Layered reduced graphene oxide with nanoscale interlayer gaps as a stable

Size: px
Start display at page:

Download "Layered reduced graphene oxide with nanoscale interlayer gaps as a stable"

Transcription

1 Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun-Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi Cui. Table of contents Part I: Materials synthesis Supplementary Figure 1. Time evolution of spark reaction. Supplementary Figure 2. Time evolution of Li infusion into layered rgo film. Part II: Lithiophilicity of the layered rgo film Supplementary Figure 3. Lithiophilicity of various carbon materials. Supplementary Figure 4. First-principles calculations on surface binding energy. Supplementary Figure 5. Capillary force at different scale and litiophilicity. Part III: Characterizations on the materials Supplementary Figure 6. Brunauer Emmett Teller (BET) surface area characterizations on GO/rGO. NATURE NANOTECHNOLOGY 1

2 Supplementary Figure 7. X-ray photoelectron spectroscopy (XPS) Li 1s spectra of Li foil and Li-rGO composite. Supplementary Figure 8. XPS survey characterizations on GO/rGO. Supplementary Figure 9. Raman spectroscopy characterizations on GO/rGO. Supplementary Figure 10. X-ray diffraction (XRD) characterizations. Supplementary Figure 11. Layered Li-rGO electrodes with different thickness. Supplementary Figure 12. Surface morphology of layered Li-rGO after cycled at 5 ma cm -2. Supplementary Figure 13. Layered Li-rGO electrode surface after 100 galvanostatic cycles. Supplementary Figure 14. Time evolution of Li deposition observed with in situ TEM. Supplementary Figure 15. Ex situ SEM characterization on thickness variation. Part IV: Electrochemical testing Supplementary Figure 16. Comparison on the voltage profiles at various current density. Supplementary Figure 17. Long-cycle stabililty of layered Li-rGO electrode. Supplementary Figure 18. Electrochemical cycling performance with ether-based electrolyte. Supplementary Figure 19. Electrochemical cycling of symmetric cells at 2 ma cm -2. Supplementary Figure 20. High areal capacity cycling stability of layered Li-rGO electrodes. 2 NATURE NANOTECHNOLOGY

3 SUPPLEMENTARY INFORMATION Supplementary Figure 21. Electrochemical impedance spectroscopy characterizations before cycling. Supplementary Figure 22. Electrochemical performance of the LCO/Li-rGO cells. Supplementary Figure 23. Electrochemical performance of the LTO/Li-rGO cells. Supplementary Figure 24. Battery cycling with limited Li amount. Part V: Supplementary Movies Supplementary Video 1. Spark reaction on GO film. Supplementary Video 2. Li infustion into rgo film. Supplementary Video 3. Flexibility of Li-rGO film. Supplementary Video 4. In situ TEM movie of Li infusion with side view. The video is played at 50 x the actual speed. Supplementary Video 5. In situ TEM movie of Li infusion with top view. The video is played at 15 x the actual speed. Supplementary Video 6. In situ TEM movie of dendritic Li deposition without a host. The video is played at 50 x the actual speed. NATURE NANOTECHNOLOGY 3

4 Supplementary Figure 1. Time evolution of spark reaction. Time-lapse images of the spark reaction visualizing the detailed phenomenon of the reaction within 100 milliseconds. The images of the reaction at different time of 0 ms (a), 20 ms (b), 40 ms (c), 60 ms (d), 80 ms (e), and 100 ms (f) were shown successively. The yellow arrow in a shows the initial contact point between GO and molten Li, where the reaction initiated. The flame shown in the images illustrates the possible H2 formation under the strong reduction condition in the presence of molten Li and its combustion reaction with the trace amount of oxygen in the glove box. This can be one of the reasons for the interlayer expansion of GO. 4 NATURE NANOTECHNOLOGY

5 SUPPLEMENTARY INFORMATION Supplementary Figure 2. Time evolution of Li infusion into layered rgo film. Timelapse images (a, 0s; b, 5s; c, 12s; d, 20s; e, 45s) of Li infusion process into the sparkedrgo film. The edge of the sparked-rgo film was put in contact with the molten Li. Rapid Li infusion can be observed where it took less than 1 minute for Li to spread across the whole sparked-rgo surface. NATURE NANOTECHNOLOGY 5

6 Supplementary Figure 3. Lithiophilicity of various carbon materials. Surface wetting of molten Li on different carbon materials, including CNT film (a,f), carbon fiber paper (b,g), mesoporous carbon coated on Cu foil (c,h), electrospun carbon nanofiber (d,i) and sparked-rgo film (e,j). For sparked-rgo film, the molten Li was rapidly infused into the matrix with good wettability. In contrast, the other carbon materials showed relatively large contact angle, indicating relatively poor Li surface wettability. 6 NATURE NANOTECHNOLOGY

7 SUPPLEMENTARY INFORMATION Supplementary Figure 4. First-principles calculations on surface binding energy. First-principles calculations showing the binding energy between Li and bare graphene surface (a), carbonyl (C=O) groups (b), alkoxy groups (C-O) (c), and epoxyl (C-O-C) groups (d). The carbonyl and alkoxy groups show much stronger interaction with Li compared to bare graphene surface. NATURE NANOTECHNOLOGY 7

8 Supplementary Figure 5. Capillary force at different scale and litiophilicity. Schematic showing the effect of capillary force with different surface lithiophilicity ( lithiophobic -left, lithiophilic -middle & right) and different interlayer gap dimension ( larger interlayer dimension -middle, nanoscale interlayer dimension -right). It is known that the capillary force on lyophobic surface will lower the liquid level while the lyophilic surface will lift the liquid level. The height of the liquid level is inversely proportional to the diameter, which means smaller spacing with lyophilic surface will give rise to higher liquid level. 8 NATURE NANOTECHNOLOGY

9 SUPPLEMENTARY INFORMATION Supplementary Figure 6. Brunauer Emmett Teller (BET) surface area characterizations on GO/rGO. N2 adsorption-desorption isotherms of the pristine GO film (blue) and the sparked rgo film (red), from which the BET surface area was calculated to be 8.0 m 2 g -1 and m 2 g -1, respectively. NATURE NANOTECHNOLOGY 9

10 Supplementary Figure 7. X-ray photoelectron spectroscopy (XPS) Li 1s spectra of Li foil and Li-rGO composite. The XPS Li 1s spectra of Li foil and Li-rGO composite showing the signals of metallic Li (red), Li2O/LiOH (green) and Li2CO3 (blue). 10 NATURE NANOTECHNOLOGY

11 SUPPLEMENTARY INFORMATION Supplementary Figure 8. XPS survey characterizations on GO/rGO. XPS survey spectra of pristine GO (black) and sparked rgo (red). After spark reaction, significantly increased C/O ratio can be observed, which indicates the removal of O-containing species and the reduction of GO in the spark process. NATURE NANOTECHNOLOGY 11

12 Supplementary Figure 9. Raman spectroscopy characterizations on GO/rGO. Raman spectra of pristine GO (black) and sparked rgo (red) films. The sparked rgo showed lower D/G band ratio. 12 NATURE NANOTECHNOLOGY

13 SUPPLEMENTARY INFORMATION Supplementary Figure 10. X-ray diffraction (XRD) characterizations. XRD spectra of pristine GO film (blue), sparked rgo (black) and Li-rGO composite (red). Pristine GO showed a sharp peak at 2θ ~ 11, which is typical for highly oxidized graphite with remarkably increased interlayer spacing (d ~ 0.8 nm). The peak at 2θ ~ 11 disappeared for sparked rgo, indicating the partial reduction of GO. A sharp peak corresponding to metallic Li (110) can be observed for Li-rGO, indicating the successful infusion of Li into the rgo matrix. NATURE NANOTECHNOLOGY 13

14 Supplementary Figure 11. Layered Li-rGO electrodes with different thickness. SEM images of the Li-rGO electrodes with different thickness of ~50 μm (a,d), ~80 μm (b,e), and ~200 μm (c,f). The magnified SEM images shown in d-f indicate consistent layered structure with similar spacing despite the electrode thickness 14 NATURE NANOTECHNOLOGY

15 SUPPLEMENTARY INFORMATION Supplementary Figure 12. Surface morphology of layered Li-rGO after cycled at 5 ma cm -2. Low-magnification (a) and magnified (b) SEM images of the top surface of layered Li-rGO electrode after 10 galvanostatic cycles with current density of 5 ma cm -2. The stripping/plating capacity was fixed at 1 mah cm -2. The images show relatively flat surface, small quantity of Li can be observed on the top surface (b). NATURE NANOTECHNOLOGY 15

16 Supplementary Figure 13. Layered Li-rGO electrode surface after 100 galvanostatic cycles. a, SEM image of the layered Li-rGO electrode surface after 100 cycles with SEI coverage. b, SEM image of the layered Li-rGO electrode surface after 100 cycles where the region on the left of the red dash line has SEI coverage and that on the right has no SEI coverage. c, SEM image of the layered Li-rGO electrode surface after 100 cycles without SEI coverage. Part of SEI layer on the surface was removed gently by mechanical scratch while the rest part left intact. The cell was cycled in symmetric configuration with layered Li-rGO as the electrodes, at current density of 1 ma cm -2 with the capacity fixed at 1 mah m -2 for 100 cycles. 16 NATURE NANOTECHNOLOGY

17 SUPPLEMENTARY INFORMATION Supplementary Figure 14. Time evolution of Li deposition observed with in situ TEM. a-e, Time evolution of Li deposition onto a substrate without stable host. Snapshots at 0 s, 100 s, 200 s, 300 s and 350 s are shown, with dendritic Li shooting out (Scale bar: 1 μm). f-i, Time evolution of Li deposition into rgo host. Snapshots at 0 s, 100 s, 200 s and 300 s are shown, where no dendritic Li deposition can be observed (Scale bar: 200 nm). NATURE NANOTECHNOLOGY 17

18 Supplementary Figure 15. Ex situ SEM characterization on thickness variation. Ex situ SEM characterization on the thickness change before (a), after (b) Li stripping and after one stripping/plating cycle (c). After Li stripping, only minimal thickness decrease of ~20% can be observed. And after plating Li back, the thickness is similar to the original state. 18 NATURE NANOTECHNOLOGY

19 SUPPLEMENTARY INFORMATION Supplementary Figure 16. Comparison on the voltage profiles at various current density. Voltage profiles of Li-rGO (left column) and Li foil (right column) symmetric cells at different cycles varied from the 1 st to the 100 th cycle. Profiles at different current densities of 1 ma cm -2 (a,b), 2 ma cm -2 (c,d) and 3 ma cm -2 (e,f) were chosen for comparison. NATURE NANOTECHNOLOGY 19

20 Supplementary Figure 17. Long-cycle stabililty of layered Li-rGO electrode. a, Galvanostatic cycling of symmetric Li-rGO electrode (blue) and bare Li foil (red) in the first 500 hours, which is equivalent to 250 cycles. The current density was fixed at 1 ma cm -2 with stripping/plating capacity of 1 mah cm -2. b, The detailed voltage profiles from 80 th to 100 th cycle as marked with dash line in a. c, The detailed voltage profiles from 230 th cycle to 250 th cycle as marked with dash line in a. 20 NATURE NANOTECHNOLOGY

21 SUPPLEMENTARY INFORMATION Supplementary Figure 18. Electrochemical cycling performance with ether-based electrolyte. a, Galvanostatic cycling of Li foil (red) and Li-rGO film (blue) symmetric cells in ether-based electrolyte (1M LiTFSI in 1:1, v/v DOL/DME with 1% LiNO3). LirGO electrode showed much lower overpotential as well as more stable cycling stability compared to the Li foil counterpart. The curves of 800,000-1,000,000 seconds (green dash rectangle) and 2,800,000-3,000,000 seconds (blue dash rectangle) were enlarged and shown in b and c, respectively. The Li-rGO electrode exhibited extremely stable cycling performance in the DOL/DME electrolyte, with stable cycling of >450 cycles as shown in a. NATURE NANOTECHNOLOGY 21

22 Supplementary Figure 19. Electrochemical cycling of symmetric cells at 2 ma cm - 2. Galvanostatic cycling of Li foil (red) and Li-rGO film (blue) in symmetric cell configuration at the current density of 2 ma cm -2. The stripping/plating capacity was fixed at 1 mah cm -2. The detailed voltage profiles of the 1 st, 10 th, 50 th, and 100 th cycles were further shown in the inset figures with scale of y axis shown on the left. 22 NATURE NANOTECHNOLOGY

23 SUPPLEMENTARY INFORMATION Supplementary Figure 20. High areal capacity cycling stability of layered Li-rGO electrodes. Galvanostatic cycling of symmetric Li-rGO electrode (blue) and bare Li foil (red) with higher areal capacity of 3 mah cm -2 in the first 300 hours, which is equivalent to 50 cycles. The current density was fixed at 1 ma cm -2. NATURE NANOTECHNOLOGY 23

24 Supplementary Figure 21. Electrochemical impedance spectroscopy characterizations before cycling. Nyquist plots of the symmetric cells of Li foil (black) and layered Li-rGO (red) before electrochemical cycling. Li foil showed considerably larger interfacial resistance compared to the layered Li-rGO counterpart. 24 NATURE NANOTECHNOLOGY

25 SUPPLEMENTARY INFORMATION Supplementary Figure 22. Electrochemical performance of the LCO/Li-rGO cells. Voltage profile comparison of the LCO/Li-rGO cells and the LCO/Li foil cells at the rate of 0.2 C (a) and 10 C (c). b, Voltage profiles of the LCO/Li-rGO cells operated at various rates from 0.2 C to 10 C. d, Cycling performance of the LCO/Li-rGO cells and the LCO/Li foil cells at the rate of 1 C. Activation process was performed at the initial cycles with the rate of 0.2 C. NATURE NANOTECHNOLOGY 25

26 Supplementary Figure 23. Electrochemical performance of the LTO/Li-rGO cells. a, Rate capability of the LTO/Li-rGO and LTO/Li foil cells at various rates from 0.2 C to 10 C. Voltage profile comparison of the LCO/Li-rGO cells and the LCO/Li foil cells at the rate of 0.2 C (b), 0.5 C (c), 1 C (d), 2 C (e), 4 C (f), and 10 C (g) were shown. 26 NATURE NANOTECHNOLOGY

27 SUPPLEMENTARY INFORMATION Supplementary Figure 24. Battery cycling with limited Li amount. Cycling stability test with limited amount of Li. High areal capacity of LTO (~ 3 mah cm -2 ) was used here. LTO was used as the positive electrode and performed as the reservoir for Li. Since LTO itself does not supply Li to the cell and it has high enough Coulombic efficiency, the Li source is all from the Li metal electrode while Li loss during cycling should majorly attributed to the loss on Li metal electrode. NATURE NANOTECHNOLOGY 27

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free Supporting Information Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes Tong-Tong Zuo,, Ya-Xia Yin,, Shu-Hua Wang, Peng-Fei Wang,, Xinan

More information

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes JOUL, Volume 2 Supplemental Information Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes Shan Liu, Aoxuan Wang, Qianqian Li, Jinsong Wu, Kevin Chiou, Jiaxing Huang, and Jiayan Luo

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight poly(vinyl alcohol) (MMW-PVA) (b) and low-molecular-weight poly(vinyl

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

A phosphorene graphene hybrid material as a high-capacity anode for sodium-ion batteries

A phosphorene graphene hybrid material as a high-capacity anode for sodium-ion batteries SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2015.194 A phosphorene graphene hybrid material as a high-capacity anode for sodium-ion batteries Jie Sun, Hyun-Wook Lee, Mauro Pasta, Hongtao Yuan, Guangyuan

More information

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries ARTICLE NUMBER: 16113 DOI: 10.1038/NENERGY.2016.113 Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries Minseong Ko, Sujong Chae, Jiyoung Ma, Namhyung Kim, Hyun-Wook

More information

Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and

Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and expanded graphites (EG-1hr and EG-5hr). The crystalline structures of PG, GO, EG-1hr, and EG-5hr were characterized

More information

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries Electronic Supplementary Material (ESI for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Supplementary Information Effective Strategies for Improving Electrochemical

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information In situ growth of heterostructured Sn/SnO nanospheres

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal JOUL, Volume 1 Supplemental Information An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal Quan Pang, Xiao Liang, Abhinandan Shyamsunder, and Linda F. Nazar Supplemental

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries

Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation in Lithium-Sulfur Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Covalent-Organic Frameworks: Potential Host Materials for Sulfur Impregnation

More information

Fast and reversible thermoresponsive polymer switching materials for safer batteries

Fast and reversible thermoresponsive polymer switching materials for safer batteries ARTICLE NUMBER: 15009 DOI: 10.1038/NENERGY.2015.9 Fast and reversible thermoresponsive polymer switching materials for safer batteries Zheng Chen, Po-Chu Hsu, Jeffrey Lopez, Yuzhang Li, John W. F. To,

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage

Microporous carbon nanosheets with redox-active. heteroatoms for pseudocapacitive charge storage Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive

More information

A Highly Efficient Double-Hierarchical Sulfur Host for Advanced Lithium-Sulfur Batteries

A Highly Efficient Double-Hierarchical Sulfur Host for Advanced Lithium-Sulfur Batteries Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information A Highly Efficient Double-Hierarchical Sulfur Host for Advanced

More information

Supporting Information. Facile electrospinning formation of carbon-confined metal oxide cube-intube. nanostructures for stable lithium storage

Supporting Information. Facile electrospinning formation of carbon-confined metal oxide cube-intube. nanostructures for stable lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information Facile electrospinning formation of carbon-confined metal oxide cube-intube

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Na3V2(PO4)2F3-SWCNT: A High Voltage Cathode for

More information

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries JOUL, Volume 3 Supplemental Information Lightweight Metallic MgB 2 Mediates Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries Quan Pang, Chun Yuen Kwok, Dipan Kundu, Xiao Liang,

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

Nanoscale perspective: Materials designs and understandings in lithium metal anodes

Nanoscale perspective: Materials designs and understandings in lithium metal anodes Nano Research DOI 10.1007/s12274-017-1596-1 Nanoscale perspective: Materials designs and understandings in lithium metal anodes Dingchang Lin 1, Yayuan Liu 1, Allen Pei 1, and Yi Cui 1,2 ( ) 1 Department

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Mesoporous C-coated SnO x nanosheets

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Rational design of oxide/carbon composite to achieve superior rate-capability via enhanced lithium-ion transport across carbon to oxide

Rational design of oxide/carbon composite to achieve superior rate-capability via enhanced lithium-ion transport across carbon to oxide Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Rational design of oxide/carbon composite

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/12/eaao7233/dc1 Supplementary Materials for Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life Hao Chen, Hanyan Xu, Siyao Wang, Tieqi

More information

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information: High Tap Density Secondary Silicon

More information

Batteries: Now and Future

Batteries: Now and Future Batteries: Now and Future Yi Cui Department of Materials Science and Engineering Stanford University Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Mobile Phone

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Nano-embedded microstructured FeS 2 @C as a high

More information

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Self-Growth-Templating Synthesis of

More information

Department of Chemical Engineering, Tsinghua University, Beijing , P. R. China

Department of Chemical Engineering, Tsinghua University, Beijing , P. R. China Beyond Lithium Ion X, IBM, Almaden CA, June 27-29, 2017 Rational Design of Lithium Metal Matrix and its Protective Solid Electrolyte Interphase Qiang Zhang Tsinghua University, China E-mail: zhang-qiang@mails.tsinghua.edu.cn

More information

SUPPLEMENTARY INFORMATION. Lamuel David, Romil Bhandavat and Gurpreet Singh*

SUPPLEMENTARY INFORMATION. Lamuel David, Romil Bhandavat and Gurpreet Singh* SUPPLEMENTARY INFORMATION MoS 2 /graphene Composite Paper For Sodium-Ion Battery Electrodes Lamuel David, Romil Bhandavat and Gurpreet Singh* Mechanical and Nuclear Engineering Department, Kansas State

More information

Sustainable Li/Na-Ion Batteries

Sustainable Li/Na-Ion Batteries Sustainable Li/Na-Ion Batteries Chunsheng Wang 1223C Chemical and Nuclear Engineering Department of Chemical & Biomolecular Engineering Email: cswang@umd.edu Phone: (301) 405-0352 Application of Li-ion

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 213. Supporting Information for Adv. Energy Mater., DOI: 1.12/aenm.2131565 Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Ultrasmall Sn Nanodots Embedded inside N-Doped

More information

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Si/SiO x Hollow Nanospheres/Nitrogen-Doped Carbon

More information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization Supporting Information High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization Zhuo Wang, Tingting Yan, Guorong Chen, Liyi Shi and Dengsong Zhang* Research Center

More information

Supporting information

Supporting information Supporting information 3D porous MXene (Ti 3 C 2 )/reduced graphene oxide hybrid s for advanced lithium storage Zhiying Ma,, Xufeng Zhou,*, Wei Deng,, Da Lei,, and Zhaoping Liu *,. Key Laboratory of Graphene

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich Supporting Information The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes Hongfa Xiang,,# Donghai Mei, + Pengfei Yan, Priyanka Bhattacharya,

More information

Supporting Information. Free-Standing 3D Porous N-Doped Graphene Aerogel Supported. Platinum Nanocluster for Efficient Hydrogen Production from

Supporting Information. Free-Standing 3D Porous N-Doped Graphene Aerogel Supported. Platinum Nanocluster for Efficient Hydrogen Production from Supporting Information Free-Standing 3D Porous N-Doped Graphene Aerogel Supported Platinum Nanocluster for Efficient Hydrogen Production from Ammonia Electrolysis Yufei Zhou, Guoquan Zhang *, Mingchuan

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Title: A sulfonated polyaniline with high density and high rate Na-storage

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information A honeycomb-like porous carbon derived from pomelo peel for use in high-performance

More information

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Electronic Supplementary Information A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film Jilei Liu,, Minghua Chen, Lili Zhang, Jian Jiang, Jiaxu Yan, Yizhong

More information

Plasma-functionalized carbon-layered separators for improved performance of

Plasma-functionalized carbon-layered separators for improved performance of Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2016 Supporting Information for Perovskite Solar Cells Powered Electrochromic Batteries for

More information

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries.

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 214 Supplementary Information Unique Behaviour of Nonsolvents for Polysulphides

More information

Interfacial Chemistry in Solid-state Batteries: Formation of

Interfacial Chemistry in Solid-state Batteries: Formation of Supporting Information Interfacial Chemistry in Solid-state Batteries: Formation of Interphase and Its Consequences Shaofei Wang, Henghui Xu, Wangda Li, Andrei Dolocan and Arumugam Manthiram* Materials

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Supporting Information

Supporting Information Supporting Information MoSe2 embedded CNT-Reduced Graphene Oxide (rgo) Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances Gi Dae Park, Jung Hyun

More information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Electronic Supplementary Information Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Bin Luo, a Yan Fang, a Bin Wang, a Jisheng Zhou, b Huaihe Song, b and Linjie

More information

Please do not adjust margins. Electronic supplementary information

Please do not adjust margins. Electronic supplementary information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Journal of Materials Chemistry A Electronic

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

Supplementary Materials for. Incommensurate Graphene Foam as a High Capacity Lithium. Intercalation Anode

Supplementary Materials for. Incommensurate Graphene Foam as a High Capacity Lithium. Intercalation Anode Supplementary Materials for Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode Tereza M. Paronyan* 1, Arjun Kumar Thapa 2, Andriy Sherehiy 3, Jacek B. Jasinski 2, John Samuel Dilip

More information

Supporting Information

Supporting Information Supporting Information Iron Telluride Decorated Reduced Graphene Oxide Hybrid Microspheres as Anode Materials with Improved Na-Ion Storage Properties Jung Sang Cho 1, Seung Yeon Lee 1, Jung-Kul Lee 2,

More information

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Nitrogen-doped Activated Carbon for High Energy Hybridtype

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Directly anchoring 2D NiCo metal-organic frameworks

More information

Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Rechargeable Magnesium Batteries

Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Rechargeable Magnesium Batteries Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Dimensional Black TiO 2-x Nanoflakes for High-Performance Rechargeable Magnesium Batteries Authors: Yanrong Wang,

More information

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries Supporting Information Self-rearrangement of silicon nanoparticles embedded in micron carbon sphere framework for high-energy and long-life lithium-ion batteries Min-Gi Jeong,, Hoang Long Du, Mobinul Islam,,

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

Thin Multifunctional Coating on Separator Improves Cyclability and Safety of Lithium Sulfur Battery

Thin Multifunctional Coating on Separator Improves Cyclability and Safety of Lithium Sulfur Battery Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Thin Multifunctional Coating on Separator Improves Cyclability and

More information

An Advanced Anode Material for Sodium Ion. Batteries

An Advanced Anode Material for Sodium Ion. Batteries Layered-Structure SbPO 4 /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries Jun Pan, Shulin Chen, # Qiang Fu, Yuanwei Sun, # Yuchen Zhang, Na Lin, Peng Gao,* # Jian Yang,* and

More information

Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries

Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

High-Performance Si Anodes with Highly Conductive and. Thermally Stable Titanium Silicide Coating Layer

High-Performance Si Anodes with Highly Conductive and. Thermally Stable Titanium Silicide Coating Layer Electronic Supplementary information High-Performance Si Anodes with Highly Conductive and Thermally Stable Titanium Silicide Coating Layer kji Park, Jung-In Lee, Myung-Jin Chun, Jin-Tak Yeon, Seungmin

More information

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Strong Anchoring Effect of Ferric Chloride-Graphite

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion Supplementary Material (ESI) for CrystEngCommunity This journal is (c) The Royal Society of Chemistry 2011 Electronic Supplementary Information Facile Synthesis of Germanium-Graphene Nanocomposites and

More information

LITHIUM ION BATTERIES

LITHIUM ION BATTERIES LITHIUM ION BATTERIES 1 Electrodes & Jelly roll 2 3 Types of Lithium ion batteries 원형, 원통형, cylindrical 각형, prismatic 폴리머, polymer (pouch type) 4 Materials composing electrodes 5 6 Terminology-1

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide Supplementary Information for Scientific Reports Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide Sheets for the Application in High-Performance Asymmetric

More information

Metal organic framework-based separator for lithium sulfur batteries

Metal organic framework-based separator for lithium sulfur batteries ARTICLE NUMBER: 16094 DOI: 10.1038/NENERGY.2016.94 Metal organic framework-based separator for lithium sulfur batteries 4 5 Songyan Bai 1,2, Xizheng Liu 1, Kai Zhu 1, Shichao Wu 1,2 Haoshen Zhou 1,2,3*

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped

More information

Supporting information. School of optoelectronic engineering, Nanjing University of Post &

Supporting information. School of optoelectronic engineering, Nanjing University of Post & Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Supporting information Graphene/MnO 2 aerogel with both high compression-tolerant ability and

More information

Supporting Information

Supporting Information Supporting Information Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer towards high-performance Li-S batteries Yi Guo, Gang Zhao, Naiteng

More information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Supporting Information Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Zhisheng Chai,, Nannan Zhang,, Peng Sun, Yi Huang, Chuanxi Zhao, Hong Jin Fan, Xing Fan,*,

More information

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for Energy & Environmental Science.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Three-Dimensional Carbon Foam/N-doped

More information

Doctor of Philosophy

Doctor of Philosophy Centre for Clean Energy Technology & School of Chemistry and Forensic Science Faculty of Science Graphene-based Nanocomposite Materials for High-performance Supercapacitors and Lithium Rechargeable Batteries

More information

Electronic Supplementary Information. High-performance Flexible Asymmetric Supercapacitors Based on A New Graphene

Electronic Supplementary Information. High-performance Flexible Asymmetric Supercapacitors Based on A New Graphene Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information High-performance Flexible Asymmetric

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Supporting Information Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Zhiqiang Zhu, Shiwen Wang, Jing Du, Qi Jin, Tianran Zhang,

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author.   ciac - Shanghai P. R. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Supplementary Information For Journal of Materials Chemistry A Perovskite- @BiVO

More information

Electronics Supplementary Information for. Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng Liu*

Electronics Supplementary Information for. Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng Liu* Electronics Supplementary Information for Nickel foam supported mesoporous MnO 2 nanosheet arrays with superior lithium storage performance Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct Visualization of Large-Area Graphene Domains and Boundaries by Optical Birefringency Dae Woo Kim 1,*, Yun Ho Kim 1,2,*, Hyeon Su Jeong 1, Hee-Tae Jung 1 * These authors contributed equally to this

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

Investigation of Polymers Used in Lithium. Oxygen Batteries as Electrolyte and. Cathode Materials

Investigation of Polymers Used in Lithium. Oxygen Batteries as Electrolyte and. Cathode Materials Investigation of Polymers Used in Lithium Oxygen Batteries as Electrolyte and Cathode Materials A thesis presented for the degree of Master by Research By Jinqiang Zhang, B. Sc. University of Technology,

More information

Stabilization of polysulfides via lithium bonds for Li S batteries

Stabilization of polysulfides via lithium bonds for Li S batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Stabilization of polysulfides via lithium bonds

More information