SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 In the format provided by the authors and unedited. DOI: /NNANO Ultrafast lithium diffusion in bilayer graphene Matthias Kühne, Federico Paolucci, Jelena Popovic, Pavel M. Ostrovsky, Joachim Maier & Jurgen H. Smet Contents 1 Characterization of the solid polymer electrolyte 1 2 Charge transfer 3 3 Weak localization 3 4 Numerical solution to Fick s second law 4 5 Li diffusion 5 1 Characterization of the solid polymer electrolyte The ionic conductivity of the poly(ethylene glycol) methyl ether methacrylate and bisphenol A ehtoxylate dimethacrylate (PEGMA, Mn = 500/BEMA, Mn = 1700) based solid polymer electrolytes prepared with different w/w ratios and different content of lithium bis(trifluoromethane) sulfonimide salt (LiTFSI) was measured upon UV curing by impedance spectroscopy in a selfmade conductivity cell with stainless steel electrodes for a frequency range of 1 105Hz at ambient temperature. The resulting impedance spectra (Fig. S1) correspond to the bulk resistance of the polymer electrolytes yielding ionic conductivities ranging from σ = S/cm (samples NATURE NANOTECHNOLOGY 1

2 3 and 4) to σ = S/cm (sample 7). Based on the observed homogeneity and mechanical properties of the prepared materials, sample 5 (0.35 M LiTFSI in PEGMA/BEMA w/w 3:7 with 2-4 wt% photoinitiator) with σ = S/cm was selected as a suitable electrolyte for gate-controlled intercalation of our bilayer graphene devices. Besides ionic conductivity, the most important parameters for the lithium polymer electrolyte performance in a metallic lithium cell are the lithium transference number 1 and the interfacial stability. The lithium transference number was measured by galvanostatic polarization in a selfmade Li electrolyte Li cell similar as in Ref. 2 (Fig. S2). Upon applying a constant current I, the time dependent voltage change was recorded until the steady state was reached (Fig. S2a). When the electrolyte does not react with lithium, i.e., the electrolyte resistance R el remains constant, the lithium transference number is determined from t pol + = IR tot,0 IR SEI,0 U IR SEI,, where U is the steady state voltage. R SEI,0 and R SEI, are resistances of the solid electrolyte interphase (SEI) before and after the polarization. The first semicircle before and after polarization in Fig. S2b indicate a change to the electrolyte conductivity itself, which has to be taken into account ( R el = R el, R el,0 ). Hence, the transference number becomes t pol + = IR tot,0 IR SEI,0 U I(R SEI, + R el ) =0.40. This Li-ion transference number being < 0.5 can be expected for the given class of electrolyte material. Its finite value clearly demonstrates that the polymer electrolyte shows Li-ion conductivity. From Fig. S2b it can be concluded that the reaction of 0.35 M LiTFSI in PEGMA/BEMA w/w 3:7 with 2-4 wt% photoinitiator electrolyte with lithium both on the interface (SEI, second semicircle) and in the bulk (first semicircle) is not completed even after a 3 days aging process. NATURE NANOTECHNOLOGY 2

3 While the SEI is observed to slightly grow with time, it is the bulk of the electrolyte which shows a more severe decrease in ionic conductivity. We attribute this behaviour to the instability of the polymer electrolyte with respect to lithium M LiTFSI in PEGMA/BEMA w/w 3:7 with 2-4 wt% photoinitiator nontheless proves a functional Li-ion conducting electrolyte whose mechanical properties make it particularly suitable for our Li-intercalation experiments. 2 Charge transfer There are contradictory reports concerning the extent of transferred charge in bulk Li y C 6 (with 0 y 1), 3 5 which is possibly dependent on the intercalant concentration. In the case of C 6 Li 2y C 6, recent ab initio calculations favor a Li density-independent charge transfer on the order of 0.88 e per Li atom. 6, 7 This is supported by experimental evidence for the full ionization of Li in C 6 LiC 6 on SiC. 8 Assuming a complete charge transfer, the induced electron density in C 6 LiC 6 should amount to n cm 2, in agreement with a reported calculation of cm Weak localization Using only the first two terms of Eq. 1 in the main text, we analyse the temperature dependence of weak localization in our samples at different states of lithiation. In Fig. S3 we show the extracted length scales as a function of temperature for a lithiated sample with n Li = cm 2. In addition we plot the transport mean free path l tr. Exemplary magnetoconductivity traces for this sample are shown in Fig. 2b of the main text. As can be seen in Fig. S3, while both l i and l tr show no clear temperature dependence, l φ drops with increasing temperature as dephasing mechanisms NATURE NANOTECHNOLOGY 3

4 gain efficiency, thereby suppressing interference effects. This finding being general to all our samples and at all states of lithiation, we consider l i (respectively τ i ) a temperature-independent parameter. 4 Numerical solution to Fick s second law We look for the numerical solution of Fick s second law in one dimension (Eq. 2 in the main text) with the following boundary conditions n Li (x, t) t n Li (0,t)=n meas Li (0,t) = D δ 2 n Li (x, t) x 2, (1) n Li (x, t) x =0. (2) x=l The first boundary condition sets the lithium density at x =0equal to the measured one at all times t. The second boundary condition imposes zero flux at the ionically blocking electrode at x = L at all times t. We replace the derivatives in time and space by their approximative finite-difference formulations n Li t xi,t j = nj+1 i n j i, t 2 n Li x 2 xi,t j = nj i+1 2nj i + nj i 1 ( x) 2. (3) Here we make the transition from continuous variables x and t to discrete ones x i and t j, and we write n j i = n Li(x i,t j ), t = t j+1 t j and x = x i+1 x i. Combining (1) and (3), we obtain n j+1 i which gives a solution stable in time provided = n j i + Dδ t nj i+1 2nj i + nj i 1 ( x) 2, (4) D δ t ( x) (5) 4 NATURE NANOTECHNOLOGY 4

5 As shown in Fig. S4, we divide the region of interest of the sample of length L into N x = L/ x+1 discrete steps in x direction. In our case (device shown in Fig. 4 in the main text) L = 80 µm and x =1µm yielding N x = 81 steps. We discretize the time frame of interest into N t steps depending on the choice of D δ respecting the stability condition (5). We start with an initial density profile n 0 i =0for all i =0...(N x 1). Taking into account the boundary conditions (2), we first set n 1 0 = n meas Li (0,t 1 ), then calculate (4) for i =1...(N x 2) and finally set n 1 i=n x 1 = n1 i=n x 2. We then proceed with t j for j =2...(N t 1). Depending on the choice of D δ, t needs to be chosen such that (5) is fulfilled. Hence, n j 0 is extracted from the measured n Li (0,t) by interpolation, if needed. The solution provides us with both Li density profiles across the sample at a given time t j, as well as the time-dependent Li density evolutions at a specific position x i. 5 Li diffusion In Fig. S5, the time-dependence of the Li density n Li (x, t) extracted from Hall measurements of the bilayer graphene device illustrated in Fig. 4 of the main text are displayed for the 1 st,3 rd and 4 th lithiation. Again the measured data (coloured, solid lines) corresponds to simultaneous measurements taken at the same four positions x outside the electrolyte and spaced apart by 20 µm as described in the main text. For the 3rd lithiation, good agreement with a numerical solution to Fick s second law (1) can be obtained for D δ cm 2 /s. For the 4th lithiation, this value even seems to underestimate the fast Li diffusion measured in the experiment. As discussed in the main text, Li diffusion is NATURE NANOTECHNOLOGY 5

6 slower during the very first lithiation (top panel in Fig. S5). Here, n meas Li (x = 40 µm,t) (green solid line) also shows unexpected behaviour which may be attributed to the sudden loosening of a restraining condition on local Li accumulation at t 230 s (such as residues located on top of the bilayer or possibly a wrinkle, locally blocking Li atoms from entering a certain region). After the 1 st lithiation, intercalate diffusion seems to be more reproducible with a tendency to become more facile at higher lithiation cycle numbers. Fig. S6 compares the lithium in-plane diffusion coefficient obtained here on freely exposed bilayer graphene with experimental diffusion coefficient values reported for graphite Data reported as a function of known or estimated values of lithium content y in Li y C 6 appear in the left graph, while data reported as a function of electrode potential vs. Li/Li + appear in the right graph. Experimental values for which neither y nor the electrode potential is explicitly reported as well as D δ for NaCl in water are given in the central graph. Data stem from electrochemical experiments near room temperature, which display a wide spread over seven orders of magnitude. 1. Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324 (1987). 2. Popovic, J., Hasegawa, G., Moudrakovski, I. & Maier, J. Infiltrated porous oxide monoliths as high lithium transference number electrolytes. J. Mater. Chem. A 4, 7135 (2016). 3. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139 (1981). 6 NATURE NANOTECHNOLOGY 6

7 4. Holzwarth, N. A. W. Electronic band structure of graphite intercalation compounds. In Graphite Intercalation Compounds II Vol. 18 of Springer Series in Materials Science (eds. Zabel, H. & Solin, S. A.) 7 (Springer-Verlag, 1992). 5. Winter, M., Moeller, K. C. & Besenhard, J. O. Carbonaceous and graphitic anodes. In Lithium Batteries: Science and Technology Edn. (eds. Nazri, G.-A. & Pistoia, G.) 145 (Springer US, Boston, MA, USA, 2003). 6. Guzman, D. M., Alyahyaei, H. M. & Jishi, R. A. Superconductivity in graphene-lithium. 2D Mater. 1, (2014). 7. Shirodkar, S. N. & Kaxiras, E. Li intercalation at graphene/hexagonal boron nitride interfaces. Phys. Rev. B 93, (2016). 8. Sugawara, K., Kanetani, K., Sato, T. & Takahashi, T. Fabrication of Li-intercalated bilayer graphene. AIP Adv. 1, (2011). 9. Kaloni, T. P., Cheng, Y. C., Upadhyay Kahaly, M. & Schwingenschlögl, U. Charge carrier density in Li-intercalated graphene. Chem. Phys. Lett. 534, 29 (2012). 10. Yazami, R. & Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365 (1983). 11. Takami, N., Satoh, A., Hara, M. & Ohsaki, T. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371 (1995). 7 NATURE NANOTECHNOLOGY 7

8 12. Levi, M. D. & Aurbach, D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J. Phys. Chem. B 101, 4641 (1997). 13. Funabiki, A. et al. Impedance study on the electrochemical lithium intercalation into natural graphite powder. J. Electrochem. Soc. 145, 172 (1998). 14. Yu, P., Popov, B. N., Ritter, J. A. & White, R. E. Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc. 146, 8 (1999). 15. Piao, T., Park, S., Doh, C. & Moon, S. Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements. J. Electrochem. Soc. 146, 2794 (1999). 16. Ong, T. S. & Yang, H. Lithium intercalation into mechanically milled natural graphite: Electrochemical and kinetic characterization. J. Electrochem. Soc. 149, A1 (2002). 17. Yang, H., Bang, H. J. & Prakash, J. Evaluation of electrochemical interface area and lithium diffusion coefficient for a composite graphite anode. J. Electrochem. Soc. 151, A1247 (2004). 18. Levi, M. D., Markevich, E. & Aurbach, D. The effect of slow interfacial kinetics on the chronoamperometric response of composite lithiated graphite electrodes and on the calculation of the chemical diffusion coefficient of Li ions in graphite. J. Phys. Chem. B 109, 7420 (2005). 19. Persson, K. et al. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1, 1176 (2010). 20. Cussler, E. L. Diffusion: Mass transfer in Fluid Systems (Cambridge Univ. Press, 1997). 8 NATURE NANOTECHNOLOGY 8

9 Figure S1: Characterization of eight different LiTFSI in PEGMA/BEMA solidified polymer electrolyte samples with 2-4 wt% photoinitiator at ambient temperature. (a) The composition of the studied samples. (b) Impedance spectroscopy of all samples. 9 NATURE NANOTECHNOLOGY 9

10 Figure S2: (a) Galvanostatic polarization of 0.35 M LiTFSI in PEGMA/BEMA w/w 3:7 with 2-4 wt% photoinitiator, (b) Impedance spectra before polarization (black), after polarization (red) and 3 days after polarization (blue). All measurements are performed in a Li electrolyte Li cell at room temperature. 10 NATURE NANOTECHNOLOGY 10

11 Figure S3: Temperature dependence of the phase relaxation length l φ (circles), the intervalley scattering length l i (squares) and the mean free path l tr (triangles) for sample #1 in its most lithiated state. Different colours correspond to measurements on three different positions along the bilayer. NATURE NANOTECHNOLOGY 11

12 Figure S4: Schematic grid used for our numerical calculation of Fick s second law. 12 NATURE NANOTECHNOLOGY 12

13 Figure S5: Li diffusion in the bilayer graphene device shown in Fig. 4 of the main text: 1st, 3rd & 4th lithiation. The yellow, green and red dashed lines are numerical fits to data (solid lines) measured at x = 20 µm, 40 µm and 60 µm, respectively. In the upper panel, n meas Li (x = 40 µm,t) shows an unexpected time dependence, presumably due to a restraint on local Li accumulation suddenly loosening at t 230 s. n Li (x = 60 µm,t) calculated for D δ = cm 2 /s is plotted as a solid grey line. NATURE NANOTECHNOLOGY 13

14 Figure S6: Room-temperature chemical diffusion coefficient D δ of Li in graphite from different electrochemical experiments, reported as a function of composition y in Li y C 6 or C 6 Li 2y C 6 (left panel) or as a function of electrode potential vs. Li/Li + (right panel). In case neither is explicitly stated in the reference, data is shown in the middle panel together with D δ for NaCl in water from Ref. 20 (green dashed line). See the respective references for details. D δ and Dδ represent Li diffusion mainly perpendicular and parallel to the carbon sheets in bulk graphite, respectively. Values for D δ of Li in bilayer graphene extracted from our experiment are shown as red squares. 14 NATURE NANOTECHNOLOGY 14

Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL)

Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL) Electrochemistry - Application note n 1 Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL) Available instruments for the GCPL protocol

More information

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries.

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 214 Supplementary Information Unique Behaviour of Nonsolvents for Polysulphides

More information

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA)

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Electrochemistry - Application note n 2 Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Available instruments for the

More information

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3-x

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3-x In the format provided by the authors and unedited. DOI: 10.1038/NMAT4810 Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3-x Hyung-Seok Kim, 1 John B. Cook, 2,3 Hao Lin, 1 Jesse

More information

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes Bull. Mater. Sci., Vol. 34, No. 5, August 211, pp. 163 167. c Indian Academy of Sciences. AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

More information

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries JOUL, Volume 3 Supplemental Information Lightweight Metallic MgB 2 Mediates Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries Quan Pang, Chun Yuen Kwok, Dipan Kundu, Xiao Liang,

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Interfacial Chemistry in Solid-state Batteries: Formation of

Interfacial Chemistry in Solid-state Batteries: Formation of Supporting Information Interfacial Chemistry in Solid-state Batteries: Formation of Interphase and Its Consequences Shaofei Wang, Henghui Xu, Wangda Li, Andrei Dolocan and Arumugam Manthiram* Materials

More information

Graphene oxide hydrogel at solid/liquid interface

Graphene oxide hydrogel at solid/liquid interface Electronic Supplementary Information Graphene oxide hydrogel at solid/liquid interface Jiao-Jing Shao, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su and Quan-Hong Yang * Key Laboratory for Green Chemical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun-Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi

More information

Equivalent Circuits for Battery Related Measurements

Equivalent Circuits for Battery Related Measurements Equivalent Circuits for Battery Related Measurements Johan Hjelm [johh@dtu.dk] Technical University of Denmark Department of Energy Conversion and Storage Risø Campus, Roskilde, Denmark www.energyconversion.dtu.dk

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Supporting Information

Supporting Information Supporting Information Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres Sujith Kalluri, a,b, Kuok Hau Seng, a, Zaiping Guo, a,b* Aijun Du, c

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Electronic Kohn-Sham potential profile of a charged monolayer MoTe 2 calculated using PBE-DFT. Plotted is the averaged electronic Kohn- Sham potential

More information

Development of First Principles Capacity Fade Model for Li-Ion Cells

Development of First Principles Capacity Fade Model for Li-Ion Cells A196 Journal of The Electrochemical Society, 151 2 A196-A203 2004 0013-4651/2004/151 2 /A196/8/$7.00 The Electrochemical Society, Inc. Development of First Principles Capacity Fade Model for Li-Ion Cells

More information

A Boundary Condition for Porous Electrodes

A Boundary Condition for Porous Electrodes Electrochemical Solid-State Letters, 7 9 A59-A63 004 0013-4651/004/79/A59/5/$7.00 The Electrochemical Society, Inc. A Boundary Condition for Porous Electrodes Venkat R. Subramanian, a, *,z Deepak Tapriyal,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 SEM/EDS mapping of LiNi 0.4 Mn 0.4 Co 0.18 Ti 0.02 O 2. The experimental error of the mapping is ±1%. The atomic percentages of each element are based on multiple

More information

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Supplementary Material (ESI) for Chemical Communications Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Sung Dae Cho, a Jin Kyu Im, b Han-Ki Kim, c Hoon Sik

More information

Supporting Information

Supporting Information Supporting Information Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium- Ion Batteries Jimin Shim, [a] Ki Yoon Bae, [b] Hee Joong Kim,

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal JOUL, Volume 1 Supplemental Information An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal Quan Pang, Xiao Liang, Abhinandan Shyamsunder, and Linda F. Nazar Supplemental

More information

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich Supporting Information The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes Hongfa Xiang,,# Donghai Mei, + Pengfei Yan, Priyanka Bhattacharya,

More information

Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell

Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell Supporting Information Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell Xabier Judez, Heng Zhang,*, Chunmei Li,*, José A. González-Marcos, Zhibin

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors

High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors Supporting Information High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors Naohiro Terasawa *, Kinji Asaka Inorganic

More information

Understanding Impedance of Li-Ion Batteries with Battery Design Studio

Understanding Impedance of Li-Ion Batteries with Battery Design Studio Understanding Impedance of Li-Ion Batteries with Battery Design Studio Robert Spotnitz Battery Consultant Thursday July 6, 2017 16:40-17:10 Understanding Impedance Li-Ion Batteries with Battery Design

More information

Studies of the first lithiation of graphite materials by. by electrochemical impedance spectroscopy ARTICLES

Studies of the first lithiation of graphite materials by. by electrochemical impedance spectroscopy ARTICLES Chinese Science Bulletin 2006 Vol. 51 No. 9 1055 1059 DOI: 10.1007/s11434-006-1055-y Studies of the first lithiation of graphite materials by electrochemical impedance spectroscopy ZHUANG Quanchao 1,3,

More information

While commercial lithium ion batteries can consist. Lithium Diffusion in Graphitic Carbon

While commercial lithium ion batteries can consist. Lithium Diffusion in Graphitic Carbon Lithium Diffusion in Graphitic Carbon Kristin Persson,*,,,z Vijay A. Sethuraman,,,z Laurence J. Hardwick,,^,z Yoyo Hinuma,,# Ying Shirley Meng,,# Anton van der Ven, Venkat Srinivasan, Robert Kostecki,

More information

Supporting information

Supporting information Supporting information Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors By: Iddo Heller, Sohail Chatoor, Jaan Männik, Marcel A. G. Zevenbergen, Cees Dekker,

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Edge conduction in monolayer WTe 2

Edge conduction in monolayer WTe 2 In the format provided by the authors and unedited. DOI: 1.138/NPHYS491 Edge conduction in monolayer WTe 2 Contents SI-1. Characterizations of monolayer WTe2 devices SI-2. Magnetoresistance and temperature

More information

Supplementary Information. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

Supplementary Information. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study Supplementary Information Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study A. Rajkamal, 1,# E. Mathan Kumar, 2,# V. Kathirvel 1, Noejung Park**, 3 and Ranjit Thapa*

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage

Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Supplementary Information for Ultrathin V 2 O 5 Nanosheet Cathodes: Realizing Ultrafast Reversible Lithium Storage Xianhong Rui, ab Ziyang Lu, a Hong Yu, a Dan Yang, a Huey Hoon Hng, a Tuti Mariana Lim,*

More information

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell Supporting Information for Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries Nobuhiro Ogihara,*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

Metal organic framework-based separator for lithium sulfur batteries

Metal organic framework-based separator for lithium sulfur batteries ARTICLE NUMBER: 16094 DOI: 10.1038/NENERGY.2016.94 Metal organic framework-based separator for lithium sulfur batteries 4 5 Songyan Bai 1,2, Xizheng Liu 1, Kai Zhu 1, Shichao Wu 1,2 Haoshen Zhou 1,2,3*

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of the spin-dependent Peltier effect J. Flipse, F. L. Bakker, A. Slachter, F. K. Dejene & B. J. van Wees A. Calculation of the temperature gradient We first derive an expression for

More information

Research & Reviews In. Impedance spectroscopy studies of PVA/PEG based polymer blend electrolytes

Research & Reviews In. Impedance spectroscopy studies of PVA/PEG based polymer blend electrolytes Trade Science Inc. ISSN : 0974-7540 Impedance spectroscopy studies of PVA/PEG based polymer blend electrolytes Ranveer Kumar, Anji Reddy Polu *, Harsha Dehariya Department of Physics, Dr. Hari Singh Gour

More information

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720 Supporting Information for The Most Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries Kyle M. Diederichsen, Eric J. McShane, Bryan D. McCloskey* Department of Chemical

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

Polyoxometalate Coupled Graphene Oxide-Nafion Composite. Membrane for Fuel Cell Operating at Low Relative Humidity

Polyoxometalate Coupled Graphene Oxide-Nafion Composite. Membrane for Fuel Cell Operating at Low Relative Humidity Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Polyoxometalate Coupled Graphene

More information

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium-

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Supporting Information Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Cobalt-Oxide Lithium-Ion Battery Xiuwan Li, Zhibo Yang, Yujun Fu, Li Qiao, Dan Li, Hongwei Yue, and Deyan

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric

Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Supporting Information to Silicon/Carbon Nanotube/BaTiO 3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential Byoung-Sun Lee a, Jihyun Yoon b, Changhoon

More information

Quantitative analysis of GITT measurements of Li-S batteries

Quantitative analysis of GITT measurements of Li-S batteries Quantitative analysis of GITT measurements of Li-S batteries James Dibden, Nina Meddings, Nuria Garcia-Araez, and John R. Owen Acknowledgements to Oxis and EPSRC for EP/M5066X/1 - CASE studentship, EP/P019099/1-

More information

State-Space Modeling of Electrochemical Processes. Michel Prestat

State-Space Modeling of Electrochemical Processes. Michel Prestat State-Space Modeling of Electrochemical Processes Who uses up my battery power? Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler Outline Electrochemistry Electrochemical

More information

Lithium Ion Insertion Properties of Solution-Exfoliated Germanane

Lithium Ion Insertion Properties of Solution-Exfoliated Germanane Lithium Ion Insertion Properties of Solution-Exfoliated Germanane Andrew C. Serino, Jesse S. Ko, Michael T. Yeung, Jeffrey J. Schwartz, Chris B. Kang, Sarah H. Tolbert,,, Richard B. Kaner,,, Bruce S. Dunn,*,,

More information

A self-assembled intercalated metal organic framework electrode with outstanding area capacity for high volumetric energy asymmetric capacitors

A self-assembled intercalated metal organic framework electrode with outstanding area capacity for high volumetric energy asymmetric capacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 A self-assembled intercalated metal organic framework electrode with outstanding

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION University of Groningen Direct observation of the spin-dependent Peltier effect Flipse, J.; Bakker, F. L.; Slachter, A.; Dejene, F. K.; van Wees, Bart Published in: Nature Nanotechnology DOI: 10.1038/NNANO.2012.2

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Porous MoS 2 @C hetero shell with Si yolk structure

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/12/eaao7233/dc1 Supplementary Materials for Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life Hao Chen, Hanyan Xu, Siyao Wang, Tieqi

More information

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell Electrochemical Impedance Spectroscopy of a ifepo 4 /i Half-Cell Mikael Cugnet*, Issam Baghdadi and Marion Perrin French Institute of Solar Energy (INES), CEA / ITEN *Corresponding author: 50 Avenue du

More information

Supporting information

Supporting information Supporting information 3D porous MXene (Ti 3 C 2 )/reduced graphene oxide hybrid s for advanced lithium storage Zhiying Ma,, Xufeng Zhou,*, Wei Deng,, Da Lei,, and Zhaoping Liu *,. Key Laboratory of Graphene

More information

The Importance of Electrochemistry for the Development of Sustainable Mobility

The Importance of Electrochemistry for the Development of Sustainable Mobility TUM CREATE Centre for Electromobility, Singapore The Importance of Electrochemistry for the Development of Sustainable Mobility Jochen Friedl, Ulrich Stimming DPG-Frühjahrstagung, Working Group on Energy,

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

Supporting Information. 13 Pages, 9 Figures. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination

Supporting Information. 13 Pages, 9 Figures. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination Supporting Information 13 Pages, 9 Figures Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination Xitong Liu, 1 Jay F. Whitacre, 2,3,4 and Meagan S. Mauter

More information

Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6

Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6 Portugaliae Electrochimica Acta 26/6 (2008) 493-501 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6 Jitender P. Sharma

More information

Command Surface of Self-organizing Structures by Radical Polymers with. Cooperative Redox Reactivity

Command Surface of Self-organizing Structures by Radical Polymers with. Cooperative Redox Reactivity Supporting Information Command Surface of Self-organizing Structures by Radical Polymers with Cooperative Redox Reactivity Kan Sato, Takahiro Mizuma, Hiroyuki Nishide*, and Kenichi Oyaizu* Department of

More information

Bulk graphdiyne powder applied for highly efficient lithium storage

Bulk graphdiyne powder applied for highly efficient lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Bulk graphdiyne powder applied for highly efficient lithium storage Shengliang Zhang, ab Huibiao

More information

Classification: PHYSICAL SCIENCES (Engineering) Title: Nonflammable Perfluoropolyether-based Electrolytes for Lithium Batteries

Classification: PHYSICAL SCIENCES (Engineering) Title: Nonflammable Perfluoropolyether-based Electrolytes for Lithium Batteries Classification: PHYSICAL SCIENCES (Engineering) Title: Nonflammable Perfluoropolyether-based Electrolytes for Lithium Batteries Authors: Dominica H. C. Wong 1, Jacob Thelen 2, Yanbao Fu 3, Didier Devaux

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Towards a calcium-based rechargeable battery A. Ponrouch, C. Frontera, F. Bardé, M.R. Palacín Supplementary table Table S1. Properties of some metals that can be used as battery anodes: radius of the corresponding

More information

Fast and reversible thermoresponsive polymer switching materials for safer batteries

Fast and reversible thermoresponsive polymer switching materials for safer batteries ARTICLE NUMBER: 15009 DOI: 10.1038/NENERGY.2015.9 Fast and reversible thermoresponsive polymer switching materials for safer batteries Zheng Chen, Po-Chu Hsu, Jeffrey Lopez, Yuzhang Li, John W. F. To,

More information

Electronic Supplementary Information

Electronic Supplementary Information Copyright Royal Society of Chemistry 2013 Electronic Supplementary Information for J. Mater. Chem. A, DOI: 10.1039/x0xx00000x ((will be completed by the editorial staff)) Improved Cycle Lives of LiMn 2

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries Supplementary information Polymer characterization. The composition of the A-BCEs has been determined using

More information

Passivating lithium electrodes with trimethylsilylacetylene

Passivating lithium electrodes with trimethylsilylacetylene Ž. Solid State Ionics 144 2001 295 299 www.elsevier.comrlocaterssi Passivating lithium electrodes with trimethylsilylacetylene J.S. Sakamoto a, F. Wudl b,c,1, B. Dunn a,c,) a Department of Materials Science

More information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Supporting Information Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Zhisheng Chai,, Nannan Zhang,, Peng Sun, Yi Huang, Chuanxi Zhao, Hong Jin Fan, Xing Fan,*,

More information

Supporting Information. Fabrication, Testing and Simulation of All Solid State Three Dimensional Li-ion Batteries

Supporting Information. Fabrication, Testing and Simulation of All Solid State Three Dimensional Li-ion Batteries Supporting Information Fabrication, Testing and Simulation of All Solid State Three Dimensional -ion Batteries A. Alec Talin* 1, Dmitry Ruzmetov 2, Andrei Kolmakov 2, Kim McKelvey 3, Nicholas Ware 4, Farid

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS

ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS Int. J. Chem. Sci.: 14(1), 216, 477-481 ISSN 972-768X www.sadgurupublications.com ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS R. S. DIANA SANGEETHA

More information

Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films

Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films Electrochimica Acta 46 (2001) 3415 3419 www.elsevier.com/locate/electacta Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films Se-Hee Lee a,

More information

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Strong Anchoring Effect of Ferric Chloride-Graphite

More information

Measurement of Electrode Overpotentials for Direct Hydrocarbon Conversion Fuel Cells

Measurement of Electrode Overpotentials for Direct Hydrocarbon Conversion Fuel Cells University of Pennsylvania ScholarlyCommons Departmental Papers (CBE) Department of Chemical & Biomolecular Engineering January 2004 Measurement of Electrode Overpotentials for Direct Hydrocarbon Conversion

More information

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries E. Wikner *1 1 Chalmers University of Technology *Hörsalvägen 11, evelina.wikner@chalmers.se Abstract:

More information

Metal hydride nafion composite electrode with dual proton and electron conductivity

Metal hydride nafion composite electrode with dual proton and electron conductivity International Journal of Smart Grid and Clean Energy Metal hydride nafion composite electrode with dual proton and electron conductivity Amandeep Singh Oberoi *, John Andrews a School of Aerospace, Mechanical

More information

Production of Graphite Chloride and Bromide Using Microwave Sparks

Production of Graphite Chloride and Bromide Using Microwave Sparks Supporting Information Production of Graphite Chloride and Bromide Using Microwave Sparks Jian Zheng, Hongtao Liu, Bin Wu, Chong-an Di, Yunlong Guo, Ti Wu, Gui Yu, Yunqi Liu, * and Daoben Zhu Key Laboratory

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Polymer graphite composite anodes for Li-ion batteries

Polymer graphite composite anodes for Li-ion batteries Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia, SC 29208 Plamen Atanassov University of New

More information

Supplementary material: Nature Nanotechnology NNANO D

Supplementary material: Nature Nanotechnology NNANO D Supplementary material: Nature Nanotechnology NNANO-06070281D Coercivities of the Co and Ni layers in the nanowire spin valves In the tri-layered structures used in this work, it is unfortunately not possible

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell

Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell Byungwoo Park Department of Materials Science and Engineering http://ep.snu.ac.kr 1 Nanoscale Control for

More information

Helis. High energy lithium sulphur cells and batteries. Dr. Marian Cristian Stan a, Prof. Dr. Martin Winter a,b

Helis. High energy lithium sulphur cells and batteries. Dr. Marian Cristian Stan a, Prof. Dr. Martin Winter a,b Helis High energy lithium sulphur cells and batteries Dr. Marian Cristian Stan a, Prof. Dr. Martin Winter a,b a MEET Battery Research Center, University of Muenster b Helmholtz-Institute Muenster (HI MS),

More information

Carbon-based nanocomposite EDLC supercapacitors

Carbon-based nanocomposite EDLC supercapacitors Carbon-based nanocomposite EDLC supercapacitors C. Lei and C. Lekakou Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK, C.Lekakou@surrey.ac.uk ABSTRACT

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium-

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium- Electronic Supplementary Information Sulfur-Infiltrated Porous Carbon Microspheres with Controllable Multi-Modal Pore Size Distribution for High Energy Lithium- Sulfur Batteries Cunyu Zhao, a Lianjun Liu,

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Lithium Diffusion in Graphitic Carbon: Supporting Information

Lithium Diffusion in Graphitic Carbon: Supporting Information thium Diffusion in Graphitic Carbon: Supporting Information Kristin Persson, 1,2,*,+ Vijay A. Sethuraman, 1,3,* Laurence J. Hardwick, 1,4,* Yoyo Hinuma, 2,5 Ying Shirley Meng, 2,5 Anton van der Ven, 6

More information

Phenyl-Rich Silicone Oil as a Precursor for SiOC Anode Materials in Long- Cycle and High-Rate Lithium Ion Batteries

Phenyl-Rich Silicone Oil as a Precursor for SiOC Anode Materials in Long- Cycle and High-Rate Lithium Ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Phenyl-Rich Silicone Oil as a Precursor for SiOC

More information

Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions

Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions Journal of Power Sources 119 121 (2003) 538 542 Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions M.D. Levi *, C. Wang, J.S. Gnanaraj, D. Aurbach Department

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Photographs show the titration experiments by dropwise adding ~5 times number of moles of (a) LiOH and LiOH+H 2 O, (b) H 2 O 2 and H 2 O 2 +LiOH, (c) Li

More information

Please do not adjust margins. Electronic supplementary information

Please do not adjust margins. Electronic supplementary information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Journal of Materials Chemistry A Electronic

More information