High Pressure Phase Equilibria of CO 2 with Limonene and Other Components Present in the Light Naphtha Cut of Tyre Derived Oil

Size: px
Start display at page:

Download "High Pressure Phase Equilibria of CO 2 with Limonene and Other Components Present in the Light Naphtha Cut of Tyre Derived Oil"

Transcription

1 High Pressure Phase Equilibria of CO 2 with Limonene and Other Components Present in the Light Naphtha Cut of Tyre Derived Oil C.E. Schwarz a, * and C. Latsky a a Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa * cschwarz@sun.ac.za ABSTRACT Waste tyres are causing a serious disposal problem and therefore methods to recycle and re-use waste tyres are gaining more attention. One such method is pyrolysis. To improve the economic viability of the pyrolysis process limonene is to be derived from the tyre derived oil produced by pyrolysis. While distillation can easily produce a limonene rich light naphtha cut, obtaining pure limonene is not trivial. Supercritical fluid fractionation was therefore investigated as an alternative separation technique. The aim of this paper is to present and evaluate high pressure phase equilibria of CO2 plus limonene and other components in the light naphtha cut of tyre derived oil. In particular phase equilibria data for CO2 + m-cymene, CO2 + p-cymene, CO2 + indane and CO2 + 1,2,3- trimethylbenzene is measured on a static synthetic high pressure view cell and compared with previously published CO2 + limonene data. Analysis of the phase behaviour data revealed that supercritical fluid fractionation may be a suitable separation technique to achieve separation between limonene and some components of similar boiling point in the light naphtha cut of tyre derived oil. 1. INTRODUCTION The international increase in the number of vehicles along with a lack of effective and economical methods to recycle waste tyres, is causing serious waste disposal problems [1]. Recent attempts to re-use and recycle waste tyres includes the use of ground tyre rubber as an additive in, for example, artificial sport fields and floor mats. Furthermore, waste tyres are also being used as a solid fuel to power cement kilns and power plants. A more environmentally friendly recycling approach is pyrolysis [2]. Pyrolysis is a process in which the volatile components in tyres are thermally degraded in the absence of oxygen [3]. The process produces three products namely pyrolytic char, flammable gas and tyre derived oil, all of which are potentially useable [3, 2]. Although pyrolysis produces useable products, a drawback of this recycling method is that pyrolysis products are in low demand and therefore the process is not economically attractive to pursue [4]. Literature indicates that a possible method to improve the economic viability of the pyrolysis process is to recover valuable chemicals, in particular limonene, from the tyre derived oil [3, 4, 1]. 1

2 Various studies have investigated the extraction of limonene from the naphtha distillation cut of tyre derived oil, but it has been found that obtaining high purity limonene is not a trivial tasks [3]. A study conducted by Pakdel, et al. [5] determined that a limonene enriched fraction, also known as the light naphtha cut, could easily be obtained through distillation [5]. Further purification was however determined to be more complex due to the composition of the light naphtha cut. The study revealed that the major impurities in the light naphtha cut are m-cymene, indane and 1,2,3-trimethylbenzene. These components are formed due to thermal decomposition of limonene during the pyrolysis process [5, 3]. A study conducted by Danon, et al. [3] reported that p-cymene would also be present in the light naphtha cut, as limonene would most likely be aromatized to form p-cymene [3]. The above mentioned impurities all have similar boiling points to limonene and therefore traditional separation techniques such as distillation are ineffective to separate the components [3, 5]. An alternative separation technique receiving much attention is supercritical fluid extraction [6]. The popularity of this separation technique mainly stems from the good solvent properties of supercritical solvents and the fact that the solvent can easily be regenerated with minimal solvent residue in the product [7]. Furthermore, the use of CO2 as solvent, which is non-toxic, non-flammable, chemically stable and relatively inexpensive [8], increases the advantages associated with the process. The aim of this work was to determine whether supercritical CO2 fractionation is a technically viable method to separate limonene from the major impurities in the light naphtha distillation cut of tyre derived oil. In order to achieve this aim the phase behaviour of limonene and the major impurities in the light naphtha cut, namely m-cymene, p-cymene, indane and 1,2,3- trimethylbenzene, with supercritical CO2 was investigated. Due to a lack of phase behaviour data for the major impurities with supercritical CO2, high pressure phase equilibria experiments were conducted to generate data for these systems. 2. MATERIALS AND METHODS The high pressure phase equilibria experiments were conducted on two separate, previously constructed variable volume equilibrium cells. The design of these two cells are similar, with the only difference being the internal volume. The internal volume of the large and small cells are 80cm 3 and 45cm 3, respectively [9]. The maximum operating temperature and pressure of both cells are 200⁰C and 25 MPa, respectively. For the detailed design of the smaller equilibrium cell the reader can refer to the work done by Schwarz [7]. During the experiments a known amount of solute, along with the magnetic stirrer bar was added to the equilibrium cell. Once the solute was loaded in the cell, the piping and the cell were evacuated and then the system was flushed with CO2. Thereafter, a known amount of CO2 was transferred to the cell. Once the solute and the CO2 were loaded, the magnetic stirrer was turned on, the set point temperature of the thermostat bath was set to the first temperature and the cell content was pressurised to the one phase region. Once thermal equilibrium was reached the pressure of the system was slowly reduced to determine the transition point. The transition point, where the system moves from the one phase region to the two phase region, was visually observed on the monitor and the pressure, temperature, piston position and the number of phases were recorded. The process was repeated until the transition point was 2

3 measured to within 0.02 MPa [10, 7]. The measuring procedure was repeated at each set temperature. Upon completion of the experiments the cell was unloaded and cleaned. For further detail regarding the experimental procedure the reader is referred to the work conducted by Schwarz & Nieuwoudt [11]. The materials used, along with their suppliers and purity is presented in Table 1. Table 1: Supplier and purity of required materials Material Supplier Purity p-cymene Sigma-Aldrich 99% m-cymene Tokyo Chemical Industry Co.,Ltd >99% indane Sigma-Aldrich 95% 1,2,3-trimethylbenzene Finetech Industry Limited 98% carbon dioxide Air Products % In order to quantify the effect of the inaccuracies on measurements reported in this work, the uncertainty in the measurement of the temperature, pressure and mass fraction was evaluated [11, 12]. The standard uncertainty in the temperature and pressure measurements were determined to be better than 0.2 K and 0.06 MPa, respectively. Furthermore, the relative uncertainty in the mass fraction was determined to be better than 0.01 of the mass fraction value. 3. RESULTS 3.1 TEMPERATURE CORRELATIONS AND VALIDATION Due to changes in ambient conditions, temperature fluctuations between the different data sets were unavoidable [10, 9]. In order to generate isothermal pressure-composition diagrams, as presented in Figure 1 (a), polynomial curves were fitted to the experimental pressure and temperature data at constant composition. This approach to generate isothermal data, has been used in various studies and it is mostly reported that the pressure-temperature relation at constant composition can be adequately described by linear correlations [9, 13, 14]. Based on this approach, all experimental data was regressed using a linear relationship between temperature and pressure. The linear correlations were then analysed according to the acceptance criteria presented in equations 1 to 3 [9]. If the linear correlation did not meet all the acceptance criteria limits, a second order polynomial was implemented. R 2 > 0.98 (1) P predicted - P measured = 0.2 MPa (2) P predicted - P measured P measured x 100 2% (3) In order to validate the results obtained in this work, the repeatability and reproducibility of the results were analysed and the experimental data was compared to available literature. The repeatability of the data was evaluated by repeating each phase transition measurements at least twice, before confirming it to be the phase transition point [7]. The reproducibility of the data obtained was evaluated by repeating an experiment under different conditions, that is with a slight deviation in solute mass fraction and different ambient conditions [15]. In Figure 1 (b) the results obtained from the experiments conducted with p-cymene mass fractions of and are compared. From Figure 1 (b) it is noted that the data obtained from the different 3

4 experiments correlate well. The deviation in the data is deemed to be within an acceptable range when considering the reported accuracy of the measurements and the acceptance criteria limits for the temperature-pressure correlations. Figure 1: Phase equilibria data for p-cymene + CO2 system: (a) isothermal pressure-composition curves (b) repeatability data Due to a lack of reliable literature data, no conclusion as to the validity of the experimental data, when compared to literature, could be made. However, as the working principle and the measuring technique used to generate the experimental data presented in this work has been validated by previous studies [10, 6] the results presented in this work are deemed to be credible. 3.2 PRESSURE-COMPOSITION DIAGRAMS In order to evaluate the phase behaviour of the different compounds isothermal binary pressurecompositions diagrams, as presented in Figures 2 (a) to (d), were generated. The limonene data presented in Figures 2 (a) to (d) was obtained from a study conducted by Madzimbamuto, et al. [13] and the reason for using this source mainly stems from the fact that the data presented by the source was obtained using the same experimental method, equipment and measurement range as the data presented in this work. When analysing the experimental pressure-composition curves it will be noted that for some systems the data points at lower solute mass fraction has been neglected. This is due to the fact that the phase transition could not be visually detected and the polynomial curves fitted to the data are not suited for extrapolation. A study conducted by Schwarz & Knoetze [14] found that the reason for the difficulty in measuring the phase transition at the low solute mass fractions is due to the low solubility in the low solute mass fraction region. The low solubility results in a steep pressure-composition gradient and therefore a slight change in the pressure near the transition point results in the formation of a small quantity of the second phase, which is difficult to detect [14]. 4

5 Figure 2:Pressure-composition diagrams for limonene+co2, p-cymene+co2, m-cymene+co2, indane+co2 and 1,2,3 trimethylbenzene+co2 systems at (a) K, (b) K, (c) K and (d) K 3.3 SEPARABILITY ANALYSIS Based on a study conducted by Schwarz [7] and theory presented by Brunner [16], the technical viability of a supercritical fractionation process can be evaluated by investigating the solvent loading capabilities and by analysing the separability of the components [7, 16]. Due to the fact that the operating conditions of supercritical extraction processes is represented by the low solute mass fraction section, that is the vapour-like region, of the pressure-composition diagrams, the solute loading and separability of the components in this region was evaluated to determine whether supercritical fractionation is technically viable [13]. 5

6 The solvent loading capability was evaluated by analysing the binary phase behaviour of the individual components with supercritical CO2. From the analysis it was determined that the phase behaviour of all the components allow for significant solute loading (up to 15 mass % at 358.2K) in the vapour-like region. Based on this, the solvent loading capability criteria for the proposed extraction process was deemed to be met. The separability of the components were evaluated by comparing the vapour-like phase behaviour (up to 0.15 mass fraction solute) of the different components. When analysing the pressure-composition diagrams, presented in Figure 2 (a) to (d), it is seen that below 328.2K, there is very little difference between the solubility of the components. As the temperature increases, the pressure-composition curves of the different components start to separate. At K a noticeable distinction can be made between the solubility of the different components. As the temperature increases from K, the difference between the pressure-composition curves of the different components further increases. When evaluating the pressurecomposition diagram constructed at K, it is evident that p-cymene is the most soluble component in supercritical CO2. Furthermore, it is seen that the pressure-composition curve for limonene closely corresponds to that of m-cymene, suggesting that there is little difference in solubility between these components. Moreover, it is also noted that although there is very little difference in solubility between indane and 1,2,3-trimethylbenzene, both of these components are less soluble in supercritical CO2 than limonene. These findings suggest that the ease and selectivity with which the components can be separated increases as temperature increases. Furthermore, the results suggest that all of the components, except for m-cymene, can possibly be separated from limonene at temperatures from K, using supercritical CO2 fractionation. 4. CONCLUSION AND RECOMMENDATIONS The aim of this work was to investigate whether supercritical CO2 fractionation is a technically viable method to separate limonene from the major impurities, namely m-cymene, p-cymene, indane and 1,2,3-trimethylbenzene, in the light naphtha distillation cut of tyre derived oil. In order to achieve this aim, the phase behaviour of limonene and the major impurities with supercritical CO2 was evaluated. From the phase diagrams it was determined that the phase behaviour of all the components allow for significant solute loading in the vapour-like region. Furthermore, the results suggest that all of the components, except for m-cymene, can possibly be separated from limonene at temperatures from 358.2K, using supercritical CO2 fractionation. Based on these findings supercritical CO2 fractionation is concluded to be a technically viable method to separate limonene from some of the major impurities in the light naphtha cut of tyre derived oil. In order to further evaluate the possibility of using supercritical CO2 fractionation to separate limonene from the major impurities in the light naphtha distillation cut of tyre derived oil, it is recommended that pilot plant experiments be conducted. The experiments will determine the optimal operating conditions for the supercritical fractionation process and evaluate the degree of separation attainable. 6

7 5. REFERENCES [1] Martinez, J., Puy, N., Murillo, R., Garcia, T., Navarro, M., Mastral, A., Renewable and Sustainable Energy Reviews, 23, 2013, p. 179 [2] Zhang, X., Wang, T., Ma, L., Chang, J., Waste Managment, 28, 2008, p [3] Danon, B., van der Gryp, P., Schwarz, C., Gorgens, J., Journal of Analytical and Applied Pyrolysis, 112, 2015, p. 1 [4] Roy, C., Chaala, A. and Darmstadt, H., Journal of Analytical and Applied Pyrolysis,51, 1999, p. 201 [5] Pakdel,H., Pantea, D., Roy, C., Journal of Analytical and Applied Pyrolysis, 57, 2001, p. 91 [6] Zamudio, M., Schwarz, C., Knoetze, J., The Journal of Supercritical Fluids, 59, 2011, p. 14 [7] Schwarz,C., The phase equilibrium of alkanes and supercritical fluids, Master's Thesis, Stellenbosch University, [8] Clifford, T., Fundamentals of supercritical fluids, New York: Oxford University Press Inc., New York,1999. [9] Smith, S., Schwarz, C., Fluid Phase Equilibria, 406, 2015, p. 1 [10] Fourie, F., Schwarz, C., Knoetze, J., The Journal of Supercrtical Fluids, 47, 2008, p. 161 [11] Schwarz, C., Nieuwoudt, I., Journal of Suprecritical Fluids, 27, 2003, p. 133 [12] Schwarz, C., Paulse, Q., Knoetze, J., Journal of Supercritical Fluids, 99, 2015, p. 61 [13] Madzimbamuto,T., Schwarz,C., Knoetze, J., The Journal of Supercritical Fluids, 107, 2015, p. 612 [14] Schwarz, C., Knoetze, J., The Journal of Supercritical Fluids, 66, 2012, p. 36 [15] Bartlett, J., Frost,C., Ultrasound Obstet Gynecol, 31, 2008, p. 466 [16] Brunner, G., Journal of Food Engineering, 67, 2005, p

The effect of branched alcohol isomers on the separation of alkanes and alcohols with supercritical CO 2

The effect of branched alcohol isomers on the separation of alkanes and alcohols with supercritical CO 2 The effect of branched alcohol isomers on the separation of alkanes and alcohols with supercritical CO 2 M. Zamudio, C.E. Schwarz, J.H. Knoetze* Department of Process Engineering, University of Stellenbosch,

More information

Bellville, 7535, South Africa * Tel: , Fax:

Bellville, 7535, South Africa *  Tel: , Fax: Separation of Agathosma (Buchu) Essential il Components: A Phase Equilibria Study for the Feasibility of Isolation of Components Using Supercritical Carbon Dioxide T.F.N. Madzimbamuto 1,2 C.E. Schwarz

More information

EQUATION OF STATE DEVELOPMENT

EQUATION OF STATE DEVELOPMENT EQUATION OF STATE DEVELOPMENT I. Nieuwoudt* & M du Rand Institute for Thermal Separation Technology, Department of Chemical Engineering, University of Stellenbosch, Private bag X1, Matieland, 760, South

More information

LIQUID-LIQUID EQUILIBRIUM IN BINARY MIXTURES OF 1-ETHYL-3-METHYLIMIDAZOLIUM ETHYLSULFATE AND HYDROCARBONS

LIQUID-LIQUID EQUILIBRIUM IN BINARY MIXTURES OF 1-ETHYL-3-METHYLIMIDAZOLIUM ETHYLSULFATE AND HYDROCARBONS LIQUID-LIQUID EQUILIBRIUM IN BINARY MIXTURES OF 1-ETHYL-3-METHYLIMIDAZOLIUM ETHYLSULFATE AND HYDROCARBONS Magdalena Bendová Eduard Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals,

More information

GCSE. Core Gateway Science B C1: Carbon Chemistry. We are what we repeatedly do. Excellence, therefore, is not an act but a habit

GCSE. Core Gateway Science B C1: Carbon Chemistry. We are what we repeatedly do. Excellence, therefore, is not an act but a habit GCSE Core Gateway Science B C1: Carbon Chemistry We are what we repeatedly do. Excellence, therefore, is not an act but a habit Unit Page Completed By 1a Making Crude Oil Useful 46 1b Using Carbon Fuels

More information

Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems

Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems Bang-Hyun Lim, Hoa Van Nguyen, and Jae-Jin Shim* School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Gyeongbuk

More information

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Korean J. Chem. Eng., 17(6), 712-718 (2000) Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation Yu-Jung Choi, Tae-In Kwon and Yeong-Koo Yeo Department of Chemical Engineering,

More information

EFFECT OF HIGH-INTENSITY ULTRASOUND ON THE PARTICULATE ALMONDS OIL EXTRACTION KINETICS USING SUPERCRITICAL CO 2

EFFECT OF HIGH-INTENSITY ULTRASOUND ON THE PARTICULATE ALMONDS OIL EXTRACTION KINETICS USING SUPERCRITICAL CO 2 EFFECT OF HIGH-INTENSITY ULTRASOUND ON THE PARTICULATE ALMONDS OIL EXTRACTION KINETICS USING SUPERCRITICAL CO 2 E. Riera 1, Y. Golás 2 *, A. Blanco 3, J. A. Gallego 1, J. García-Reverter 4 and S. Subirats

More information

AQA Chemistry (Combined Science) Specification Checklists. Name: Teacher:

AQA Chemistry (Combined Science) Specification Checklists. Name: Teacher: AQA Chemistry (Combined Science) Specification Checklists Name: Teacher: Paper 1-4.1 Atomic structure and the periodic table 4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic

More information

Boiling Point ( C) Boiling Point ( F)

Boiling Point ( C) Boiling Point ( F) Technical Data of Cannabinoids Solvents Chemical Formula FW (g/mol) Boiling Point ( C) Boiling Point ( F) Melting Point ( C) Density (g/ml) Solubility in Water (g/100 g) Flash Point ( C) Isopropyl alcohol

More information

Same theme covered in Combined but extra content Extra parts atomic symbols (first 20, Group 1 and Group 7)

Same theme covered in Combined but extra content Extra parts atomic symbols (first 20, Group 1 and Group 7) Co-teaching document new ELC Science 5960 and Foundation Level GCSE Combined Science: Trilogy (8464) Chemistry: Component 3 Elements, mixtures and compounds ELC Outcomes Summary of content covered in ELC

More information

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE Stéphane VITU and Danielle BARTH ( * ) Institut National Polytechnique de Lorraine Ecole Nationale Supérieure des Industries Chimiques Laboratoire

More information

REV. CHIM. (Bucureºti) 58 Nr

REV. CHIM. (Bucureºti) 58 Nr 1069 High-Pressure Vapour-Liquid Equilibria of Carbon Dioxide + 1-Pentanol System Experimental Measurements and Modelling CATINCA SECUIANU*, VIOREL FEROIU, DAN GEANÃ Politehnica University Bucharest, Department

More information

Technical Resource Package 1

Technical Resource Package 1 Technical Resource Package 1 Green Chemistry Impacts in Batch Chemical Processing UNIDO IAMC Toolkit Images may not be copied, transmitted or manipulated 1/5 The following list provides an overview of

More information

Preparative Chromatography

Preparative Chromatography Edited by Henner Andreas Seidel-Morgenstern Michael Schulte, and Preparative Chromatography Completely Revised and Updated Edition VCH Verlag GmbH & Co. KGaA About List of List of Notations XIX XXI 1 Introduction

More information

ON THE MODELLING OF FRACTIONATION OF FRIED OIL WITH SUPERCRITICAL CARBON DIOXIDE: A FIRST STEP Libero Sesti Osséo*, Tiziana Capolupo, Giuseppe Caputo

ON THE MODELLING OF FRACTIONATION OF FRIED OIL WITH SUPERCRITICAL CARBON DIOXIDE: A FIRST STEP Libero Sesti Osséo*, Tiziana Capolupo, Giuseppe Caputo ON THE MODELLING OF FRACTIONATION OF FRIED OIL WITH SUPERCRITICAL CARBON DIOXIDE: A FIRST STEP Libero Sesti Osséo*, Tiziana Capolupo, Giuseppe Caputo Dipartimento di Ingegneria Chimica e Alimentare Università

More information

Assessing Technical Feasibility of Supercritical Extraction Processes Utilizing Laboratory Equipment

Assessing Technical Feasibility of Supercritical Extraction Processes Utilizing Laboratory Equipment TN - 26 Assessing Technical Feasibility of Supercritical Extraction Processes Utilizing Laboratory Equipment Rodger Marentis Supercritical Technology Consultants PO Box 3350, Allentown, PA 18106 Tel: 610-967-2997

More information

Edexcel Chemistry Checklist

Edexcel Chemistry Checklist Topic 1. Key concepts in chemistry Video: Developing the atomic model Describe how and why the atomic model has changed over time. Describe the difference between the plum-pudding model of the atom and

More information

AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table (Paper 1) To pic. Student Checklist

AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table (Paper 1) To pic. Student Checklist Personalised Learning Checklist AQA TRILOGY Chemistry (8464) from 2016 s T5.1 Atomic structure and the periodic table (Paper 1) State that everything is made of atoms and recall what they are 5.1.1 A simple

More information

CHAPTER 3 EXPERIMENTAL SET UP AND PROCEDURE

CHAPTER 3 EXPERIMENTAL SET UP AND PROCEDURE 16 CHAPTER 3 EXPERIMENTAL SET UP AND PROCEDURE 3.1 DETERMINATION OF VAPOUR LIQUID EQUILIBRIA Iso baric vapor liquid equilibria data have been obtained, using a Smith and Bonner (1949) type still, a modified

More information

Application Note. Authors. Abstract. Energy & Chemicals, Biofuels & Alternative Energy

Application Note. Authors. Abstract. Energy & Chemicals, Biofuels & Alternative Energy Analytical Quantification of Deoxygenated Compounds in Catalytic Reaction Samples as an Evaluation Technique to Detere Reaction Conversion from a Bioderived Oil in Novel Biofuel Testing Application Note

More information

DYNAMIC STUDIES ON A SCF COUNTERCURRENT EXTRACTION PROCESS

DYNAMIC STUDIES ON A SCF COUNTERCURRENT EXTRACTION PROCESS DYNAMIC STUDIES ON A SCF COUNTERCURRENT EXTRACTION PROCESS Rui Ruivo, Alexandre Paiva, Pedro C. Simões Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia,

More information

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially 3.2 Alkanes Refining crude oil Fractional Distillation: Industrially Petroleum is a mixture consisting mainly of alkane hydrocarbons Petroleum fraction: mixture of hydrocarbons with a similar chain length

More information

EXPERIMENTAL METHODS FOR STUDY HIGH-PRESSURE PHASE BEHAVIOUR. PART III. CONTINUOUS FLOW METHODS

EXPERIMENTAL METHODS FOR STUDY HIGH-PRESSURE PHASE BEHAVIOUR. PART III. CONTINUOUS FLOW METHODS EXPERIMENTAL METHODS FOR STUDY HIGH-PRESSURE PHASE BEHAVIOUR. PART III. CONTINUOUS FLOW METHODS Cristina Bogatu, Rodica Vîlcu and Anca DuŃă abstract: The paper presents a review of the experimental dynamic

More information

Designed polymers for purification of flavor oils

Designed polymers for purification of flavor oils Designed polymers for purification of flavor oils IFEAT Conference 2014 Rome, September 23, 2014 Ecevit Yilmaz, PhD Global Product Manager Industrial Resins MIP Technologies AB a subsidiary of Biotage

More information

Personalised Learning Checklists AQA Chemistry Paper 2

Personalised Learning Checklists AQA Chemistry Paper 2 AQA Chemistry (8462) from 2016 Topics C4.6 The rate and extent of chemical change Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product

More information

January 19, 2012, Workshop on Chemical Data Reporting (CDR) Rule Case Studies for Byproduct/Recycling Reporting

January 19, 2012, Workshop on Chemical Data Reporting (CDR) Rule Case Studies for Byproduct/Recycling Reporting January 19, 2012, Workshop on Chemical Data Reporting (CDR) Rule Case Studies for Byproduct/Recycling Reporting Scenario 1 In its operations, ABC Company uses an etchant to strip copper off of a substrate.

More information

OCR Chemistry Checklist

OCR Chemistry Checklist Topic 1. Particles Video: The Particle Model Describe the main features of the particle model in terms of states of matter. Explain in terms of the particle model the distinction between physical changes

More information

PART 2 Dr. Stephen Glover

PART 2 Dr. Stephen Glover Queens University Belfast Valorisation of Lignocellulosic Waste and the Potential of Supercritical Water and Wet Air Oxidation PART 2 Dr. Stephen Glover Workshop - Technology Foresight Conference, Cologne

More information

SIMPLE MODELS FOR SUPERCRITICAL EXTRACTION OF NATURAL MATTER

SIMPLE MODELS FOR SUPERCRITICAL EXTRACTION OF NATURAL MATTER SIMPLE MODELS FOR SUPERCRITICAL EXTRACTION OF NATURAL MATTER Camilo Pardo Manuel Velásquez and Gustavo Bolaños* Applied Thermodynamics and Supercritical Fluids Group School of Chemical Engineering Universidad

More information

Distillation is a method of separating mixtures based

Distillation is a method of separating mixtures based Distillation Distillation is a method of separating mixtures based on differences in their volatilities in a boiling liquid mixture. Distillation is a unit operation, or a physical separation process,

More information

Carbon Dioxide-Philic Hybrid Polyhedral Oligomeric Silsesquioxanes

Carbon Dioxide-Philic Hybrid Polyhedral Oligomeric Silsesquioxanes Carbon Dioxide-Philic Hybrid Polyhedral Oligomeric Silsesquioxanes Basak KANYA, Novendra NOVENDRA, Cerag DILEK* Department of Chemical Engineering, Middle East Technical University, Ankara, 06800, Turkey

More information

A.2. BOILING TEMPERATURE

A.2. BOILING TEMPERATURE A.2. BOILING TEMPERATURE 1. METHOD The majority of the methods described are based on the OECD Test Guideline (1). The fundamental principles are given in references (2) and (3). 1.1. INTRODUCTION may

More information

Liquid-Liquid Equilibrium for Extraction of Benzene from 1-Hexene Using Two Different Solvents

Liquid-Liquid Equilibrium for Extraction of Benzene from 1-Hexene Using Two Different Solvents Scientific Research China Petroleum Processing and Petrochemical Technology 2018, Vol. 20, No. 1, pp 61-66 March 30, 2018 Liquid-Liquid Equilibrium for Extraction of Benzene from 1-Hexene Using Two Different

More information

Methods for High Pressure VLE Measurement

Methods for High Pressure VLE Measurement Experimental Methods for High Pressure VLE Measurement by Rajpuri Sai Kiran Singh", Varun Bhalla*, S.NKaul**, VA.Shinde*** *UG Students; ** HOD., Dept. of Chemical Engineering; *** Assistant Professor,

More information

AQA Chemistry Checklist

AQA Chemistry Checklist Topic 1. Atomic structure Video: Atoms, elements, compounds, mixtures Use the names and symbols of the first 20 elements in the periodic table, the elements in Groups 1 and 7, and other elements in this

More information

Solid-Fluid Equilibrium for the System Activated Carbon and Aqueous Solutions of Phenol under Supercritical Water Conditions

Solid-Fluid Equilibrium for the System Activated Carbon and Aqueous Solutions of Phenol under Supercritical Water Conditions 571 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

Distillation. Presented by : Nabanita Deka

Distillation. Presented by : Nabanita Deka Distillation OPTIMIZATION FOR MAXIMISATION Presented by : Nabanita Deka LPG department OIL INDIA LIMITED DATED-04.03.2011 Basics of mass transfer Mass transfer : Transfer of material from one homogeneous

More information

SOLUBILITIES OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN SUPERCRITICAL CARBON DIOXIDE

SOLUBILITIES OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN SUPERCRITICAL CARBON DIOXIDE SOLUBILITIES OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN SUPERCRITICAL CARBON DIOXIDE Ming-Jer Lee*, Cheng-Chou Tsai, Ho-mu Lin Department of Chemical Engineering, National Taiwan University of Science

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

AQA C1 Atomic Structure

AQA C1 Atomic Structure AQA C1 Atomic Structure What s in an atom? Elements in the periodic have different sizes of atoms. The size of the atoms depends on the number of protons, electrons and neutrons they have. Each element

More information

Module : 10 Supercritical Fluid Extraction

Module : 10 Supercritical Fluid Extraction Module : 10 Supercritical Fluid Extraction Dr. Sirshendu De Professor, Department of Chemical Engineering Indian Institute of Technology, Kharagpur e-mail: sde@che.iitkgp.ernet.in Keywords: Separation

More information

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5 Le Lycee Mauricien Proposed Syllabus 2017 Chemistry (5070) - Form 5 First Term 1. Metals Properties of metals - Physical properties of metals - Structure of alloys and uses Reactivity Series - Place metals

More information

Paper Atomic structure and the periodic table

Paper Atomic structure and the periodic table Paper 1 4.1 Atomic structure and the periodic table 4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes Use the names and symbols of the first 20 elements in

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Crude Oil, Fractional Distillation and Hydrocarbons

Crude Oil, Fractional Distillation and Hydrocarbons Crude Oil, Fractional Distillation and ydrocarbons The formation of Crude Oil, how it is processed to produce a range of useful materials, including Plastics via Polymerisation. Crude Oil Crude oil is

More information

Part 5- Chemistry Paper 2 Rate and Extent of Chemical Change Combined Science Application

Part 5- Chemistry Paper 2 Rate and Extent of Chemical Change Combined Science Application Part 5- Chemistry Paper 2 Rate and Extent of Chemical Change Combined Science Application How bonding and structure are related to the properties of substances A simple model of the atom, symbols, relative

More information

Is microwave chemistry scalable?

Is microwave chemistry scalable? Is microwave chemistry scalable? Dr. Marilena Radoiu Microwave Technologies Consulting mradoiu@microwavetechs.com 1/16 Is microwave chemistry scalable? https://www.canstockphoto.com.au/illustration/ 2/16

More information

Methylene blue adsorption by pyrolytic tyre char

Methylene blue adsorption by pyrolytic tyre char NATIONAL UNIVERSITY OF SINGAPORE Division of Environmental Science and Engineering Division of Environmental Science and Engineering EG2605 UROP Report Methylene blue adsorption by pyrolytic tyre char

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

Nano-Enabled Catalysts for the Commercially Viable Production of H 2 O 2

Nano-Enabled Catalysts for the Commercially Viable Production of H 2 O 2 Nano-Enabled Catalysts for the Commercially Viable Production of H 2 O 2 Bing Zhou Headwaters Technology Innovation, LLC. Lawrenceville, NJ 08648 September 26, 2007 1 Headwaters Technology Development

More information

Y8 Science Controlled Assessment Topics & Keywords

Y8 Science Controlled Assessment Topics & Keywords Y8 Science Controlled Assessment Topics & Biology Respiration. Know that respiration in living organisms can be aerobic or anaerobic The word equation for aerobic respiration The process of anaerobic respiration

More information

Part 8- Chemistry Paper 2 Using Resources Triple Science

Part 8- Chemistry Paper 2 Using Resources Triple Science Part 8- Chemistry Paper 2 Using Resources Triple Science How bonding and structure are related to the properties of substances A simple model of the atom, symbols, relative atomic mass, electronic charge

More information

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher: GCSE Chemistry Module C7 Further Chemistry: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber: I partly

More information

Investigation into NH 3 -MnCl 2 and NH 3 -CaCl 2 Reaction Rates for the Development of a Thermal Transformer

Investigation into NH 3 -MnCl 2 and NH 3 -CaCl 2 Reaction Rates for the Development of a Thermal Transformer Investigation into NH 3 -MnCl 2 and NH 3 -CaCl 2 Reaction Rates for the Development of a Thermal Transformer J. Locke, M. King, S. Hassan, R. Baxter, J. Chan, S. Woodward, L. Brady School of Engineering,

More information

Q1. The figure below shows the displayed structures of five organic compounds, A, B, C, D and E. A B C

Q1. The figure below shows the displayed structures of five organic compounds, A, B, C, D and E. A B C Q. The figure below shows the displayed structures of five organic compounds, A, B, C, D and E. A B C D E (a) Choose which organic compound, A, B, C, D or E, matches the descriptions. You may choose each

More information

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00 10.551 Systems Engineering Spring 2000 Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant Date: 2/25/00 Due: 3/3/00 c Paul I. Barton, 14th February 2000 At our Nowhere City

More information

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Element, Compounds and Mixtures NOTES 1.8: Understand how to classify a substance as an element, compound or mixture Classifications: S Class Element

More information

MODELLING OF EQUILIBRIUM SORPTION OF M-XYLENE ON DAY ZEOLITE AND SUPERCRITICAL DESORPTION

MODELLING OF EQUILIBRIUM SORPTION OF M-XYLENE ON DAY ZEOLITE AND SUPERCRITICAL DESORPTION MODELLING OF EQUILIBRIUM SORPTION OF M-XYLENE ON DAY ZEOLITE AND SUPERCRITICAL DESORPTION Taoufik EL BRIHI, Jean-Noël JAUBERT, Danielle BARTH (*) Laboratoire de Thermodynamique des Milieux Polyphasés ENSIC

More information

Page 2. (polyethene) any four from:

Page 2. (polyethene) any four from: M.(a) (ethene) (polyethene) (b) any four from: poly(ethene) produced by addition polymerisation whereas polyester by condensation polymerisation poly(ethene) produced from one monomer wheareas polyester

More information

Phase Equilibria in a One-Component System I

Phase Equilibria in a One-Component System I 5.60 spring 2005 Lecture #17 page 1 Phase Equilibria in a One-Component System I Goal: Understand the general phenomenology of phase transitions and phase coexistence conditions for a single component

More information

Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids

Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids Modelling the Solubility of Solid Aromatic Compounds in Supercritical Fluids VIOREL FEROIU*, OCTAVIAN PARTENIE, DAN GEANA Politehnica University of Bucharest, Department of Applied Physical Chemistry and

More information

Cracking. 191 minutes. 186 marks. Page 1 of 27

Cracking. 191 minutes. 186 marks. Page 1 of 27 3.1.6.2 Cracking 191 minutes 186 marks Page 1 of 27 Q1. (a) Gas oil (diesel), kerosine (paraffin), mineral oil (lubricating oil) and petrol (gasoline) are four of the five fractions obtained by the fractional

More information

Theory of Headspace Sampling

Theory of Headspace Sampling Theory of Headspace Sampling Contents 1 Basics 2 2 Static headspace sampling 2 2.1 Preconcentration time and volume.......................... 3 2.2 Sample temperature..................................

More information

Decomposition of lignin alkaline and chemicals recovery in sub- and supercritical water

Decomposition of lignin alkaline and chemicals recovery in sub- and supercritical water Decomposition of lignin alkaline and chemicals recovery in sub- and supercritical water Wahyudiono 1, Mitsuru Sasaki*,1 and Motonobu Goto 2 (1) Department of Applied Chemistry and Biochemistry, Kumamoto

More information

ScienceDirect. Impact of heat stable salts on equilibrium CO 2 absorption

ScienceDirect. Impact of heat stable salts on equilibrium CO 2 absorption Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1781 1794 GHGT-12 Impact of heat stable salts on equilibrium CO 2 absorption Ugochukwu Edwin Aronu*, Kristin Giske Lauritsen,

More information

CHEMICAL PROCESS INDUSTRY

CHEMICAL PROCESS INDUSTRY CHEMICAL PROCESS INDUSTRY LECTURE 4 Process Creation Process Creation Preliminary Database Creation to assemble data to support the design. Experiments often necessary to supply missing database items

More information

Experimental Vapor-Liquid Equilibria for the Carbon Dioxide + Octane, and Carbon Dioxide + Decane Systems from 313 to 373 K

Experimental Vapor-Liquid Equilibria for the Carbon Dioxide + Octane, and Carbon Dioxide + Decane Systems from 313 to 373 K Experimental Vapor-Liquid Equilibria for the Carbon Dioxide + Octane, and Carbon Dioxide + Decane Systems from to K R. Jiménez-Gallegos, Luis A. Galicia-Luna* and O. Elizalde-Solis Instituto Politécnico

More information

The Role of Process Integration in Process Synthesis

The Role of Process Integration in Process Synthesis The Role of Process Integration in Process Synthesis Jeffrey J. Siirola Purdue University, West Lafayette, Indiana Carnegie Mellon University, Pittsburgh, Pennsylvania "Process integration" and "process

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING CHEMICAL ENGINEERING Subject Code: CH Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section I

More information

Chapter 29 Supercritical Fluid Chromatography and Extraction 29A Properties of supercritical fluids

Chapter 29 Supercritical Fluid Chromatography and Extraction 29A Properties of supercritical fluids Chapter 29 Supercritical Fluid Chromatography and Extraction 29A Properties of supercritical fluids A supercritical fluid is formed whenever a substance is heated above its critical temperature. http://advtechconsultants.com/scfimage.jpg

More information

Whitepaper. How to Measure Conductivity over a Wide Range and at Ultra-low Levels

Whitepaper. How to Measure Conductivity over a Wide Range and at Ultra-low Levels Whitepaper How to Measure Conductivity over a Wide Range and at Ultra-low Levels Ilium Technology s Model 2100 conductivity meter and associated probes provide unprecedented range and sensitivity in conductivity

More information

Investigation of Mixed Gas Sorption in Lab-Scale. Dr. Andreas Möller

Investigation of Mixed Gas Sorption in Lab-Scale. Dr. Andreas Möller Investigation of Mixed Gas Sorption in Lab-Scale Dr. Andreas Möller 1 Technical Necessity: Application of porous Materials as Adsorbents Fine cleaning of Gases (i.e. purification of H 2, natural gas, bio

More information

APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN SUPERCRITICAL FLUID EXTRACTION MODELLING AND SIMULATION

APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN SUPERCRITICAL FLUID EXTRACTION MODELLING AND SIMULATION 1 APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN SUPERCRITICAL FLUID EXTRACTION MODELLING AND SIMULATION Jianzhong Yin* 1, Xinwei Ding 1, Chung Sung Tan 2 1 School of Chemical Engineering, Dalian University

More information

Composition and Property Changes of HNBR & FKM Elastomers after Sour Gas Ageing C. Norris, M. Bennett, M. Hale & J. Lynch

Composition and Property Changes of HNBR & FKM Elastomers after Sour Gas Ageing C. Norris, M. Bennett, M. Hale & J. Lynch Composition and Property Changes of HNBR & FKM Elastomers after Sour Gas Ageing C. Norris, M. Bennett, M. Hale & J. Lynch ARTIS 2016 Manchester Polymer Group, 16 th May 2016 1 Overview o Demanding Environment

More information

Polymer Isolation as important process step in rubber production processes

Polymer Isolation as important process step in rubber production processes Polymer Isolation as important process step in rubber production processes Michael Bartke / Fraunhofer Polmyer Pilot Plant Center, Schkopau List Symposia Better than Steam, Arisdorf, 22.10.2015 Research

More information

Studies of N,N-Dibutyltrimethylenediamine and N, N, N Triethylenediamine for CO 2

Studies of N,N-Dibutyltrimethylenediamine and N, N, N Triethylenediamine for CO 2 Pertanika J. Sci. & Technol. 16 (1): 61-71 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Studies of N,N-Dibutyltrimethylenediamine and N, N, N Triethylenediamine for CO 2 Absorption and Desorption

More information

Viscosities of Aqueous Solutions of Monoethanolamine (MEA), Diethanolamine (DEA) and N-Methyldiethanolamine (MDEA) at T = (90-150) C

Viscosities of Aqueous Solutions of Monoethanolamine (MEA), Diethanolamine (DEA) and N-Methyldiethanolamine (MDEA) at T = (90-150) C ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 22, 214 Viscosities of Aqueous Solutions of Monoethanolamine (), Diethanolamine () and N-Methyldiethanolamine () at T = (9-15) C Udara S. P. R.

More information

Distillation Course MSO2015

Distillation Course MSO2015 Distillation Course MSO2015 Distillation Distillation is a process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application

More information

OPTIMAL SOLVENT CYCLE DESIGN IN SUPERCRITICAL FLUID PROCESSES

OPTIMAL SOLVENT CYCLE DESIGN IN SUPERCRITICAL FLUID PROCESSES Latin American Applied Research 33:11-15 (3) OPTIMAL SOLVENT CYCLE DESIGN IN SUPERCRITICAL FLUID PROCESSES M. S. DIAZ, S. ESPINOSA and E. A. BRIGNOLE Planta Piloto de Ingenieria Quimica - PLAPIQUI (UNS-CONICET)

More information

New Developments in Hydrogen Storage

New Developments in Hydrogen Storage New Developments in Hydrogen Storage A.R. Cruz Duarte 1, J.F. Zevenbergen, and C.J. Peters 1,3 1 Delft University of Technology, The Netherlands TNO Defense, Security and Safety, The Netherlands 3 The

More information

was heated strongly in the absence of air. + 2C + C

was heated strongly in the absence of air. + 2C + C Q1. (a) The hydrocarbon C 16 34 was heated strongly in the absence of air. This is one of the reactions which took place: C 16 34 C 6 14 + C 6 12 + 2C 2 4 This type of reaction is carried out because there

More information

Removal of suspended and dissolved organic solids

Removal of suspended and dissolved organic solids Removal of suspended and dissolved organic solids Types of dissolved solids The dissolved solids are of both organic and inorganic types. A number of methods have been investigated for the removal of inorganic

More information

MODELING OF PHASE EQUILIBRIA FOR BINARY AND TERNARY MIXTURES OF CARBON DIOXIDE, HYDROGEN AND METHANOL

MODELING OF PHASE EQUILIBRIA FOR BINARY AND TERNARY MIXTURES OF CARBON DIOXIDE, HYDROGEN AND METHANOL MODELING OF PHASE EQUILIBRIA FOR BINARY AND TERNARY MIXTURES OF CARBON DIOXIDE, HYDROGEN AND METHANOL Neil R. Foster *, Keivan Bezanehtak, Fariba Dehghani School of Chemical Engineering and Industrial

More information

EXPERIMENTAL SETUP AND PROCEDURE

EXPERIMENTAL SETUP AND PROCEDURE CHAPTER 3 EXPERIMENTAL SETUP AND PROCEDURE 3.1 Determination of vapour-liquid equilibria Isobaric Vapour-Liquid Equilibria date have been obtained, using a Smith and Bonner [39] type still which is a modified

More information

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures MOF-Workshop, Leipzig, March 2010 Possibilities and Limits for the Determination of Adsorption Data Pure Gases and Gas Mixtures Reiner Staudt Instutut für Nichtklassische Chemie e.v. Permoserstraße 15,

More information

SEPARATION TECHNIQUES

SEPARATION TECHNIQUES SEPARATION TECHNIQUES If a substance does not dissolve in a solvent, we say that it is insoluble. For example, sand does not dissolve in water it is insoluble. Filtration is a method for separating an

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

DESORPTION OF TOLUENE FROM MODIFIED CLAYS USING SUPERCRITICAL CARBON DIOXIDE

DESORPTION OF TOLUENE FROM MODIFIED CLAYS USING SUPERCRITICAL CARBON DIOXIDE Brazilian Journal of Chemical Engineering ISSN 14-6632 Printed in Brazil Vol. 21, No. 4, pp. 641-646, October - December 24 DESORPTION OF TOLUENE FROM MODIFIED CLAYS USING SUPERCRITICAL CARBON DIOXIDE

More information

Unless otherwise stated, all images in this file have been reproduced from:

Unless otherwise stated, all images in this file have been reproduced from: Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3 rd Edition 2016 (John Wiley & Sons) The University of Sydney Page

More information

Mixtures of tyres and plastics wastes kinetics

Mixtures of tyres and plastics wastes kinetics Mixtures of tyres and plastics wastes kinetics Miguel Miranda a, Filomena Pinto a, Ibrahim Gulyurtlu a, Isabel Cabrita a, Arlindo Matos b a INETI-DEECA, Estrada Paço Lumiar, 22, 1649-38 Lisboa, Portugal

More information

New methods for extraction and separation of lanthanides with 2-octylaminopyridine

New methods for extraction and separation of lanthanides with 2-octylaminopyridine A SYNOPSIS OF THE THESIS New methods for extraction and separation of lanthanides with 2-octylaminopyridine A great deal of attention has been devoted to study of extraction behaviour of rare earth metals

More information

Separation of Ionic Liquids from Organic and Aqueous Solutions using Supercritical Fluids: Dependence of Recovery on the Pressure

Separation of Ionic Liquids from Organic and Aqueous Solutions using Supercritical Fluids: Dependence of Recovery on the Pressure Separation of Ionic Liquids from Organic and Aqueous Solutions using Supercritical Fluids: Dependence of Recovery on the Pressure Department of Chemical Engineering, University of Notre Dame, Notre Dame,

More information

Supercritical Fluid Technology: Extraction and Aerogels

Supercritical Fluid Technology: Extraction and Aerogels Supercritical Fluid Technology: Extraction and Aerogels Mika Oksanen Ilari Maasilta 7.6.2010 OSKE Nano for Sale Contents Introduction to supercritical fluids Supercritical extraction Supercritical wood

More information

Experiment 5 Reactions of Hydrocarbons

Experiment 5 Reactions of Hydrocarbons Experiment 5 Reactions of ydrocarbons ydrocarbons are compounds that only contain carbon and hydrogen. ydrocarbons can be classified further by the type of bonds they contain. If a hydrocarbon contains

More information

Lesson Target 4 Target 6 Target 8. atom.

Lesson Target 4 Target 6 Target 8. atom. Student checklist C1 Atomic structure Lesson Target 4 Target 6 Target 8 C1.1 Atoms I can define the word element. I can classify familiar substances as elements or compounds. I can use the periodic table

More information

Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at Kpa

Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at Kpa Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at 95.72 Kpa Sai kumar Bitta Department Of Chemical Engineering Chaitanya Bharathi Institute of Technology Guide:

More information

Automated Characterization of Compounds in Fire Debris Samples

Automated Characterization of Compounds in Fire Debris Samples 125 Sandy Drive, Newark, Delaware 19713 USA tel: 302-737-4297 fax: 302-737-7781 www.midi-inc.com Automated Characterization of Compounds in Fire Debris Samples Application Note Forensics Fire Debris Analysis

More information

Supercritical CO 2 extraction of Codonopsis

Supercritical CO 2 extraction of Codonopsis Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(11):258-262 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Supercritical CO 2 extraction of Codonopsis Fei

More information