Some Properties of Conjugate Unitary Matrices

Size: px
Start display at page:

Download "Some Properties of Conjugate Unitary Matrices"

Transcription

1 Volume 119 No , ISSN: (printed version); ISSN: (on-line version) url: ijpam.eu Some Properties of Conjugate Unitary Matrices A.Govindarasu and S.Sassicala PG and Research Department of Mathematics, A.V.C.College(Autonomous) Mannampandal, Mayiladuthurai, Tamil Nadu, India. sasram10@gmail.com Abstract Concept of conjugate unitary matrices are given. Some equivalent conditions on conjugate unitary matrices are obtained. Conditions related to secondary unitary matrices, hermitian, s-hermitian and involutary are also derived. The concept of unitary similarity between two complex n n matrices is extended to unitary similarity and s-unitary similarity between two conjugate unitary matrices, are also introduced and some results are obtained. AMS Subject Classification: 15A09, 15A57, 15A24. Key Words and Phrases: unitary matrix, s-unitary matrix,secondary transpose of a matrix, conjugate secondary transpose of a matrix, conjugate unitary matrix. 1 Introduction Anna Lee [1] has initiated the study of secondary symmetric matrices. Also she has shown that for a complex matrix A, the usual transpose A T and secondary transpose A s are related as A s = V A T V, where V is the permutation matrix with units in its secondary diagonal. Also A s denotes the conjugate secondary transpose of A. i.e., A s = (c ij ) where c ij = a n j+1,n i+1 [2]. Any square matrix over a field is similar to its transpose and any 75

2 square complex matrix is similar to a symmetric complex matrix. Orthogonal similarity of a real matrix and its transpose was obtained by J.Vermeer [8]. In this paper our intension is to prove some equivalent conditions, unitary similarity and s-unitary similarity on conjugate unitary matrices. 1.1 Notations Let C n n be the space of n n complex matrices of order n. For A C n n. Let A T, A, A, A s, A s (= A θ ) denote transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose of a matrix A respectively. Also the permutation matrix V satisfies V T = V = V = V and V 2 = I. A matrix A C n n is called unitary if AA = [7] A matrix A C n n is called conjugate normal if AA = A A [3] A matrix A C n n is called s-normal if and only if AA θ = A θ A [6] A matrix A C n n is called secondary unitary (s-unitary) if AA θ = A θ A = I [5] A matrix A C n n is called s-hermitian if A = A θ = A s A matrix A C n n is called conjugate unitary if AA = [4] 2 Some Properties of Conjugate Unitary Matrices Theorem 1. If A is conjugate unitary matrix then secondary transpose of A is conjugate unitary matrix. Proof. Assume that A is conjugate unitary matrix. i.e., AA = To show A s (A s ) = (A s ) A s = I AA = I 76

3 Taking secondary transpose on both sides, we have (AA ) s = I s (A ) s A s = I ( I s = I) (A s ) A s = I (A s ) A s = I (A s ) A s = I ( I = I) (1) Case (ii): ( I = I) Taking secondary transpose on both sides we have (A A) s = I s A s (A ) s = I ( I s = I) A s (A s ) = I (2) Therefore, from equations (1) and (2), we have A s (A s ) = (A s ) A s = I Secondary transpose of A is conjugate unitary matrix. Theorem 2. If A is conjugate unitary matrix then V A is conjugate unitary matrix. Proof. A is conjugate unitary matrix AA = (V A) (V A) = V AA V = V AA V ( V = V ) = V V ( A is conjugate unitary) = V 2 = I ( V 2 = I) 77

4 Case (ii): (V A) (V A) = A V V A = A V V A ( V = V ) = A V 2 A = A A ( V 2 = I) = I ( A is conjugate unitary) (V A) (V A) = I (V A) (V A) = I ( I = I) Therefore, in both cases, we have (V A) (V A) = (V A) (V A) = I V A is conjugate unitary matrix. Theorem 3. Any two of the following imply the other. (i). A is conjugate unitary (ii). A is hermitian (iii). A s is involutary Proof. (i) and (ii) (iii) A is conjugate unitary AA = AA = I Taking secondary transpose on both sides, we have (AA ) s = I s (A ) s A s = I ( I s = I) A s A s = I (A s ) 2 = I ( A is hermitian) Case (ii): Taking conjugate transpose on both sides, we have ( I = I) 78

5 Taking secondary transpose on both sides, we have (A A) s = I s A s (A ) s = I ( I s = I) A s A s = I (A s ) 2 = I ( A is hermitian) Therefore, in both cases, we have (A s ) 2 = I A s is involutary. (ii) and (iii) (i) (A s ) 2 = I A s A s = I Taking secondary transpose on both sides, we have Again taking (A s ) s (A s ) s = I s AA = I ( I s = I) AA = I ( A is hermitian) (3) (A s ) 2 = I A s A s = I Taking secondary transpose on both sides, we have (A s ) s (A s ) s = I s AA = I ( I s = I) ( A is hermitian), ( I = I) (4) Therefore, from Equations (3) and (4), we have AA = A is conjugate unitary. (iii) and (i) (ii) (A s ) 2 = I A s A s = I 79

6 Taking secondary transpose on both sides, we have (A s ) s (A s ) s = I s AA = I ( I s = I) Post multiplying by A on both sides, we have, AAA = IA A (AA ) = A AI = A ( A is conjugate unitary AA = ) A = A A is hermitian Theorem 4. Any two of the following imply the other. (i). A is conjugate unitary matrix (ii). A is secondary unitary matrix (iii). A = A θ Proof. (i) and (ii) (iii) A is conjugate unitary matrix AA = AA = I AA = AA θ Pre multiplying by A 1 on both sides, we have A 1 AA = A 1 AA θ IA = A θ A = A θ Case (ii): ( I = I) A A = A θ A 80

7 Post multiplying by A 1 on both sides, we have A (AA 1 ) = A θ (AA 1 ) A = A θ Therefore, in both cases, we have A = A θ. (ii) and (iii) (i) A is s-unitary AA θ = A θ A = I Case (ii): AA θ = I AA = I A θ A = I ( I = I) Therefore, in both cases, we have AA = A is conjugate unitary matrix. (iii) and (ii) (i) AA = I AA θ = I ( A = A θ ) Case (ii): ( I = I) A θ A = I ( A = A θ ) Therefore, in both cases, we have AA θ = A θ A = I A is s-unitary. 81

8 Definition 5. Two matrices A, B C n n are unitarily similar if there exists a unitary matrix U C n n such that A = U BU. Theorem 6. A is conjugate unitary if every matrix unitarily similar to A, is conjugate unitary. Proof. Assume that A is conjugate unitary AA =. Let B is any matrix, which is unitarily similar to A. Therefore B = U AU where U is any unitary matrix. BB = (U AU) (U AU) Case (ii): = U A (UU ) A U = U AA U ( U is unitary matrix) = U U ( A is conjugate unitary matrix) = I ( U is unitary matrix) B B = (U AU) (U AU) = U A (UU ) AU = U A AU ( U is unitary matrix) = U U ( A is conjugate unitary matrix) = I ( U is unitary matrix) B B = I B B = I ( I = I) Therefore, in both cases, we have BB conjugate unitary. = B B = I B is Theorem 7. Let A C n n. If A is unitarily similar to a diagonal matrix which is conjugate unitary then A is conjugate unitary. Proof. Given that A is unitarily similar to a diagonal matrix D, which is conjugate unitary. Then there exists a unitary matrix 82

9 U such that A = U DU. We have to prove A is conjugate unitary matrix. Case (ii): AA = (U DU) (U DU) = U D (UU ) D U = U DD U( U is unitary matrix) = U U( D is conjugate unitary matrix) = I( U is unitary matrix) A A = (U DU) (U DU) = U D (UU ) DU = U D D( U is unitary matrix) = U U( D is conjugate unitary matrix) = I( U is unitary matrix) ( I = I) Therefore, in both cases, we have AA = A is conjugate unitary matrix. Theorem 8. Let A, B C n n be conjugate unitary matrices. If A is unitarily similar to B then AB is Conjugate unitary matrix. Proof. Given that A, B C n n be conjugate unitary matrices. Assume that A is unitarily similar to B A = U BU B = UAU 83

10 (AB) (AB) = ((U BU) (UAU )) ((U BU) (UAU )) Case (ii): = ((U BU) (UAU )) ((UAU ) ((U BU)) ) = ((U BU) (UAU )) ((UA U ) (U B U)) = U BUUA(U U)A U U B U = U BUU(AA )U U B U( U is unitary matrix) = U BU(UU )U B U( A is conjugate unitary matrix) = U B(UU )B U( U is unitary matrix) = U (BB )U( U is unitary matrix) = U U( B is conjugate unitary matrix) = I( U is unitary matrix) (AB) (AB)= ((U BU) (UAU )) ((U BU) (UAU )) = ((UAU ) ((U BU)) ) ((U BU) (UAU )) = ((UA U ) (U B U)) ((U BU) (UAU )) = UA U U B (UU )BUUAU = UA U U (B B)UUAU ( U is unitary matrix) = UA U (U U)UAU ( B is conjugate unitary matrix) = UA (U U)AU ( U is unitary matrix) = U(A A)U ( U is unitary matrix) = UU ( A is conjugate unitary matrix) = I( A is conjugate unitary matrix) (AB) (AB) = I (AB) (AB) = I ( I = I) Therefore, in both cases, we have (AB) (AB) = (AB) (AB) = I AB is conjugate unitary matrix. Theorem 9. Let A and B be unitarily similar. Then A is conjugate unitary if and only if B is conjugate unitary. 84

11 Proof. Assume that A is conjugate unitary matrix. That is AA =. Since A and B are unitarily similar then there exists a unitary matrix U such that A = U BU B = UAU BB = (UAU ) (UAU ) Case (ii): = UA(U U)A U = UAA U ( U is unitary matrix) = UU ( A is conjugate unitary matrix) = I ( U is unitary matrix) B B = (UAU ) (UAU ) = UA (U U)AU = UA AU ( U is unitary matrix) = UU ( A is conjugate unitary matrix) = I ( U is unitary matrix) B B = I B B = I ( I = I) Therefore, in both cases, we have BB = B B = I B is conjugate unitary matrix. Conversely, assume that B is conjugate unitary matrix. We have to prove A is conjugate unitary matrix. That is to prove AA =. Since A and B are unitarily similar then there exists a unitary matrix U such that A = U BU. AA = (U BU) (U BU) = U B(UU )B U = U BB U ( U is unitary matrix) = U U ( B is conjugate unitary matrix) = I ( U is unitary matrix) 85

12 Case (ii): A A = (U BU) (U BU) = U B (UU ) BU = U B BU ( U is unitary matrix) = U U ( B is conjugate unitary matrix) = I ( U is unitary matrix) ( I = I) Therefore, in both cases, we have AA = A is conjugate unitary matrix. Definition 10. Let A, B C n n. A is said to be s-unitarily similar to B if there exists a s- unitary matrix U such that A = U θ BU. Theorem 11. Let A, B C n n be conjugate unitary matrices. If A is secondary unitarily similar to B then A θ is secondary unitarily similar to B θ. Proof. Given A, B are conjugate unitary matrices. By definition, A is s-unitary similar to B A = U θ BU. Taking conjugate secondary transpose on both sides, we have (A) θ = ( U θ BU ) θ = U θ B θ( U θ) θ = U θ B θ U Therefore A θ is s-unitarily similar to B θ. 3 Conclusion Some equivalent conditions are related to conjugate unitary matrix, hermitian matrix, secondary unitary matrix, secondary transpose of a matrix are obtained. Also some theorems on unitarily similar and s-unitarily similar between two conjugate unitary matrices are derived. 86

13 References [1] Anna Lee, secondary symmetric, secondary skew symmetric, secondary orthogonal matrices, Period. Math. Hungary., 7(1976), [2] Anna Lee, On s-symmetric, s-skew symmetric and s-orthogonal matrices, Period. Math. Hungary., 7(1976), [3] A.Faßbender and Kh.D.Ikramov, Conjugate-normal matrices: a survey, Lin. Alg. Appl., 429(2008), [4] A.Govindarasu and S.Sassicala, Characterizations of conjugate unitary matrices, Journal of ultra scientist of physical science, 29(1)(2017), [5] S.Krishnamoorthy and A.Govindarasu, On Secondary Unitary Matrices, International Journal of Computational Science and Mathematics, 2(3)(2010), [6] S.Krishnamoorthy and R.Vijayakumar, Some equivalent conditions on s-normal matrices, International Journal of Comtemporary Mathematical Sciences, 4(29)(2009), [7] A.K.Sharma, Text book of matrix theory, DPH Mathematics Series, (2004). [8] J.Vermeer, Orthogonal similarity of a real matrix and its transpose, Linear Algebra and its Applications, 428(2008),

14 88

Equivalent Conditions on Conjugate Unitary Matrices

Equivalent Conditions on Conjugate Unitary Matrices International Journal of Mathematics Trends and Technology (IJMTT Volume 42 Number 1- February 2017 Equivalent Conditions on Conjugate Unitary Matrices A. Govindarasu #, S.Sassicala #1 # Department of

More information

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background Lecture notes on Quantum Computing Chapter 1 Mathematical Background Vector states of a quantum system with n physical states are represented by unique vectors in C n, the set of n 1 column vectors 1 For

More information

Properties of k - CentroSymmetric and k Skew CentroSymmetric Matrices

Properties of k - CentroSymmetric and k Skew CentroSymmetric Matrices International Journal of Pure and Applied Mathematical Sciences. ISSN 0972-9828 Volume 10, Number 1 (2017), pp. 99-106 Research India Publications http://www.ripublication.com Properties of k - CentroSymmetric

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

On Sums of Conjugate Secondary Range k-hermitian Matrices

On Sums of Conjugate Secondary Range k-hermitian Matrices Thai Journal of Mathematics Volume 10 (2012) Number 1 : 195 202 www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209 On Sums of Conjugate Secondary Range k-hermitian Matrices S. Krishnamoorthy,

More information

Geometry of the Special Unitary Group

Geometry of the Special Unitary Group Geometry of the Special Unitary Group The elements of SU 2 are the unitary 2 2 matrices with determinant 1. It is not hard to see that they have the form a 1) ) b, b ā with āa+bb = 1. This is the transpose

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations.

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations. HIROSHIMA S THEOREM AND MATRIX NORM INEQUALITIES MINGHUA LIN AND HENRY WOLKOWICZ Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization

More information

Diagonalization by a unitary similarity transformation

Diagonalization by a unitary similarity transformation Physics 116A Winter 2011 Diagonalization by a unitary similarity transformation In these notes, we will always assume that the vector space V is a complex n-dimensional space 1 Introduction A semi-simple

More information

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Matrix Operations Matrix Addition and Matrix Scalar Multiply Matrix Multiply Matrix

More information

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection Filomat 30: 06, 37 375 DOI 0.98/FIL67M Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Multiplicative Perturbation Bounds of the Group

More information

INTUITIONISTIC FUZZY S- NORMAL AND POLYNOMIAL MATRICES

INTUITIONISTIC FUZZY S- NORMAL AND POLYNOMIAL MATRICES INTUITIONISTIC FUZZY S- NORMAL AND POLYNOMIAL MATRICES *R.Indira, **V.Subharani *(Assistant Professor(Sr.Gr),Department of Mathematics, Anna University, CEG campus, Chennai-600025, Tamilnadu) **(Research

More information

Secondary κ-kernel Symmetric Fuzzy Matrices

Secondary κ-kernel Symmetric Fuzzy Matrices Intern. J. Fuzzy Mathematical rchive Vol. 5, No. 2, 24, 89-94 ISSN: 232 3242 (P), 232 325 (online) Published on 2 December 24 www.researchmathsci.org International Journal of Secondary κ-ernel Symmetric

More information

Assignment 12. O = O ij O kj = O kj O ij. δ ik = O ij

Assignment 12. O = O ij O kj = O kj O ij. δ ik = O ij Assignment 12 Arfken 4.1.1 Show that the group of n n orthogonal matrices On has nn 1/2 independent parameters. First we need to realize that a general orthogonal matrix, O, has n 2 elements or parameters,

More information

Matrix Representation

Matrix Representation Matrix Representation Matrix Rep. Same basics as introduced already. Convenient method of working with vectors. Superposition Complete set of vectors can be used to express any other vector. Complete set

More information

Unitary rotations. October 28, 2014

Unitary rotations. October 28, 2014 Unitary rotations October 8, 04 The special unitary group in dimensions It turns out that all orthogonal groups SO n), rotations in n real dimensions) may be written as special cases of rotations in a

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

Product of Range Symmetric Block Matrices in Minkowski Space

Product of Range Symmetric Block Matrices in Minkowski Space BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006), 59 68 Product of Range Symmetric Block Matrices in Minkowski Space 1

More information

Algebra I Fall 2007

Algebra I Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary

More information

Mathematics. EC / EE / IN / ME / CE. for

Mathematics.   EC / EE / IN / ME / CE. for Mathematics for EC / EE / IN / ME / CE By www.thegateacademy.com Syllabus Syllabus for Mathematics Linear Algebra: Matrix Algebra, Systems of Linear Equations, Eigenvalues and Eigenvectors. Probability

More information

CHAPTER 2 -idempotent matrices

CHAPTER 2 -idempotent matrices CHAPTER 2 -idempotent matrices A -idempotent matrix is defined and some of its basic characterizations are derived (see [33]) in this chapter. It is shown that if is a -idempotent matrix then it is quadripotent

More information

Matrix Inequalities by Means of Block Matrices 1

Matrix Inequalities by Means of Block Matrices 1 Mathematical Inequalities & Applications, Vol. 4, No. 4, 200, pp. 48-490. Matrix Inequalities by Means of Block Matrices Fuzhen Zhang 2 Department of Math, Science and Technology Nova Southeastern University,

More information

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27 Chapter 2 Ma 322 Fall 2013 Ma 322 Sept 23-27 Summary ˆ Matrices and their Operations. ˆ Special matrices: Zero, Square, Identity. ˆ Elementary Matrices, Permutation Matrices. ˆ Voodoo Principle. What is

More information

Notes on basis changes and matrix diagonalization

Notes on basis changes and matrix diagonalization Notes on basis changes and matrix diagonalization Howard E Haber Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 April 17, 2017 1 Coordinates of vectors and matrix

More information

Math 489AB Exercises for Chapter 2 Fall Section 2.3

Math 489AB Exercises for Chapter 2 Fall Section 2.3 Math 489AB Exercises for Chapter 2 Fall 2008 Section 2.3 2.3.3. Let A M n (R). Then the eigenvalues of A are the roots of the characteristic polynomial p A (t). Since A is real, p A (t) is a polynomial

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra 1.1. Introduction SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear algebra is a specific branch of mathematics dealing with the study of vectors, vector spaces with functions that

More information

ACM 104. Homework Set 5 Solutions. February 21, 2001

ACM 104. Homework Set 5 Solutions. February 21, 2001 ACM 04 Homework Set 5 Solutions February, 00 Franklin Chapter 4, Problem 4, page 0 Let A be an n n non-hermitian matrix Suppose that A has distinct eigenvalues λ,, λ n Show that A has the eigenvalues λ,,

More information

MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE

MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE J. Appl. Math. & Computing Vol. 19(2005), No. 1-2, pp. 297-310 MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE K. KAMARAJ AND K. C. SIVAKUMAR Abstract. The concept of the Moore-Penrose inverse

More information

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates.

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. Let V be a vector space and α = [v 1,...,v n ] be an ordered basis for V. Theorem 1 The coordinate mapping C : V F n given

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 1982 NOTES ON MATRIX METHODS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Revised February, 198 NOTES ON MATRIX METHODS 1. Matrix Algebra Margenau and Murphy, The Mathematics of Physics and Chemistry, Chapter 10, give almost

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Symmetric and self-adjoint matrices

Symmetric and self-adjoint matrices Symmetric and self-adjoint matrices A matrix A in M n (F) is called symmetric if A T = A, ie A ij = A ji for each i, j; and self-adjoint if A = A, ie A ij = A ji or each i, j Note for A in M n (R) that

More information

arxiv: v3 [math.ra] 22 Aug 2014

arxiv: v3 [math.ra] 22 Aug 2014 arxiv:1407.0331v3 [math.ra] 22 Aug 2014 Positivity of Partitioned Hermitian Matrices with Unitarily Invariant Norms Abstract Chi-Kwong Li a, Fuzhen Zhang b a Department of Mathematics, College of William

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

ON POSITIVE SEMIDEFINITE PRESERVING STEIN TRANSFORMATION

ON POSITIVE SEMIDEFINITE PRESERVING STEIN TRANSFORMATION J. Appl. Math. & Informatics Vol. 33(2015), No. 1-2, pp. 229-234 http://dx.doi.org/10.14317/jami.2015.229 ON POSITIVE SEMIDEFINITE PRESERVING STEIN TRANSFORMATION YOON J. SONG Abstract. In the setting

More information

CLASSIFICATION OF COMPLETELY POSITIVE MAPS 1. INTRODUCTION

CLASSIFICATION OF COMPLETELY POSITIVE MAPS 1. INTRODUCTION CLASSIFICATION OF COMPLETELY POSITIVE MAPS STEPHAN HOYER ABSTRACT. We define a completely positive map and classify all completely positive linear maps. We further classify all such maps that are trace-preserving

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Range Symmetric Matrices in Indefinite Inner Product Space

Range Symmetric Matrices in Indefinite Inner Product Space Intern. J. Fuzzy Mathematical Archive Vol. 5, No. 2, 2014, 49-56 ISSN: 2320 3242 (P), 2320 3250 (online) Published on 20 December 2014 www.researchmathsci.org International Journal of Range Symmetric Matrices

More information

CLASS 12 ALGEBRA OF MATRICES

CLASS 12 ALGEBRA OF MATRICES CLASS 12 ALGEBRA OF MATRICES Deepak Sir 9811291604 SHRI SAI MASTERS TUITION CENTER CLASS 12 A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements

More information

Lecture 3: Matrix and Matrix Operations

Lecture 3: Matrix and Matrix Operations Lecture 3: Matrix and Matrix Operations Representation, row vector, column vector, element of a matrix. Examples of matrix representations Tables and spreadsheets Scalar-Matrix operation: Scaling a matrix

More information

Lecture 2: Linear operators

Lecture 2: Linear operators Lecture 2: Linear operators Rajat Mittal IIT Kanpur The mathematical formulation of Quantum computing requires vector spaces and linear operators So, we need to be comfortable with linear algebra to study

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

Math Homework 8 (selected problems)

Math Homework 8 (selected problems) Math 102 - Homework 8 (selected problems) David Lipshutz Problem 1. (Strang, 5.5: #14) In the list below, which classes of matrices contain A and which contain B? 1 1 1 1 A 0 0 1 0 0 0 0 1 and B 1 1 1

More information

(AA-A = A) and A + be the Moore-Penrose inverse of A [4]. A matrix A is called EP r

(AA-A = A) and A + be the Moore-Penrose inverse of A [4]. A matrix A is called EP r HOUSTON JOURNAL OF MATHEMATICS, Volume 9, No. 1, 1983. ON SUMS OF EP MATRICES AR. Meenakshi* let A* 0. Introduction. Throughout we shall deal with n X n complex matrices. For A, denote the conjugate transpose

More information

Ep Matrices and Its Weighted Generalized Inverse

Ep Matrices and Its Weighted Generalized Inverse Vol.2, Issue.5, Sep-Oct. 2012 pp-3850-3856 ISSN: 2249-6645 ABSTRACT: If A is a con s S.Krishnamoorthy 1 and B.K.N.MuthugobaI 2 Research Scholar Ramanujan Research Centre, Department of Mathematics, Govt.

More information

SECTIONS 5.2/5.4 BASIC PROPERTIES OF EIGENVALUES AND EIGENVECTORS / SIMILARITY TRANSFORMATIONS

SECTIONS 5.2/5.4 BASIC PROPERTIES OF EIGENVALUES AND EIGENVECTORS / SIMILARITY TRANSFORMATIONS SECINS 5/54 BSIC PRPERIES F EIGENVUES ND EIGENVECRS / SIMIRIY RNSFRMINS Eigenvalues of an n : there exists a vector x for which x = x Such a vector x is called an eigenvector, and (, x) is called an eigenpair

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES olume 10 2009, Issue 2, Article 41, 10 pp. ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES HANYU LI, HU YANG, AND HUA SHAO COLLEGE OF MATHEMATICS AND PHYSICS CHONGQING UNIERSITY

More information

Math Spring 2011 Final Exam

Math Spring 2011 Final Exam Math 471 - Spring 211 Final Exam Instructions The following exam consists of three problems, each with multiple parts. There are 15 points available on the exam. The highest possible score is 125. Your

More information

Orthogonal similarity of a real matrix and its transpose

Orthogonal similarity of a real matrix and its transpose Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 382 392 www.elsevier.com/locate/laa Orthogonal similarity of a real matrix and its transpose J. Vermeer Delft University

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

determinantal conjecture, Marcus-de Oliveira, determinants, normal matrices,

determinantal conjecture, Marcus-de Oliveira, determinants, normal matrices, 1 3 4 5 6 7 8 BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE AMEET SHARMA Abstract. We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the region in the

More information

Is there a Small Skew Cayley Transform with Zero Diagonal?

Is there a Small Skew Cayley Transform with Zero Diagonal? Is there a Small Skew Cayley Transform with Zero Diagonal? Abstract The eigenvectors of an Hermitian matrix H are the columns of some complex unitary matrix Q. For any diagonal unitary matrix Ω the columns

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information

MATRICES AND MATRIX OPERATIONS

MATRICES AND MATRIX OPERATIONS SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)

More information

Distribution for the Standard Eigenvalues of Quaternion Matrices

Distribution for the Standard Eigenvalues of Quaternion Matrices International Mathematical Forum, Vol. 7, 01, no. 17, 831-838 Distribution for the Standard Eigenvalues of Quaternion Matrices Shahid Qaisar College of Mathematics and Statistics, Chongqing University

More information

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES Volume 10 (2009), Issue 4, Article 91, 5 pp. ON THE HÖLDER CONTINUITY O MATRIX UNCTIONS OR NORMAL MATRICES THOMAS P. WIHLER MATHEMATICS INSTITUTE UNIVERSITY O BERN SIDLERSTRASSE 5, CH-3012 BERN SWITZERLAND.

More information

Jacobi s Iterative Method for Solving Linear Equations and the Simulation of Linear CNN

Jacobi s Iterative Method for Solving Linear Equations and the Simulation of Linear CNN Jacobi s Iterative Method for Solving Linear Equations and the Simulation of Linear CNN Vedat Tavsanoglu Yildiz Technical University 9 August 006 1 Paper Outline Raster simulation is an image scanning-processing

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B Chapter 8 - S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number

More information

Spectral inequalities and equalities involving products of matrices

Spectral inequalities and equalities involving products of matrices Spectral inequalities and equalities involving products of matrices Chi-Kwong Li 1 Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187 (ckli@math.wm.edu) Yiu-Tung Poon Department

More information

Lecture 10: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11)

Lecture 10: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11) Lecture 1: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11) The eigenvalue problem, Ax= λ x, occurs in many, many contexts: classical mechanics, quantum mechanics, optics 22 Eigenvectors and

More information

Schur s Triangularization Theorem. Math 422

Schur s Triangularization Theorem. Math 422 Schur s Triangularization Theorem Math 4 The characteristic polynomial p (t) of a square complex matrix A splits as a product of linear factors of the form (t λ) m Of course, finding these factors is a

More information

ON k QUASI CLASS Q OPERATORS (COMMUNICATED BY T. YAMAZAKI)

ON k QUASI CLASS Q OPERATORS (COMMUNICATED BY T. YAMAZAKI) Bulletin of Mathematical Analysis and Applications ISSN: 181-191, URL: http://www.bmathaa.org Volume 6 Issue 3 (014), Pages 31-37. ON k QUASI CLASS Q OPERATORS (COMMUNICATED BY T. YAMAZAKI) VALDETE REXHËBEQAJ

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to 1.1. Introduction Linear algebra is a specific branch of mathematics dealing with the study of vectors, vector spaces with functions that

More information

Honors Linear Algebra, Spring Homework 8 solutions by Yifei Chen

Honors Linear Algebra, Spring Homework 8 solutions by Yifei Chen .. Honors Linear Algebra, Spring 7. Homework 8 solutions by Yifei Chen 8... { { W {v R 4 v α v β } v x, x, x, x 4 x x + x 4 x + x x + x 4 } Solve the linear system above, we get a basis of W is {v,,,,

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1...

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1... Chapter Matrices We review the basic matrix operations What is a Matrix? An array of numbers a a n A = a m a mn with m rows and n columns is a m n matrix Element a ij in located in position (i, j The elements

More information

Final Project # 5 The Cartan matrix of a Root System

Final Project # 5 The Cartan matrix of a Root System 8.099 Final Project # 5 The Cartan matrix of a Root System Thomas R. Covert July 30, 00 A root system in a Euclidean space V with a symmetric positive definite inner product, is a finite set of elements

More information

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 Scott Strong sstrong@mines.edu Colorado School of Mines What is the Matrix? p. 1/20 Overview/Keywords/References Advanced

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Vector spaces and operators

Vector spaces and operators Vector spaces and operators Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 22 August, 2013 1 Outline 2 Setting up 3 Exploring 4 Keywords and References Quantum states are vectors We saw that

More information

Inequalities Involving Khatri-Rao Products of Positive Semi-definite Matrices

Inequalities Involving Khatri-Rao Products of Positive Semi-definite Matrices Applied Mathematics E-Notes, (00), 117-14 c ISSN 1607-510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Inequalities Involving Khatri-Rao Products of Positive Semi-definite Matrices

More information

Minkowski Inverse for the Range Symmetric Block Matrix with Two Identical Sub-blocks Over Skew Fields in Minkowski Space M

Minkowski Inverse for the Range Symmetric Block Matrix with Two Identical Sub-blocks Over Skew Fields in Minkowski Space M International Journal of Mathematics And its Applications Volume 4, Issue 4 (2016), 67 80. ISSN: 2347-1557 Available Online: http://ijmaa.in/ International Journal 2347-1557 of Mathematics Applications

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 1.3 Subspaces Math 4377/6308 Advanced Linear Algebra 1.3 Subspaces Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377 Jiwen He, University of Houston

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop Fall 2017 Inverse of a matrix Authors: Alexander Knop Institute: UC San Diego Row-Column Rule If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding

More information

TRIDIAGONAL FORMS IN LOW DIMENSIONS

TRIDIAGONAL FORMS IN LOW DIMENSIONS TRIDIAGONAL FORMS IN LOW DIMENSIONS KENNETH R. DAVIDSON AND DRAGOMIR Ž. D OKOVIĆ Abstract. Pati showed that every 4 4 matrix is unitarily similar to a tridiagonal matrix. We give a simple proof. In addition,

More information

Linear Algebra Lecture Notes-II

Linear Algebra Lecture Notes-II Linear Algebra Lecture Notes-II Vikas Bist Department of Mathematics Panjab University, Chandigarh-64 email: bistvikas@gmail.com Last revised on March 5, 8 This text is based on the lectures delivered

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

Homework 1 Elena Davidson (B) (C) (D) (E) (F) (G) (H) (I)

Homework 1 Elena Davidson (B) (C) (D) (E) (F) (G) (H) (I) CS 106 Spring 2004 Homework 1 Elena Davidson 8 April 2004 Problem 1.1 Let B be a 4 4 matrix to which we apply the following operations: 1. double column 1, 2. halve row 3, 3. add row 3 to row 1, 4. interchange

More information

Trace Inequalities for a Block Hadamard Product

Trace Inequalities for a Block Hadamard Product Filomat 32:1 2018), 285 292 https://doiorg/102298/fil1801285p Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat Trace Inequalities for

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

a Λ q 1. Introduction

a Λ q 1. Introduction International Journal of Pure and Applied Mathematics Volume 9 No 26, 959-97 ISSN: -88 (printed version); ISSN: -95 (on-line version) url: http://wwwijpameu doi: 272/ijpamv9i7 PAijpameu EXPLICI MOORE-PENROSE

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

Matrix Algebra: Summary

Matrix Algebra: Summary May, 27 Appendix E Matrix Algebra: Summary ontents E. Vectors and Matrtices.......................... 2 E.. Notation.................................. 2 E..2 Special Types of Vectors.........................

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

6.2 Unitary and Hermitian operators

6.2 Unitary and Hermitian operators 6.2 Unitary and Hermitian operators Slides: Video 6.2.1 Using unitary operators Text reference: Quantum Mechanics for Scientists and Engineers Section 4.10 (starting from Changing the representation of

More information