Fast and reversible thermoresponsive polymer switching materials for safer batteries

Size: px
Start display at page:

Download "Fast and reversible thermoresponsive polymer switching materials for safer batteries"

Transcription

1 ARTICLE NUMBER: DOI: /NENERGY Fast and reversible thermoresponsive polymer switching materials for safer batteries Zheng Chen, Po-Chu Hsu, Jeffrey Lopez, Yuzhang Li, John W. F. To, Nan Liu, Chao Wang, Sean Andrews, Jia Liu, Yi Cui and Zhenan Bao Supplementary Figure 1. Low (a) and high (b) magnification SEM images of native spiky Ni particles, which show clear nanoscale extrusions on the particle surface. NATURE ENERGY 1

2 DOI: /NENERGY Supplementary Figure 2. DSC curve of pure LDPE. The melting point is measured to be about 95 C. 2 NATURE ENERGY

3 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Figure 3. A digital photograph of PE/GrNi-based TRPS coated on an Al foil. The film size is about 25 cm*15 cm. NATURE ENERGY 3

4 DOI: /NENERGY Supplementary Figure 4. SEM (a) and TEM (b) images of spherical Ni particles with featureless surface. 4 NATURE ENERGY

5 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Figure 5. DSC plots of PE/GrNi-based TRPS films at different volume ratios of GrNi particle. All different samples have melting points at ~95 C, which is similar to the pure LDPE. NATURE ENERGY 5

6 DOI: /NENERGY Supplementary Figure 6. DSC plots of pure PP and PP/GrNi-based TRPS. All different samples have melting points at ~150 C. This allows PP/GrNi-based TRPS to be operated at higher temperature (> 100 C) than PE/GrNi-based TRPS. 6 NATURE ENERGY

7 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Figure 7. DSC plots of pure PVDF (a) and PVDF/GrNi-based TRPS (b). All different samples have melting points at ~170 C. This allows PVDF/GrNi-based TRPS to be operated at further increased temperature (e.g C, (c)). NATURE ENERGY 7

8 DOI: /NENERGY Supplementary Figure 8. Reversible thermal switching behavior of a TRPS (PE/GrNi, 30 vol% GrNi) film upon heating and cooling over 20 repeating cycles. The heating was performed by blowing hot air with a hot gun set at 157 C and about 2 cm away from the sample surface, which allowed the TRPS film to reach 80 C (measured by an IR gun). The resistance of the film kept stable during repeating operation. 8 NATURE ENERGY

9 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Figure 9. Charge/discharge curves and capacity summary of LiCoO 2 /graphite full cells made from GrNi- (a) and bare Ni-based (b) TRPS current collectors. The designed capacity of both cells is ~ 2.2 mah. The battery with GrNi showed a capacity of 2.1 mah after 3 activation cycles, and the coulombic efficiency reached > 99%. For battery with bare Ni, the initial charge capacity reached ~3 mah, and a large part of the capacity came from voltage range below 4 V, indicating strong oxidation-dissolution of Ni. The battery can only be cycled for 2 times and the later coulombic efficiency was very low because of continuous dissolution of Ni. Some of such batteries cannot even cycle to 4.3 V (a commonly used charge cut-off voltage for LiCoO 2 /graphite cell) at the first cycle. The possible failing reasons could be the continuous oxidation-dissolution of Ni and gradually increased cell internal resistance. NATURE ENERGY 9

10 DOI: /NENERGY Supplementary Figure 10. Cyclic voltammograms of normal (using Al current collector) and safe LiCoO 2 batteries (after 3 initial cycles) at a scan rate of 0.5 mv s -1. Both batteries show similar redox characteristics, further confirming similar electrochemical activity and stability. 10 NATURE ENERGY

11 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Figure 11. Rate capability of normal and safe LiCoO 2 -based batteries (after 5 initial galvanostatic cycles at 0.2 C). Both batteries show similar rate performance. The relatively low capacity of LiCoO 2 in this experiment is due to a moderate quality of such cathode material obtained commercially. NATURE ENERGY 11

12 DOI: /NENERGY Supplementary Figure 12. Cyclic voltammograms of normal (using Cu current collector) and safe graphite-based batteries (after 5 initial cycles) at a scan rate of 0.2 mv s -1. Both batteries show similar redox characteristics, indicating similar electrochemical activity and stability. 12 NATURE ENERGY

13 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Figure 13. Cycling stability of safe (top) and normal (bottom) LiFePO 4 batteries at 25 and 50 C, respectively. The batteries were first cycled at room temperature for 50 cycles and then the environmental temperature was increased to 50 C (controlled by temperature chamber). To show intrinsic battery stability, a commercial available LiFePO 4 (which has better intrinsic cycling stability than LiCoO 2 at high temperature) was used as the active material. The result shows that PE/GrNi (30 v% of GrNi) TRPS allows battery to cycle at good performance in a broad range of temperature. This temperature can be further tuned by changing the composition of TRPS, as discussed in the main text. NATURE ENERGY 13

14 DOI: /NENERGY Supplementary Figure 14. Electrochemical impedance spectra (Nyquist) of normal and safe LiCoO 2 -based batteries after increasing the temperature to 70 C. Both batteries show similar EIS at room temperature (Figure 4e in main text), while the equivalent series resistance (ESR) of normal LiCoO 2 battery decreased to ~15 Ω due to de-lithiation and increased charge transfer at increased temperature. By comparison, the safe battery showed an ESR of ~1600 Ohm due to the turn-on of TRPS electrode. 14 NATURE ENERGY

15 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Figure 15. The second (a) and third (b) shut-down of the same battery as shown in Figure 4g. After the second shut-down, the battery resumed again and continued with the stable cycling. The battery was ramped to high temperature and then subjected to the third shutdown (b). Figure (c) shows magnified region of the shut-down cycles in (b). NATURE ENERGY 15

16 DOI: /NENERGY Supplementary Figure 16. Shut-down of graphite-based safe battery. Figure (a) shows the normal cycling at 25 C and then the shut-down after temperature was increased to 70 C. Figure (b) shows magnified region of the shut-down cycles in (a). 16 NATURE ENERGY

17 DOI: /NENERGY SUPPLEMENTARY INFORMATION Supplementary Table 1. Parameters used for thermal simulation. All the physical properties of the materials listed in the table are adapted from references. 1,2,3,4,5,6 Material Density (kg/m 3 ) Electrical resistivity (W*m) Thermal conductivity (W/(m*K)) Heat capacity (J/(kg*K)) Temperature coefficient of resistance (K -1 ) (T ref = 20⁰C) Ionic resistivity (W*m) Cu foil ** Graphite ** ** 30 electrode Separator ** 30 LiCoO ** ** 30 electrode Al foil ** Stainless steel ABS resin ** ** ** **Not used in simulation Supplementary References 1. Chen, S., Wan, C. & Wang, Y. Thermal analysis of lithium-ion batteries. J. Power Sources 140, (2005) Serway, R., Jewett J. W., Physics for Scientists and Engineers with Modern Physics (9th ed.), 2013, chapter 24, page 814, Brooks/Cole, 20 Channel Center Street, Boston. ISBN 10: NATURE ENERGY 17

18 DOI: /NENERGY Supplementary Movie 1. Demonstration of the fast thermal switching behavior of TRPS devices made by PE/GrNi. A LED is connected to a TRPS film in a circuit and lights up at room temperature. The LED is shut off soon after applying heat with a hot gun on blowing air, which results in a rapidly increased temperature of TRPS. After removal of the hot gun, the TRPS film cools down and LED lights up again. The shut-down response time is less than 1 sec upon applying heat source, confirming an ultra-fast switching behavior. The shut-down and resuming operation can be repeated by many times without obvious change of sensitivity and response time. Supplementary Movie 2. Demonstration of slicing properties of TRPS film. A free-standing PE/GrNi film is hand-cut by a razor blade at a moderate force, which leaves clean and smooth cross-section on both sides of the film. 18 NATURE ENERGY

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun-Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/12/eaao7233/dc1 Supplementary Materials for Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life Hao Chen, Hanyan Xu, Siyao Wang, Tieqi

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries ARTICLE NUMBER: 16113 DOI: 10.1038/NENERGY.2016.113 Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries Minseong Ko, Sujong Chae, Jiyoung Ma, Namhyung Kim, Hyun-Wook

More information

Polymer graphite composite anodes for Li-ion batteries

Polymer graphite composite anodes for Li-ion batteries Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia, SC 29208 Plamen Atanassov University of New

More information

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium-

Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Supporting Information Germanium Anode with Excellent Lithium Storage Performance in a Ge/Lithium- Cobalt-Oxide Lithium-Ion Battery Xiuwan Li, Zhibo Yang, Yujun Fu, Li Qiao, Dan Li, Hongwei Yue, and Deyan

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

2014 GCEP Report - External

2014 GCEP Report - External 2014 GCEP Report - External Project title: High-Energy-Density Lithium Ion Battery using Self-Healing Polymers Investigators Zhenan Bao, Professor, Chemical Engineering Yi Cui, Professor, Material Sciences

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium

More information

Metal organic framework-based separator for lithium sulfur batteries

Metal organic framework-based separator for lithium sulfur batteries ARTICLE NUMBER: 16094 DOI: 10.1038/NENERGY.2016.94 Metal organic framework-based separator for lithium sulfur batteries 4 5 Songyan Bai 1,2, Xizheng Liu 1, Kai Zhu 1, Shichao Wu 1,2 Haoshen Zhou 1,2,3*

More information

High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode

High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode Supplementary Information High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode Yu Zhao, Lina Wang, and Hye Ryung Byon* Byon Initiative Research

More information

Bulk graphdiyne powder applied for highly efficient lithium storage

Bulk graphdiyne powder applied for highly efficient lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Bulk graphdiyne powder applied for highly efficient lithium storage Shengliang Zhang, ab Huibiao

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for SC Advances. This journal is The oyal Society of Chemistry 2014 Supporting Information Novel Functional Material Carboxymethyl Cellulose Lithium (CMC-Li) Enhanced

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight poly(vinyl alcohol) (MMW-PVA) (b) and low-molecular-weight poly(vinyl

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information for Enhanced cycling stability of boron-doped lithium-rich

More information

A novel self-healing electrochromic film based on triphyelamine. cross-linked polymer

A novel self-healing electrochromic film based on triphyelamine. cross-linked polymer Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 217 Supporting Information A novel self-healing electrochromic film based on triphyelamine

More information

Supporting Information

Supporting Information Supporting Information A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes Nian Liu,, Hui Wu,, Matthew T. McDowell, Yan Yao, Chongmin Wang, and Yi Cui *,, Department of Chemistry,

More information

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Strong Anchoring Effect of Ferric Chloride-Graphite

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

2015 GCEP Report - external

2015 GCEP Report - external 2015 GCEP Report - external Project title: Self-Healing Polymers for High-Energy-Density Lithium Ion Battery Investigators Zhenan Bao, Professor, Chemical Engineering Yi Cui, Professor, Material Sciences

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Nano-embedded microstructured FeS 2 @C as a high

More information

Please do not adjust margins. A high-rate aqueous rechargeable zinc ion battery based on VS nanocomposite

Please do not adjust margins. A high-rate aqueous rechargeable zinc ion battery based on VS nanocomposite Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2018 not adjust margins Supplementary Information A high-rate aqueous

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Regulation of carbon content in MOF-derived hierarchical-porous

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

Please do not adjust margins. Electronic supplementary information

Please do not adjust margins. Electronic supplementary information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Journal of Materials Chemistry A Electronic

More information

Batteries: Now and Future

Batteries: Now and Future Batteries: Now and Future Yi Cui Department of Materials Science and Engineering Stanford University Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Mobile Phone

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting information Effect of cation substitution on pseudocapacitive

More information

LITHIUM ION BATTERIES

LITHIUM ION BATTERIES LITHIUM ION BATTERIES 1 Electrodes & Jelly roll 2 3 Types of Lithium ion batteries 원형, 원통형, cylindrical 각형, prismatic 폴리머, polymer (pouch type) 4 Materials composing electrodes 5 6 Terminology-1

More information

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped

More information

A phosphorene graphene hybrid material as a high-capacity anode for sodium-ion batteries

A phosphorene graphene hybrid material as a high-capacity anode for sodium-ion batteries SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2015.194 A phosphorene graphene hybrid material as a high-capacity anode for sodium-ion batteries Jie Sun, Hyun-Wook Lee, Mauro Pasta, Hongtao Yuan, Guangyuan

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 213. Supporting Information for Adv. Energy Mater., DOI: 1.12/aenm.2131565 Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

A self-assembled intercalated metal organic framework electrode with outstanding area capacity for high volumetric energy asymmetric capacitors

A self-assembled intercalated metal organic framework electrode with outstanding area capacity for high volumetric energy asymmetric capacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 A self-assembled intercalated metal organic framework electrode with outstanding

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Self-supported formation of hierarchical

More information

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural

More information

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for

High Tap Density Secondary Silicon Particle. Anodes by Scalable Mechanical Pressing for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information: High Tap Density Secondary Silicon

More information

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Electronic Supplementary Information Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Yi-Chun Lu, a Betar M. Gallant, b David G. Kwabi, b Jonathon R. Harding, c Robert

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium-

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium- Electronic Supplementary Information Sulfur-Infiltrated Porous Carbon Microspheres with Controllable Multi-Modal Pore Size Distribution for High Energy Lithium- Sulfur Batteries Cunyu Zhao, a Lianjun Liu,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting information Layered Nickel metal-organic framework for high

More information

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially Supporting Information Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution Fuzhan Song, Wei Li, Guanqun Han, and Yujie Sun*

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Synthesis of Oxidized Graphene Anchored Porous Manganese Sulfide Nanocrystal

More information

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors . Electronic Supplementary Material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Hydrogenated CoO x nanowire @ Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric

More information

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA)

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Electrochemistry - Application note n 2 Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Available instruments for the

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

Sustainable Li/Na-Ion Batteries

Sustainable Li/Na-Ion Batteries Sustainable Li/Na-Ion Batteries Chunsheng Wang 1223C Chemical and Nuclear Engineering Department of Chemical & Biomolecular Engineering Email: cswang@umd.edu Phone: (301) 405-0352 Application of Li-ion

More information

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide

Supplementary Information for Scientific Reports. Synergistic Effect between Ultra-Small Nickel Hydroxide Supplementary Information for Scientific Reports Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide Sheets for the Application in High-Performance Asymmetric

More information

Enhancing potassium-ion battery performance by defect and. interlayer engineering

Enhancing potassium-ion battery performance by defect and. interlayer engineering Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Enhancing potassium-ion battery performance

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Contact Angle Measurement: A Preliminary Diagnostic

More information

Unusual Stability of Acetonitrile-Based Superconcentrated. Electrolytes for Fast-Charging Lithium-Ion Batteries

Unusual Stability of Acetonitrile-Based Superconcentrated. Electrolytes for Fast-Charging Lithium-Ion Batteries Supporting Information for Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries Yuki Yamada,, Keizo Furukawa, Keitaro Sodeyama,, Keisuke Kikuchi,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information Room-temperature rechargeable Na-SO 2 batteries with gel-polymer electrolyte

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

Supporting Information High-performance sodium battery with 9,10-anthraquinone/CMK-3 cathode and ether-based electrolyte

Supporting Information High-performance sodium battery with 9,10-anthraquinone/CMK-3 cathode and ether-based electrolyte Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information High-performance sodium battery with 9,10-anthraquinone/CMK-3 cathode and

More information

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F Today s advanced batteries require a range of specialized analytical tools to better understand the electrochemical processes that occur during battery cycling. Evans Analytical Group (EAG) offers a wide-range

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Towards a calcium-based rechargeable battery A. Ponrouch, C. Frontera, F. Bardé, M.R. Palacín Supplementary table Table S1. Properties of some metals that can be used as battery anodes: radius of the corresponding

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Phosphorus-Doped CoS 2 Nanosheet Arrays as

More information

Nanoporous metals by dealloying multicomponent metallic glasses. Chen * Institute for Materials Research, Tohoku University, Sendai , Japan

Nanoporous metals by dealloying multicomponent metallic glasses. Chen * Institute for Materials Research, Tohoku University, Sendai , Japan Supporting information for: Nanoporous metals by dealloying multicomponent metallic glasses Jinshan Yu, Yi Ding, Caixia Xu, Akihisa Inoue, Toshio Sakurai and Mingwei Chen * Institute for Materials Research,

More information

Micro/Nanostructured Li-rich Cathode Materials with. Enhanced Electrochemical Properties for Li-ion. Batteries

Micro/Nanostructured Li-rich Cathode Materials with. Enhanced Electrochemical Properties for Li-ion. Batteries Supporting information Layered/spinel Heterostructured and Hierarchical Micro/Nanostructured Li-rich Cathode Materials with Enhanced Electrochemical Properties for Li-ion Batteries Ya-Ping Deng, Zu-Wei

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Synthesis of Nanostructured Materials by Using Metal-Cyanide Coordination Polymers and Their Lithium Storage

More information

Materials and Structural Design for Advanced Energy Storage Devices

Materials and Structural Design for Advanced Energy Storage Devices Materials and Structural Design for Advanced Energy Storage Devices Imran Shakir Sustainable Energy Technologies Center (SET) King Saud University Saudi Arabia Specific Power (W/kg) Introduction and Motivation

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell

Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell Supporting Information Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell Xabier Judez, Heng Zhang,*, Chunmei Li,*, José A. González-Marcos, Zhibin

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information NiSe 2 Pyramids Deposited on N-doped Graphene Encapsulated

More information

Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell

Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell Nanoscale Interface Control of High-Quality Electrode Materials for Li-Ion Battery and Fuel Cell Byungwoo Park Department of Materials Science and Engineering http://ep.snu.ac.kr 1 Nanoscale Control for

More information

Scalable Preparation of Hierarchical Porous Activated Carbon/graphene composite for High-Performance Supercapacitors

Scalable Preparation of Hierarchical Porous Activated Carbon/graphene composite for High-Performance Supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supplementary Information Scalable Preparation of Hierarchical Porous Activated

More information

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes JOUL, Volume 2 Supplemental Information Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes Shan Liu, Aoxuan Wang, Qianqian Li, Jinsong Wu, Kevin Chiou, Jiaxing Huang, and Jiayan Luo

More information

Supporting Information. 13 Pages, 9 Figures. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination

Supporting Information. 13 Pages, 9 Figures. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination Supporting Information 13 Pages, 9 Figures Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination Xitong Liu, 1 Jay F. Whitacre, 2,3,4 and Meagan S. Mauter

More information

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored

More information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Electronic Supplementary Information Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage Bin Luo, a Yan Fang, a Bin Wang, a Jisheng Zhou, b Huaihe Song, b and Linjie

More information

Electronics Supplementary Information for. Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng Liu*

Electronics Supplementary Information for. Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng Liu* Electronics Supplementary Information for Nickel foam supported mesoporous MnO 2 nanosheet arrays with superior lithium storage performance Manab Kundu, Cheuk Chi Albert Ng, Dmitri Y. Petrovykh and Lifeng

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Si/SiO x Hollow Nanospheres/Nitrogen-Doped Carbon

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information A honeycomb-like porous carbon derived from pomelo peel for use in high-performance

More information

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Supplementary Material (ESI) for Chemical Communications Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Sung Dae Cho, a Jin Kyu Im, b Han-Ki Kim, c Hoon Sik

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Porous MoS 2 @C hetero shell with Si yolk structure

More information

Supplementary information. Reduced graphene oxide derived from used cell graphite, and its green fabrication as eco-friendly supercapacitor

Supplementary information. Reduced graphene oxide derived from used cell graphite, and its green fabrication as eco-friendly supercapacitor Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supplementary information Reduced graphene oxide derived from used cell graphite, and its green

More information

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3-x

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3-x In the format provided by the authors and unedited. DOI: 10.1038/NMAT4810 Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3-x Hyung-Seok Kim, 1 John B. Cook, 2,3 Hao Lin, 1 Jesse

More information

Testing Electrochemical Capacitors Part 2: Cyclic Charge-Discharge and Stacks

Testing Electrochemical Capacitors Part 2: Cyclic Charge-Discharge and Stacks Testing Electrochemical Capacitors Part 2: Cyclic Charge-Discharge and Stacks Introduction This application note is Part of 2 describing electrochemical techniques for energy-storage devices. It explains

More information

Dyeing Bacterial Cellulose Pellicles for Energetic Heteroatom Doped Carbon Nanofiber Aerogels

Dyeing Bacterial Cellulose Pellicles for Energetic Heteroatom Doped Carbon Nanofiber Aerogels Nano Research DOI 10.1007/s12274-014-0546-4 Nano Res 1 Dyeing Bacterial Cellulose Pellicles for Energetic Heteroatom Doped Carbon Nanofiber Aerogels Zhen-Yu Wu, Hai-Wei Liang, Chao Li, Bi-Cheng Hu, Xing-Xing

More information

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar

Supporting Information. 15 January, Ms. ID: ac b. Parallel Screening of Electrocatalyst Candidates using Bipolar Supporting Information 15 January, 2013 Ms. ID: ac-2012-03581b Parallel Screening of Electrocatalyst Candidates using Bipolar Electrochemistry Stephen E. Fosdick, Sean P. Berglund, C. Buddie Mullins, and

More information

ELEC 103. Objectives

ELEC 103. Objectives ELEC 103 Voltage, Current, and Resistance Objectives Define voltage and discuss its characteristics Define current and discuss its characteristics Define resistance and discuss its characteristics Identify

More information

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries

Effective Strategies for Improving Electrochemical Properties of Highly Porous Si Foam Anodes in Lithium-Ion Batteries Electronic Supplementary Material (ESI for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Supplementary Information Effective Strategies for Improving Electrochemical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Directly anchoring 2D NiCo metal-organic frameworks

More information

Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors

Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors Afshin Pendashteh, a Mohammad S. Rahmanifar, b Richard B. Kaner, c and Mir F. Mousavi* a,c a Department

More information

Redox additive Aqueous Polymer-gel Electrolyte for Electric Double Layer Capacitor

Redox additive Aqueous Polymer-gel Electrolyte for Electric Double Layer Capacitor Electronic Supplementary Information Redox additive Aqueous Polymer-gel Electrolyte for Electric Double Layer Capacitor S.T. Senthilkumar, a R. Kalai Selvan,* a N.Ponpandian b and J.S. Melo c a Solid State

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information In situ growth of heterostructured Sn/SnO nanospheres

More information

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Nitrogen-doped Activated Carbon for High Energy Hybridtype

More information

Ultra-High Surface Area Three-Dimensional Porous Graphitic Carbon. from Conjugated Polymeric Molecular Framework

Ultra-High Surface Area Three-Dimensional Porous Graphitic Carbon. from Conjugated Polymeric Molecular Framework Supporting Information for Ultra-High Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework John W.F. To, a, Zheng Chen, a, Hongbing Yao, b Jiajun He, c Kwanpyo

More information

Supplementary Information Supplementary Figures

Supplementary Information Supplementary Figures Supplementary Information Supplementary Figures Supplementary Figure 1 SEM images of the morphologies of Li metal after plating on Cu (1st cycle) from different electrolytes. The current density was 0.5

More information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization Supporting Information High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization Zhuo Wang, Tingting Yan, Guorong Chen, Liyi Shi and Dengsong Zhang* Research Center

More information

Supporting Information. Electrochemical Raman Spectroscopy Investigation

Supporting Information. Electrochemical Raman Spectroscopy Investigation Supporting Information High-Capacitance Mechanism for Ti 3 C 2 T x MXene by In Situ Electrochemical Raman Spectroscopy Investigation Minmin Hu,, Zhaojin Li,, Tao Hu,, Shihao Zhu,, Chao Zhang and Xiaohui

More information

Supporting Information. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window

Supporting Information. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window Supporting Information Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window Kai Wang a, b, Haiping Wu a, b, Yuena Meng a, b, Yajie Zhang a, and Zhixiang

More information

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Kinetically-Enhanced Polysulfide

More information