. Materials and Methods"

Transcription

1 Supporting Information for Formulation-Controlled Positive and Negative First Normal Stress Differences in Waterborne Hydrophobically Modified Ethylene Oxide Urethane (HEUR) - Latex Suspensions Tirtha Chatterjee, * Antony K. Van Dyk, Valeriy V. Ginzburg, Alan I. Nakatani ǁ Materials Science and Engineering, The Dow Chemical Company, Midland, Michigan Dow Coatings Materials, The Dow Chemical Company, Collegeville, Pennsylvania ǁ Analytical Sciences, The Dow Chemical Company, Collegeville, Pennsylvania *tchatterjee@dow.com S1. Materials and Methods Latex synthesis: Binder particles representative of a commercial grade latex were used for all the formulations. The latex was a single stage copolymer of butyl acrylate, methyl methacrylate, and methacrylic acid, which was thermally initiated with ammonium persulfate (APS). 1-2 This material was stabilized with 0.6% sodium lauryl sulfate (SLS, based on monomer) and the batch was neutralized with ammonia. The latex particle size was varied between nm nominal diameters (d). The typical size polydispersity was ~ 10-15% as detected using different scattering (light and neutron) techniques and reported previously. 3-4 HEUR RM synthesis: The hydrophobically modified ethylene oxide urethane (HEUR) rheology modifiers (RMs) used in this study were synthesized from the condensation of hexamethylene diisocyanate (HDI) with poly(ethylene oxide) (PEO) diol (weight-averaged molecular weight, M w, about 8,900 g/mol) and a capping alkyl alcohol. Generally, the polymers were synthesized in a two-step process where the PEO diol, excess diisocyanate, and catalyst were first reacted to produce chain extension. After this reaction was completed, the capping alcohol was added. The hydrophobe strength was varied through the selection of the alkyl chain length of the capping alcohol and was varied between C10 and C18. The hydrophobe strength is expressed in terms of Cn which is the effective/equivalent number of methylene groups representative of the combined hydrophobic contributions of the isocyanate linker and alcohol capping agent moieties. 5-6 Sample preparation: Formulations were prepared by combining latex emulsions, HEUR solutions, surfactants (sodium lauryl sulfate) and a neutralizing agent, AMP-95 (CAS number ), to 1

2 maintain a final formulation ph of 9.0 for all samples. The sodium lauryl sulfate surfactant concentration was kept fixed at 0.2% (w/w), below the critical micelle concentration, cmc, but within the range used in commercial coating formulations. The samples were prepared in 25 g batches and mixed on a Hauschild Flacktek SpeedMixer for 2 minutes. ph adjustment was done on the final sample by titrating with AMP- 95, typically around 20 mg. The latex volume fraction (φ) was varied between The HEUR concentration (c in wt%) in the final formulation ranged in between wt%. Table S1 gives the formulation details of the samples corresponding to Figure 2a-b in the main text. The latex surface area/rm molecule or the parameter p was derived in the following way. The available latex surface area per unit formulation mass is 6 / where the latex volume fraction and diameter are and d, respectively, and ρ is the formulation density. The number of HEUR molecules available per unit formulation mass is / where and are Avogadro s number and backbone PEO molecular weight, respectively. Hence, p or the available latex surface area/heur molecule is given as: 6 /. Note that this expression does not consider the presence of admicelles (See section S6 for more details) and assumes all HEURs are attached to the latex surface. The number of HEURs/latex is calculated as πd 2 /p. Table S1: Formulation details of the samples corresponding to Figure 2a-b. Sample code 1-5 was assigned in terms of increasing surface coverage (#1 being the least dense). Sample code VS (φ) Latex nominal diameter (d), nm HEUR Mol. Wt. (M w ), (kg/mol) Hydrophobe strength (#C) HEUR conc. (c), (wt.%) Formulation density (ρ), (g/cc) Gallery spacing (H), nm Area/ HEUR (p), nm 2 #HEURs /latex C C C C C C C C C C N 1 sign at high shear Rotating shaft experiments: For the rotating shaft test, a motor-driven variable speed stirrer (bladeless shaft) was used. The shaft (6 mm diameter) was placed so that the end of the shaft was well immersed into the formulation but well away from the sample holder bottom. The sample holder was secured by a spring-loaded chain during the experiment. This experiment is a qualitative test and still photographs of the shaft-fluid interface were collected to document the experimental outcome. Still images were first collected at rest. The shaft speed was increased in increments (700, 1400, 1800 and, 2100 RPM), and still 2

3 photographs were taken at each speed. The maximum shaft speed applied in this experiment was 2200 RPM. S2: The Measured N 1 Data and Shift Factors [ ] Used to Generate Figure 1b (main text) In Figure 1b, main text, the N 1 data are presented as a function of shear rate. As elucidated in the main text, the N 1 data were calculated using the following expression: Δ = 0, where is the rheometer measured first normal stress difference (after inertia correction) and 0 is a vertical shift factor. The rheometer measured data without any vertical shift [i.e. ] are presented in Figure S1a. Figure 1b, main text, is also reproduced here as Figure S1b for quick comparison. To generate Figure 1b (or S1b) the following shift factors, [ 0 ], were used: C10 based formulation: 26.1, C12 based formulation: 14.5, C14 based formulation: 9.3, C16 based formulation: -11.9, and C18 based formulation: 0.8. All values correspond to the N 1 measured at the stress, σ = 0.1 Pa except for the C10 HEUR based formulation for which N 1 value at σ = 0.5 Pa was used. (a) Pe φ: 0.28 c: 1.0 wt% (b) Pe φ: 0.28 c: 1.0 wt% N 1 (Pa) Hydrophobe (Cn) C18 C16 C14 C12 C10 N 1 (Pa) Hydrophobe (Cn) C18 C16 C14 C12 C Figure S1: The shear rate dependent (a) N 1 and (b) N 1 responses for the samples prepared using HEUR RMs with different hydrophobe strength (C10-C18). S3: HEUR RM Solution and Binder Latex Dispersion Rheology HEUR RM solutions and binder latex dispersions were studied to understand their normal stress behavior under high shear as limiting cases. The viscosity and N 1 behavior as a function of applied shear rate for a 1.5 wt% C16 hydrophobe HEUR RM aqueous solution is presented in Figure S2a-b. At low shear rate, a 3

4 Newtonian viscosity plateau was observed followed by a weak shear thickening effect and finally strong shear thinning at high shear rate. The linear viscoelasticity of the HEUR RM solution is characterized by a single-maxwellian time constant behavior where the characteristic time (τ) is ascribed to association/dissociation of a single hydrophobe to/from the associating transient network (flower micelles). 7-8 For shear rates below the characteristic time <1/, a viscosity plateau was observed. At ~1/ moderate shear-thickening was observed which is often attributed to either the finite extensible nonlinear elasticity effect 9-10 of HEUR strands, or shear-induced structural orientation (an increase in effective strand density) 11 or their combination. Finally, at very high shear rate, strong shear thinning arises from the breaking of the network into smaller fragments and individual HEUR chains. These findings are consistent with HEUR RM solution rheology previously reported (a) (b) 1 RM concentration 1.5 wt% RM concentration 1.5 wt% 1000 η (Pa-s) N 1 (Pa) Figure S2: (a) Steady-shear viscosity and (b) the first normal stress difference as a function of shear rate for a 1.5% C16 hydrophobe HEUR RM aqueous solution. The first normal stress difference, N 1, for the HEUR solution was ~ 0 at low shear and showed a positive value at high shear. Similar to semi-dilute polymer solution rheology, the HEUR strand/transient network alignment/stretching along the flow direction gives rise to a positive N The HEUR solution also demonstrated the shaft-climbing phenomenon in a rotating-shaft experiment (not shown). For low hydrophobe strength (C10 or C12) HEUR solutions, the algebraic sign of the N 1 could not be detected unambiguously at low concentration (c 10.0 wt%) as the longest network relaxation time is much shorter than the shear time scale <

5 An example of pure binder latex dispersion rheology is presented in Figure S3a-b. The pure latex dispersion rheology can be characterized by two dimensionless parameters: the volume fraction (φ ) signifying particle number density, and the Pèclet number =6 / signifying the competition between the Brownian and hydrodynamic forces under flow. Here η f is the fluid/matrix viscosity (0.001 Pa-s), k B is the Boltzmann constant and T is the absolute temperature. Results are shown for φ = 0.44 and 0.28 with a nominal particle diameter, d, of 120 nm and a size polydispersity 3 of ~ 13.6%. At low shear rate, viscosity appears to be diverging as the shear rate approaches zero, indicating a possible yield-stress behavior. As the shear rate is increased, one observes a strong shear thinning arising from breakup of latex particle clusters under steady shear. The flow curve data were collected only on ascending steady stress and flow hysteresis was not probed. This yield-like behavior and subsequent shear thinning were found to be much more pronounced for the denser suspension ( = 0.44). At the high shear limit, a Newtonian plateau is expected (where particles are dispersed individually), but it is beyond the highest shear rate studied here. For the suspension with = 0.28, the shear rate dependence of the viscosity was much weaker and nearly Newtonian, consistent with reported literature. 15 Note that these suspensions did not show any shear thickening (dilatancy) as the latex volume fractions were low ( < 0.5), the particles were polydisperse, and the upper stress limit studied here was presumably below the critical stress for strain-hardening At low shear rate (or low Pe), the latex suspensions exhibited a N 1 ~ 0 which became negative at higher shear rate or ~ 1. This behavior is similar to that predicted by Brady and coworkers in their Stokesian Dynamics simulation of colloidal hard spheres. At low shear rate, flow causes a deviation in the position of the particles from a random distribution and the latex particles must thermally diffuse to regain positional equilibrium giving rise to a Brownian stress. The hydrodynamic stress remains low or negligible if the system maintains an overall well-dispersed state. At higher shear rate or high Pe, the hydrodynamic force brings the particles closer and hydroclusters are formed with a higher particle density along the compressional axis. As the particles get closer, the lubrication force tends to increase (scale as ~ 1/distance). Physically, the particles need to be pulled apart along the extensional axis to overcome the hydrodynamic lubrication forces (restoring effect) which results in the rheometer fixtures being pulled towards each other, or a negative N 1. In passing, we mention that recently Mari and coworkers have proposed an alternative explanation, where negative N 1 values are attributed to a transition from the flow of lubricated non-contacting particles to the flow of a frictionally contacting network of particles

6 (a) (b) Pe Pe η (Pa-s) 0.01 φ = 0.44 φ = 0.28 N 1 (Pa) φ =0.44 φ = Figure S3: (a) Steady-shear viscosity and (b) the first normal stress difference as a function of shear rate for the latex aqueous suspensions. S4: C12 Hydrophobe HEUR-latex Formulation Rheology Measured Using Parallel Plate and Cone-and-Plate Fixtures In commercial rheometers, pressure transducers are used where the total thrust on the transducer or normal force (after area correction), F N, is recorded. For parallel plate geometry, after the inertia correction, the relation between the normal force and normal stress is given as: = The fluids underlying assumption is that the F N is proportional to which is valid for second order For cone-and-plate geometry, N 1 is readily available from the measured, inertia corrected F N given as: = Throughout this work we assumed that for the parallel plate geometry >> or =. However, for the parallel plate measurements, it is possible that an overall negative F N may arise from a large positive N 2 contribution. In order to demonstrate the sign of F N obtained by parallel plate measurements was correct, rheological measurements using a coneand-plate fixture (25-mm plate diameter, cone angle 2 o ) were performed. The results comparing the geometry dependence of the steady shear viscosity and shear rate dependence of the normal force for the C12 HEUR-latex formulation (HEUR M w = 35 kg/mol and concentration = 1 wt%, latex volume fraction = 0.28 and nominal diameter =120 nm) are presented in Figure S4a-b. Excellent agreement in both the viscosity and F N data were found between the measurements performed using different fixtures. Similar good agreement was observed for the C10 HEUR based formulation, which is not reported here. These 6

7 measurements confirmed that for these samples, (a) N 2 was small or negligible; (b) for the parallel plate geometry; and (c) the observed negative F N was real and did not arise from any measurement artifacts. (a) 10 Pe (b) 50 Pe η (Pa-s) φ: 0.28 c: 1.0 wt% C12 hydrophobe Fixture (dimension) parallel plate (40 mm) parallel plate (25 mm) cone & plate (25 mm) N 1 (Pa) φ: 0.28 c: 1.0 wt% C12 hydrophobe Fixture (dimension) parallel plate (40 mm) parallel plate (25 mm) cone & plate (25 mm) Figure S4: (a) Steady-shear viscosity and (b) the first normal stress difference as a function of shear rate for a C12 HEUR-latex formulation. Another source of a negative N 1 response may arise from inertia and secondary flow contributions that arise at high Reynolds number (i.e. at high shear rate and/or for a low viscosity fluid). The Reynolds number is given as = where ρ and η are the formulation density and viscosity, respectively. Here is the shear rate at the edge of the plate where R and h are the plate diameter and gap between the plates, respectively. For rotational rheometers, secondary flows are significant when the Reynolds number, Re, is >>1.0. The largest Re achieved at the highest shear rate in our experiments was on the order of << 10.0 and therefore the secondary flow can be neglected. Further, the particle Reynolds number, = / /, ranged between 1x10-9 to 3 x 10-4 and hence Stokes flow can be assumed for the shear rate window studied here. This ensures that the inertial forces experienced by the latex particles due to advection are negligible compared to the viscous forces. All the first normal stress difference data (both the N 1 and N 1 ) reported here were corrected for inertia contribution. For two specific cases, the C10 and C12 HEUR RM based formulations, N 1 data with and without inertia correction are shown in Figure S5. Note that the inertia corrected data (solid lines with solid symbols in Figure S5) are the same that are reported in Figure S1a. The N 1 data without inertia 7

8 correction (dashed lines with open symbols in Figure S5) were generated using the following expression 24 : ] = ] 0.15, where, is the angular velocity calculated as =. The underlying assumptions were: (a) 2nd order fluids and (b) for parallel plate fixtures the relation between the first normal stress difference and the inertiacorrected total thrust imparted on pressure transducer is given as: =. The N 1 response was found to be enhanced when inertia correction was not applied. This was expected, as centrifugal force tends to push fluids away from the rotation axis that gives rise to a negative pressure. The shift between the data with and without inertia correction was relatively small below the shear rate ~ 1000 s -1. Beyond that inertia contribution was significant for these fluids as shown in Figure S5, but the sign of the N 1 remains unchanged N 1 (Pa) φ: 0.28 c: 1.0 wt.% C10 C10 after inertia correction without inertia correction -500 C12 C12 after inertia correction without inertia correction Figure S5: The N 1 data as a function of shear rate for the C10 and C12 hydrophobe HEUR RM compatibilized formulations before (solid lines with solid symbols) and after (dashed lines with open symbols) inertia correction. The vertical line is drawn at shear rate 1000 s -1. S5: Linear Rheology of Selected HEUR-based Latex Suspensions: End- Hydrophobe Strength Effect The linear viscoelasticity of HEUR in pure aqueous solution has been extensively studied and reported in the literature. 7-8, 25 The dynamic viscoelasticity of the HEUR RM solution can be described using a single viscoelastic Maxwell element, where the characteristic relaxation time (τ) is ascribed to 8

9 association/dissociation of a single hydrophobe to/from the associating transient network (flower micelles). Annable and coworkers have shown that the relaxation time varies exponentially with endhydrophobe strength (Cn) with an activation energy increment of ~ 0.9 k B T/CH 2 group where k B is the Boltzmann constant and T is the absolute temperature. 8 Assuming that the association and dissociation rates are independent of the backbone chain length, the high frequency elastic modulus (G ) can be calculated as per the transient network theory In aqueous mixtures of HEURs with surfactants, these responses become more complex due to competitive micellization that impacts the HEUR bridge to loop ratio. 25 In a HEUR thickened waterborne latex suspension, the linear viscoelastic response is more complex and less understood. Multiple interactions are possible including HEUR-HEUR, HEUR-latex, HEURsurfactant and surfactant-latex interactions. Using pulsed-field gradient NMR spectroscopy, Beshah and coworkers have shown that the HEUR-latex interaction is dominant for HEUR concentrations below about 3 wt% (for a latex volume fraction 0.28 with nominal diameter 120 nm). 30 These experimental data were also supported by a simulation study reported by Ginzburg and coworkers. 31 Chatterjee and coworkers have shown that for a sufficiently high HEUR loading (above critical micelle concentration, cmc), the latex-rm combination under quiescent condition forms a spherical core-shell microstructure as revealed in small-angle neutron scattering studies. 3 On the mesoscale level, fractal aggregates are formed, where latex particles are connected through transient HEUR bridges as demonstrated by Van Dyk and coworkers through USANS. 4 These aggregates evolve under shear and the structural evolution can be reaction or diffusion limited based on latex surface chemistry and HEUR hydrophobe strength. 4 Here we briefly discuss the oscillatory shear rheology of two selected HEUR-based latex formulations (HEUR hydrophobe strength C10 and C18) under oscillatory shear. Additional linear viscoelastic data for a C12- HEUR formulated latex suspension has already been reported by Chatterjee and coworkers in an earlier publication. 3 These samples were formulated with latex volume fraction = 0.28, nominal diameter = 120 nm and a C10 or C18 hydrophobe HEUR (Mw 35 kg/mol). The HEUR concentration was the same in both samples, 0.44 wt%, slightly lower than the HEUR amount used in the sample series for which steady-shear viscosity and the first normal stress difference data are presented in Figure 1a-b (main text). A small amount of TiO 2 pigment (volume fraction 0.07) was also present in these samples. Note that Van Dyk and coworkers have previously shown that TiO 2 particles do not have any specific interaction with the HEUR molecules. 4 All measurements were performed in a stress-controlled AR-G2 rheometer (TA Instruments) at 25 o C using a 40-mm parallel plate fixture. The measurement frequency window was rad/s. The oscillatory shear measurements (G, G and η* as a function of oscillation frequency (ω) are 9

10 presented in Figure S6a-b. Here G and G are the dynamic storage and loss moduli, respectively and η*, the magnitude component of the complex viscosity was calculated as: = ". (a) T=25 o C d=120 nm φ=0.28 c=0.44 wt.% (b) 100 T=25 o C d=120 nm φ=0.28 c=0.44 wt.% G' or G" (Pa) 10 η* (Pa-s) C10 G' G" C18 G' G" 0.1 Hydrophobe (Cn) C10 C frequency (ω, rad/s) frequency (ω, rad/s) Figure S6: (a) Dynamic storage (G ) and loss (G ) modulus as a function of oscillation frequency (ω) for two selected samples prepared using HEUR RMs with different hydrophobe strengths (C10 and C18). (b) Magnitude component of the complex viscosity as a function of oscillation frequency. Close inspection reveals that at least two major relaxation time scales are associated with these systems. The shorter of these two timescales is attributed to characteristic time scale of HEUR loop/bridge relaxation from the latex surface. Note that for these formulations predominantly HEUR loops or direct bridges between the latex particles (with very few micelles or free HEUR in solution) are expected as per the PFGNMR 30 and simulation 31 study. The bridge/loop relaxation was only observed for the C18 hydrophobe formulated system (at ω ~ 20 rad/s, shown by a blue vertical line in Figure S6a) while for the C10 hydrophobe it is expected to occur at much higher frequency. The second, longer timescale is attributed to HEUR-mediated latex cluster relaxation that was only found for the C10 formulated system within the measurement frequency window (at ω ~ 0.15 rad/s, shown by a black vertical line in Figure S6a). For other HEUR based formulations, this relaxation is expected to occur at a longer timescale or lower frequency, well below the lower bound of the measured frequency. None of these formulations demonstrated the standard single Maxwell element relaxation at low frequency (i.e. G ~ ω 2 and G ~ω as ω 0). Using these two selected samples, we show that the linear viscoelastic response of the HEURthickened latex suspension is determined by both the relaxation of HEUR molecules attached to the latex surface and (HEUR-mediated) latex cluster relaxations. Further experimental studies on linear viscoelasticity and theoretical model development are currently ongoing in our laboratory. 10

11 S6: HEUR Adsorption onto Latex Surfaces Adsorption of HEUR molecules onto latex surfaces depends on a number of factors, such as the HEUR molecular weight, hydrophobe type, and the surfactant coverage of the latex surface These factors dictate the maximum (saturation) surface coverage on the latex, often expressed as an adsorbed amount (in mg/m 2 ) or the density of adsorbed chains (chains/nm 2 ). As shown in our recent paper, 31 for HEURs with C8, C12, and C16 hydrophobes, most HEURs tend to adsorb directly onto the surface until saturation is reached; after that, adsorption takes place indirectly, in the form of adsorbed micelles ( admicelles ) that promote indirect bridging between neighboring latex particles. The ratio of all available HEURs (per unit latex surface) to the maximum direct adsorption coverage can be estimated as: =, the latex surface area per adsorbed HEUR molecule is given by, =6, and saturation coverage, =, with the maximum adsorbed amount, MAA mg/m For the formulations in this study, we assume a value for MAA = 1.5 mg/m 2. For systems with X < 1, almost all the HEURs should be able to adsorb directly onto the latex surfaces. Thus, the overall systems should behave as dispersions of soft or fuzzy spheres with little or no bridging or viscoelasticity. Note that if X<<1 and steric/electrostatic stabilization is insufficient, the binder particles would form large aggregates. In these cases, the overall behavior would be that of a particle dispersion in water, and thus, N 1 is expected to be negative. For larger X, a large fraction of HEURs would not adsorb directly to the latex and would form admicelles instead. Those admicelles would be weakly adsorbing to the particles and would promote formation of transient bridges between particles. In that case, the overall rheological behavior would be more similar to that of a transient network solution, leading to positive N 1. References 1. Even, R. C.; Slone, R. V. Coating Method. US Patent B2, Li, Z. F.; Van Dyk, A. K.; Fitzwater, S. J.; Fichthorn, K. A.; Milner, S. T., Atomistic Molecular Dynamics Simulations of Charged Latex Particle Surfaces in Aqueous Solution. Langmuir 2016, 32 (2), Chatterjee, T.; Nakatani, A. I.; Van Dyk, A. K., Shear-Dependent Interactions in Hydrophobically Modified Ethylene Oxide Urethane (HEUR) Based Rheology Modifier-Latex Suspensions: Part 1. Molecular Microstructure. Macromolecules 2014, 47 (3), Van Dyk, A. K.; Chatterjee, T.; Ginzburg, V. V.; Nakatani, A. I., Shear-Dependent Interactions in Hydrophobically Modified Ethylene Oxide Urethane (HEUR) Based Coatings: Mesoscale Structure and Viscosity. Macromolecules 2015, 48 (6),

12 5. Maechling-Strasser, C.; Clouet, F.; Francois, J., Hydrophobically end-capped polyethyleneoxide urethanes: 2. Modelling their association in water. Polymer 1993, 33 (5), Maechling-Strasser, C.; Francois, J.; Clouet, F.; Tripette, C., Hydrophobically end-capped poly (ethylene oxide) urethanes: 1. Characterization and experimental study of their association in aqueous solution. Polymer 1993, 33 (3), Annable, T.; Buscall, R.; Ettelaie, R., Network formation and its consequences for the physical behaviour of associating polymers in solution. Colloid Surface A 1996, 112 (2-3), Annable, T.; Buscall, R.; Ettelaie, R.; Whittlestone, D., The Rheology of Solutions of Associating Polymers - Comparison of Experimental Behavior with Transient Network Theory. J Rheol 1993, 37 (4), Koga, T.; Tanaka, F., Theoretical Predictions on Normal Stresses under Shear Flow in Transient Networks of Telechelic Associating Polymers. Macromolecules 2010, 43 (6), Tripathi, A.; Tam, K. C.; McKinley, G. H., Rheology and dynamics of associative polymers in shear and extension: Theory and experiments. Macromolecules 2006, 39 (5), Suzuki, S.; Uneyama, T.; Inoue, T.; Watanabe, H., Nonlinear Rheology of Telechelic Associative Polymer Networks: Shear Thickening and Thinning Behavior of Hydrophobically Modified Ethoxylated Urethane (HEUR) in Aqueous Solution. Macromolecules 2012, 45 (2), Pellens, L.; Corrales, R. G.; Mewis, J., General nonlinear rheological behavior of associative polymers. J Rheol 2004, 48 (2), Sadeghy, K.; James, D. F., Elasticity of associative polymer solutions and slip at high sheer stress. J Non-Newton Fluid 2000, 90 (2-3), Xu, B.; Yekta, A.; Winnik, M. A.; Sadeghy-Dalivand, K.; James, D. F.; Jenkins, R.; Bassett, D., Viscoelastic properties in water of comb associative polymers based on poly(ethylene oxide). Langmuir 1997, 13 (26), Laun, H. M., Rheological Properties of Aqueous Polymer Dispersions. Angew Makromol Chem 1984, 123 (Aug), Bender, J.; Wagner, N. J., Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 1996, 40 (5), Barnes, H. A., Shear-Thickening (Dilatancy) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids. J Rheol 1989, 33 (2), Bergenholtz, J.; Brady, J. F.; Vicic, M., The non-newtonian rheology of dilute colloidal suspensions. J Fluid Mech 2002, 456, Foss, D. R.; Brady, J. F., Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation. J Fluid Mech 2000, 407, Mari, R.; Seto, R.; Morris, J. F.; Denn, M. M., Nonmonotonic flow curves of shear thickening suspensions. Phys Rev E 2015, 91 (5). 21. Mari, R.; Seto, R.; Morris, J. F.; Denn, M. M., Discontinuous shear thickening in Brownian suspensions by dynamic simulation. P Natl Acad Sci USA 2015, 112 (50), Barnes, W. A.; Hutton, J. F.; Walters, K., An Introduction to Rheology. 1st ed.; Elsevier: Baird, D. G., First normal stress difference measurements for polymer melts at high shear rates in a slit-die using hole and exit pressure data. J Non-Newton Fluid 2008, 148 (1-3), Macosko, C. W., Rheology Principles, Measurements, And Applications. 1st ed.; Wiley-VCH: Annable, T.; Buscall, R.; Ettelaie, R.; Shepherd, P.; Whittlestone, D., Influence of Surfactants on the Rheology of Associating Polymers in Solution. Langmuir 1994, 10 (4), Tanaka, F.; Edwards, S. F., Viscoelastic Properties of Physically Cross-Linked Networks.2. Dynamic Mechanical Moduli. J Non-Newton Fluid 1992, 43 (2-3), Tanaka, F.; Edwards, S. F., Viscoelastic Properties of Physically Cross-Linked Networks.3. Time-Dependent Phenomena. J Non-Newton Fluid 1992, 43 (2-3), Tanaka, F.; Edwards, S. F., Viscoelastic Properties of Physically Cross-Linked Networks.1. Nonlinear Stationary Viscoelasticity. J Non-Newton Fluid 1992, 43 (2-3),

13 29. Green, M. S.; Tobolosky, A. V., A new approach to the theory of relaxing polymeric media. Journal of Chemical Physics 1946, 14, Beshah, K.; Izmitli, A.; Van Dyk, A. K.; Rabasco, J. J.; Bohling, J.; Fitzwater, S. J., Diffusion- Weighted PFGNMR Study of Molecular Level Interactions of Loops and Direct Bridges of HEURs on Latex Particles. Macromolecules 2013, 46 (6), Ginzburg, V. V.; Van Dyk, A. K.; Chatterjee, T.; Nakatani, A. I.; Wang, S. H.; Larson, R. G., Modeling the Adsorption of Rheology Modifiers onto Latex Particles Using Coarse-Grained Molecular Dynamics (CG-MD) and Self-Consistent Field Theory (SCFT). Macromolecules 2015, 48 (21), Hulden, M., Hydrophobically-Modified Urethane Ethoxylate (Heur) Associative Thickeners.2. Interaction with Latex. Colloid Surface A 1994, 88 (2-3), Glass, J. E., Adsorption of hydrophobically-modified, ethoxylated urethane thickeners on latex and titanium dioxide disperse phases. Adv Colloid Interfac 1999, 79 (2-3),

Effect of associating polymer on the dispersion stability and rheology of suspensions

Effect of associating polymer on the dispersion stability and rheology of suspensions Korea-Australia Rheology Journal Vol. 15, No. 1, March 2003 pp. 27-33 Effect of associating polymer on the dispersion stability and rheology of suspensions Yasufumi Otsubo* and Misao Horigome 1 Department

More information

Discontinuous Shear Thickening

Discontinuous Shear Thickening Discontinuous Shear Thickening dynamic jamming transition Ryohei Seto, Romain Mari, Jeffrey F. Morris, Morton M. Denn Levich Institute, City College of New York First experimental data Williamson and Hecker

More information

Effect of Surfactant on the Bridging Conformation of Associating Polymer and Suspension Rheology

Effect of Surfactant on the Bridging Conformation of Associating Polymer and Suspension Rheology Article Nihon Reoroji Gakkaishi Vol.35, No.1, 27~34 (Journal of the Society of Rheology, Japan) 2007 The Society of Rheology, Japan Effect of Surfactant on the Bridging Conformation of Associating Polymer

More information

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan Department of Chemical Engineering University of Texas@Austin Origins of Mechanical and Rheological Properties of Polymer Nanocomposites Venkat Ganesan $$$: NSF DMR, Welch Foundation Megha Surve, Victor

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers

Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers Korea-Australia Rheology Journal Vol. 15, No. 4, December 2003 pp. 179-185 Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers Yasufumi Otsubo* and Misao

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator

High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator J. Non-Newtonian Fluid Mech. 102 (2002) 149 156 High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator G. Fritz a, B.J. Maranzano b,1, N.J. Wagner b,, N. Willenbacher

More information

Rheological behavior of hydrophobically modified hydroxyethyl cellulose solutions: A linear viscoelastic model

Rheological behavior of hydrophobically modified hydroxyethyl cellulose solutions: A linear viscoelastic model Rheological behavior of hydrophobically modified hydroxyethyl cellulose solutions: A linear viscoelastic model A. Maestro, a) C. González, and J. M. Gutiérrez Chemical Engineering and Material Science

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

Stress Overshoot of Polymer Solutions at High Rates of Shear

Stress Overshoot of Polymer Solutions at High Rates of Shear Stress Overshoot of Polymer Solutions at High Rates of Shear K. OSAKI, T. INOUE, T. ISOMURA Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan Received 3 April 2000; revised

More information

The Role of Thickeners in Optimising Coatings Formulation

The Role of Thickeners in Optimising Coatings Formulation The Role of Thickeners in Optimising Coatings Formulation Clemens Auschra, Immanuel Willerich, Iván García Romero, Hunter He, Robert Reichardt, Cindy Muenzenberg, Elena Martinez ChinaCoat, December 2014

More information

Supplementary Information. Text S1:

Supplementary Information. Text S1: Supplementary Information Text S1: In order to characterize the change in visco-elastic response in the course of a shear thickening transition in a controlled shear stress flow, on a fresh sample of for

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

Viscoelastic Flows in Abrupt Contraction-Expansions

Viscoelastic Flows in Abrupt Contraction-Expansions Viscoelastic Flows in Abrupt Contraction-Expansions I. Fluid Rheology extension. In this note (I of IV) we summarize the rheological properties of the test fluid in shear and The viscoelastic fluid consists

More information

(2.1) Is often expressed using a dimensionless drag coefficient:

(2.1) Is often expressed using a dimensionless drag coefficient: 1. Introduction Multiphase materials occur in many fields of natural and engineering science, industry, and daily life. Biological materials such as blood or cell suspensions, pharmaceutical or food products,

More information

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES 25 2.1 INSTRUMENTATION The prepared samples were characterized using various techniques. Among which are Dynamic Light Scattering, Zeta Potential

More information

Fundamentals of Rheology Science of Deformation and Flow Homer Jamasbi, Ph.D. Elementis Specialties

Fundamentals of Rheology Science of Deformation and Flow Homer Jamasbi, Ph.D. Elementis Specialties Fundamentals of Rheology Science of Deformation and Flow Homer Jamasbi, Ph.D. Elementis Specialties Introduction Rheology is the study of how materials deform and flow under the influence of external forces.

More information

Contents. Preface XIII

Contents. Preface XIII V Contents Preface XIII 1 General Introduction 1 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1 1.1.1 Wetting of Powder into Liquid 1 1.1.2 Breaking of Aggregates

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Chain-configuration and rate dependent rheological properties in transient networks

Chain-configuration and rate dependent rheological properties in transient networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 204 Supplementary Information Chain-configuration and rate dependent rheological properties in transient

More information

RHEOLOGY AG.02/2005 AG0905

RHEOLOGY AG.02/2005 AG0905 RHEOLOGY Rheology Basics TYPES OF RHEOLOGICAL BEHAVIOUR NEWTONIAN FLOW PSEUDOPLASTICITY SHEAR THINNING FLOW (case with Yield Value) THIXOTROPY Yield Value Viscosity Viscosity Viscosity Shear Rate. Shear

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

A Technique for Characterizing Complex Polymer Solutions in Extensional Flows. Gavin Braithwaite Stephen Spiegelberg

A Technique for Characterizing Complex Polymer Solutions in Extensional Flows. Gavin Braithwaite Stephen Spiegelberg A Technique for Characterizing Complex Polymer Solutions in Extensional Flows Gavin Braithwaite Stephen Spiegelberg Cambridge Polymer Group Inc. Ward Street, Somerville. MA 0243 http://www.campoly.com

More information

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important Mats Larsson 1, Adrian Hill 2, and John Duffy 2 1 Malvern

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

Hydrophobic interactions in associative polymerõ nonionic surfactant systems: Effects of surfactant architecture and system parameters

Hydrophobic interactions in associative polymerõ nonionic surfactant systems: Effects of surfactant architecture and system parameters Hydrophobic interactions in associative polymerõ nonionic surfactant systems: Effects of surfactant architecture and system parameters Sachin Talwar, Lauriane F. Scanu, and Saad A. Khan a) Department of

More information

SPECIALTY MONOMERS FOR ENHANCED FUNCTIONALITY IN EMULSION POLYMERIZATION

SPECIALTY MONOMERS FOR ENHANCED FUNCTIONALITY IN EMULSION POLYMERIZATION SPECIALTY MONOMERS FOR ENHANCED FUNCTIONALITY IN EMULSION POLYMERIZATION Pierre Hennaux, Nemesio Martinez-Castro, Jose P. Ruiz, Zhihua Zhang and Michael D. Rhodes Solvay Inc. Centre for Research & Technology-

More information

Supplementary Material Materials and Methods Experiment The phase state of several binary mixtures of stars was investigated in squalene, a nearly athermal, non-volatile solvent. In most cases, experiments

More information

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India Polymer Rheology P Sunthar Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai 400076, India P.Sunthar@iitb.ac.in 05 Jan 2010 Introduction Phenomenology Modelling Outline of

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

Thixotropy- a review by Howard A. Barnes

Thixotropy- a review by Howard A. Barnes Thixotropy- a review by Howard A. Barnes Giorgia Bettin Hatsopoulos Microfluids Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology http://web.mit.edu/nnf Introduction

More information

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel Rheology of cellulose solutions Puu-23.6080 - Cellulose Chemistry Michael Hummel Contents Steady shear tests Viscous flow behavior and viscosity Newton s law Shear thinning (and critical concentration)

More information

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES EXERCISE 5.1: Colloidal particles may be either dispersed or aggregated. (a) What causes the difference between these two cases? Answer in terms of interparticle

More information

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations P.H.S. Santos a, M.A. Carignano b, O.H. Campanella a a Department of Agricultural and Biological Engineering, Purdue University,

More information

Fundamentals of Polymer Rheology. Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC

Fundamentals of Polymer Rheology. Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC Fundamentals of Polymer Rheology Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC Rheology: An Introduction Rheology: The study of stress-deformation relationships =Viscosity =Modulus

More information

Non contact measurement of viscoelastic properties of biopolymers

Non contact measurement of viscoelastic properties of biopolymers Non contact measurement of viscoelastic properties of biopolymers Christelle Tisserand, Anton Kotzev, Mathias Fleury, Laurent Brunel, Pascal Bru, Gérard Meunier Formulaction, 10 impasse Borde Basse, 31240

More information

The effect of branching on the shear rheology and microstructure of wormlike micelles (WLMs): Supporting Information

The effect of branching on the shear rheology and microstructure of wormlike micelles (WLMs): Supporting Information The effect of branching on the shear rheology and microstructure of wormlike micelles (WLMs): Supporting Information Michelle A. Calabrese, Simon A. Rogers, Ryan P. Murphy, Norman J. Wagner University

More information

Rheological properties of polymer micro-gel dispersions

Rheological properties of polymer micro-gel dispersions 294 DOI 10.1007/s12182-009-0047-3 Rheological properties of polymer micro-gel dispersions Dong Zhaoxia, Li Yahua, Lin Meiqin and Li Mingyuan Enhanced Oil Recovery Research Center, China University of Petroleum,

More information

Shear rheology of polymer melts

Shear rheology of polymer melts Shear rheology of polymer melts Dino Ferri dino.ferri@versalis.eni.com Politecnico Alessandria di Milano, 14/06/2002 22 nd October 2014 Outline - Review of some basic rheological concepts (simple shear,

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

Pharmaceutics I صيدالنيات 1. Unit 6

Pharmaceutics I صيدالنيات 1. Unit 6 Pharmaceutics I صيدالنيات 1 Unit 6 1 Rheology of suspensions Rheology, the study of flow, addresses the viscosity characteristics of powders, fluids, and semisolids. Materials are divided into two general

More information

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Supporting Information: Carbon nanotube coated snowman-like particles and their electro-responsive characteristics Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Experimental Section 1.1 Materials The MWNT

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology Application All domains dealing with soft materials (emulsions, suspensions, gels, foams, polymers, etc ) Objective

More information

Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets

Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets Ind. Eng. Chem. Res. 2000, 39, 4933-4943 4933 Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets Rajinder Pal* Department of Chemical Engineering, University of Waterloo,

More information

How to measure the shear viscosity properly?

How to measure the shear viscosity properly? testxpo Fachmesse für Prüftechnik 10.-13.10.2016 How to measure the shear viscosity properly? M p v Rotation Capillary Torsten Remmler, Malvern Instruments Outline How is the Shear Viscosity defined? Principle

More information

A simulation study on shear thickening in wide-gap Couette geometry. Ryohei Seto, Romain Mari Jeffery Morris, Morton Denn, Eliot Fried

A simulation study on shear thickening in wide-gap Couette geometry. Ryohei Seto, Romain Mari Jeffery Morris, Morton Denn, Eliot Fried A simulation study on shear thickening in wide-gap Couette geometry Ryohei Seto, Romain Mari Jeffery Morris, Morton Denn, Eliot Fried Stokes flow: Zero-Reynolds number fluid mechanics Repulsive Attractive

More information

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation : Dynamics of shear-induced aggregation G. Frungieri, J. Debona, M. Vanni Politecnico di Torino Dept. of Applied Science and Technology Lagrangian transport: from complex flows to complex fluids Lecce,

More information

Thickeners + Rheology Guide

Thickeners + Rheology Guide Thickeners + Rheology Guide 2 Thickeners + Rheology Guide 3 Rheology Rheology is defined as the study of the deformation and flow of materials. When a force is applied to a liquid, the liquid will flow

More information

Madrid, 8-9 julio 2013

Madrid, 8-9 julio 2013 VI CURSO DE INTRODUCCION A LA REOLOGÍA Madrid, 8-9 julio 2013 NON-LINEAR VISCOELASTICITY Prof. Dr. Críspulo Gallegos Dpto. Ingeniería Química. Universidad de Huelva & Institute of Non-Newtonian Fluid Mechanics

More information

Rheology and Dynamics of Associative Polymers in Shear and Extension: Theory and Experiment. Anubhav Tripathi, Kam C. Tam, and Gareth H.

Rheology and Dynamics of Associative Polymers in Shear and Extension: Theory and Experiment. Anubhav Tripathi, Kam C. Tam, and Gareth H. Rheology and Dynamics of Associative Polymers in Shear and xtension: Theory and xperiment Anubhav Tripathi, Kam C. Tam, and Gareth H. McKinley August 5, 005 HML Report Number 05-P-10 @ http://web.mit.edu/fluids

More information

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX 66 6th RILEM Symposium PTEBM'03, Zurich, 2003 DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX L. Zanzotto, O.J. Vacin and J. Stastna University of Calgary, Canada Abstract: A commercially

More information

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Explaining and modelling the rheology of polymeric fluids with the kinetic theory Explaining and modelling the rheology of polymeric fluids with the kinetic theory Dmitry Shogin University of Stavanger The National IOR Centre of Norway IOR Norway 2016 Workshop April 25, 2016 Overview

More information

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION Dr. Laura Yao, Senior Research Chemist, Scapa North America, Windsor, CT Robert Braiewa, Research Chemist, Scapa North America, Windsor,

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

Particles, drops, and bubbles. Lecture 3

Particles, drops, and bubbles. Lecture 3 Particles, drops, and bubbles Lecture 3 Brownian Motion is diffusion The Einstein relation between particle size and its diffusion coefficient is: D = kt 6πηa However gravitational sedimentation tends

More information

I. Comparison between rheological data obtained by using the shear rate sweep and frequency

I. Comparison between rheological data obtained by using the shear rate sweep and frequency Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2017 ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) I. Comparison between rheological data obtained by

More information

Rheology of Soft Materials. Rheology

Rheology of Soft Materials. Rheology Τ Thomas G. Mason Department of Chemistry and Biochemistry Department of Physics and Astronomy California NanoSystems Institute Τ γ 26 by Thomas G. Mason All rights reserved. γ (t) τ (t) γ τ Δt 2π t γ

More information

Measuring structure of low viscosity fluids in oscillation using rheometers with and without a separate torque transducer

Measuring structure of low viscosity fluids in oscillation using rheometers with and without a separate torque transducer ANNUAL RANSACONS OF HE NORDC RHEOLOGY SOCEY, VOL., 003 Measuring structure of low viscosity fluids in oscillation using rheometers with and without a separate torque transducer Aly Franck A nstruments,

More information

Supplementary Information. Synthesis of soft colloids with well controlled softness

Supplementary Information. Synthesis of soft colloids with well controlled softness Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information Synthesis of soft colloids with well controlled softness Fuhua Luo, Zhifeng

More information

Modeling of Suspension Flow in Pipes and Rheometers

Modeling of Suspension Flow in Pipes and Rheometers Modeling of Suspension Flow in Pipes and Rheometers Nicos S. Martys, Chiara F. Ferraris, William L. George National Institute of Standards and Technology Abstract: Measurement and prediction of the flow

More information

Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow

Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow Modeling the Rheology and Orientation Distribution of Short Glass Fibers Suspended in Polymeric Fluids: Simple Shear Flow Aaron P.R. berle, Donald G. Baird, and Peter Wapperom* Departments of Chemical

More information

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends Korea-Australia Rheology Journal Vol. 12, No. 1, March 2000 pp. 77-81 Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends Hongkyeong Kim and Kookheon Char*

More information

Supporting Information. Photo-Cross-Linked Self-Assembled Poly(Ethylene. Oxide) Based Hydrogels Containing Hybrid

Supporting Information. Photo-Cross-Linked Self-Assembled Poly(Ethylene. Oxide) Based Hydrogels Containing Hybrid Supporting Information Photo-Cross-Linked Self-Assembled Poly(Ethylene Oxide) Based Hydrogels Containing Hybrid Junctions with Dynamic and Permanent Crosslinks Erwan Nicol a,*, Taco Nicolai a, Jingwen

More information

Benjamin Levich Institute, City College of New York, CUNY, New York, NY 10031, USA. 3)

Benjamin Levich Institute, City College of New York, CUNY, New York, NY 10031, USA. 3) Corrigendum: Shear and normal stress measurements in non-brownian monodisperse and bidisperse suspensions in J. Rheol. 60(2), 289-296. Chaiwut Gamonpilas, 1, 2, a) Jeffrey F. Morris, 2, 3, b) 2, 3, c)

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

Pharmaceutics I. Unit 6 Rheology of suspensions

Pharmaceutics I. Unit 6 Rheology of suspensions Pharmaceutics I اينالديصيدلينيات 1 Unit 6 Rheology of suspensions 1 Rheology, the science of the flow or deformation of matter (liquid or soft solid) under the effect of an applied force. It addresses

More information

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology Viscoelasticity, Creep and Oscillation Experiment Basic Seminar Applied Rheology Overview Repetition of some basic terms Viscoelastic behavior Experimental approach to viscoelasticity Creep- and recovery

More information

Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions

Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions Rheol Acta (205) 54:60 68 DOI 0.007/s00397-05-0855-x ORIGINAL CONTRIBUTION Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions Sunilkumar Khandavalli Jonathan

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

Critical Phenomena under Shear Flow

Critical Phenomena under Shear Flow Critical Phenomena under Shear Flow Pavlik Lettinga, Hao Wang, Jan K.G. Dhont Close to a gas-liquid critical point, effective interactions between particles become very long ranged, and the dynamics of

More information

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book 2.341J MACROMOLECULAR HYDRODYNAMICS Spring 2012 QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT Please answer each question in a SEPARATE book You may use the course textbook (DPL) and

More information

Thickeners/Rheology Guide

Thickeners/Rheology Guide Thickeners/Rheology Guide Rheology Rheology is defined as the study of the deformation and flow of materials. When a force is applied to a liquid, the liquid will flow to relieve the strain from this force.

More information

Rheological study on the aging process in a polymeric fumed silica suspension

Rheological study on the aging process in a polymeric fumed silica suspension ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 15, 2007 Rheological study on the aging process in a polymeric fumed silica suspension F.J. Galindo Rosales 1, F.J. Rubio Hernández 2 and J.F. Velázquez

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Downloaded from orbit.dtu.dk on: Mar 11, 2019 Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Rasmussen, Henrik K.; Nielsen, Jens Kromann; Bach, Anders; Hassager,

More information

CPGAN # 006. The Basics of Filament Stretching Rheometry

CPGAN # 006. The Basics of Filament Stretching Rheometry Introduction Measurement of the elongational behavior of fluids is important both for basic research purposes and in industrial applications, since many complex flows contain strong extensional components,

More information

MP10: Process Modelling

MP10: Process Modelling MP10: Process Modelling MPhil Materials Modelling Dr James Elliott 0.1 MP10 overview 6 lectures on process modelling of metals and polymers First three lectures by JAE Introduction to polymer rheology

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate CM4655 Polymer heology Lab Torsional Shear Flow: Parallel-plate and Cone-and-plate (Steady and SAOS) Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University r (-plane

More information

Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE

Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE Bull. Mater. Sci., Vol. 27, No. 5, October 2004, pp. 409 415. Indian Academy of Sciences. Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced

More information

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS FINITE STRAIN EFFECTS IN SOLIDS Consider an elastic solid in shear: Shear Stress σ(γ) = Gγ If we apply a shear in the opposite direction: Shear Stress σ( γ) = Gγ = σ(γ) This means that the shear stress

More information

EFFECT OF SOY PROTEIN AND CARBOHYDRATE RATIO ON THE VISCOELASTIC PROPERTIES OF STYRENE-BUTADIENE COMPOSITES

EFFECT OF SOY PROTEIN AND CARBOHYDRATE RATIO ON THE VISCOELASTIC PROPERTIES OF STYRENE-BUTADIENE COMPOSITES EFFECT OF SOY PROTEIN AND CARBOHYDRATE RATIO ON THE VISCOELASTIC PROPERTIES OF STYRENE-BUTADIENE COMPOSITES Lei Jong Department of Agriculture, National Center for Agricultural Utilization Research 1815

More information

Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmhec) in the presence of SDS

Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmhec) in the presence of SDS Korea-Australia Rheology Journal Vol. 14, No. 4, December 2002 pp. 189-201 Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmhec) in the presence of SDS Viyada

More information

Temperature dependence of critical stress for wall slip by debonding

Temperature dependence of critical stress for wall slip by debonding J. Non-Newtonian Fluid Mech. 94 (2000) 151 157 Temperature dependence of critical stress for wall slip by debonding Yogesh M. Joshi a, Prashant S. Tapadia a, Ashish K. Lele a, R.A. Mashelkar b, a Chemical

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

NOVEL APPROACHES TO THE TACKIFICATION OF PRESSURE SENSITIVE ADHESIVES

NOVEL APPROACHES TO THE TACKIFICATION OF PRESSURE SENSITIVE ADHESIVES NOVEL APPROACHES TO THE TACKIFICATION OF PRESSURE SENSITIVE ADHESIVES By: Laura J. Donkus, Dr. William B. Griffith, Melissa A. Lane, and David Keely The Dow Chemical Company, Spring House, PA Introduction

More information

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Outline Laponite Basic background. Laponite in suspension Bonn et al.,

More information

A Comprehensive Approach to Barite Sag Analysis on Field Muds

A Comprehensive Approach to Barite Sag Analysis on Field Muds AADE-13-FTCE-30 A Comprehensive Approach to Barite Sag Analysis on Field Muds Sharath Savari, Sandeep Kulkarni, Jason Maxey, and Kushabhau Teke, Halliburton Copyright 2013, AADE This paper was prepared

More information

Microstructure and Phase Behavior of Concentrated Silica Particle Suspensions

Microstructure and Phase Behavior of Concentrated Silica Particle Suspensions Korean J. Chem. Eng., 21(5), 921-928 (2004) Microstructure and Phase Behavior of Concentrated Silica Particle Suspensions Jae-Hyun So, Won-Kyoung Oh and Seung-Man Yang Department of Chemical and Biomolecular

More information

Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding the rheology of yield stress materials

Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding the rheology of yield stress materials UvA-DARE (Digital Academic Repository) Understanding the rheology of yield stress materials Paredes Rojas, J.F. Link to publication Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding

More information

1 Rheology of Disperse Systems

1 Rheology of Disperse Systems 7 1 Rheology of Disperse Systems Norbert Willenbacher and Kristina Georgieva 1.1 Introduction The rheology of disperse systems is an important processing parameter. Being able to characterize and manipulate

More information

RHEOLOGY OF BRANCHED POLYMERS

RHEOLOGY OF BRANCHED POLYMERS RHEOLOGY OF BRANCHED POLYMERS Overview: The Tube Model Shear and elongational viscosity Albena Lederer Leibniz-Institute of Polymer Research Dresden Member of Gottfried Wilhelm Leibniz Society WGL Hohe

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information