Sustainable Li/Na-Ion Batteries

Size: px
Start display at page:

Download "Sustainable Li/Na-Ion Batteries"

Transcription

1 Sustainable Li/Na-Ion Batteries Chunsheng Wang 1223C Chemical and Nuclear Engineering Department of Chemical & Biomolecular Engineering Phone: (301)

2 Application of Li-ion batteries e=lnms&tbm=isch&sa=x&ei=7stvu7kxhrjlsaszqycgba &sqi=2&ved=0cacq_auoag&biw=1366&bih=622 2

3 Low cost and Sustainable Li/Na-ion batteries Low cost Na-S batteries ACS nano9(2015)3254 ACS Nano, 2014 Adv. Eng. Mat., 2014 Nano Letters, 2011 J. Mater. Chem. A, 2015 ACS Nano 2013 a Expended graphite anodes Porous carbon-p anodes Expended graphite- S cathodes Micro-porous carbon- S/Se cathodes Sustainable organic Li/Na-ion batteries Nano Letter,s 2014 Croconic acid disodium salt J. Power Sources 2014 GO encapsulated Croconic acid disodium salt Nano Energy, 2015 In situ fabrication of DHBQD electrodes

4 Outline Expanded graphite for Na-ion battery anode S C Composites for Na-ion and Li-ion battery cathode Organic materials for Li/Na-ion Batteries

5 Tuning the Interlayer Distance of Expended Graphite =Na + =H =C =O a a b b c c Graphite Graphite oxide Expanded Graphite Expanded Graphite after 150 charge/discharge cycles

6 Layer distance: nm 0.43 nm 0.37 nm Oxygen content and interlayer distance Charge/discharge curves of PG, GO and EG- 1hr and EG-5hr in second cycles at current density of 2mA g % 1-2% 10% 8% Cycling behavior of PG, GO, EG-1hr and EG-5hr. Percentage of C and O element ratio in GO and EG determined using wide-range XPS spectra Y. Wen, J. Cummings, C. Wang, et al. Nature Communications. 5(2014):4033

7 Charge/discharge cycling stability 0.013% per cycle TEM Cycling stability of EG-1hr anodes. Filtered TEM Y. Wen, J, Cummings, C. Wang, et al. Nature Communications. 5(2014): 4033 Electro diffraction pattern

8 Outline Expanded graphite for Na-ion battery anode S C Composites for Na-ion and Li-ion battery cathode Organic materials for Li/Na-ion Batteries

9 Current Technologies for Li-S Battery X. Ji, Nat. Mater., 2009, 8, 500 C. Liang, Chem. Mater., 2009, 21, 4724 Physically restrain polysulfide dissolution using porous carbon barrier materials Mesoporous silica as intermediate polysulfides absorber through weak bonding Nazar, et al, Nature Communications 2(2011)325 L. A. Archer, et al, Angew. Chem. Int. Ed. 2011, 50, 1 6 H. Wang, Yi Cui, et al Nano Lett., 2011, 11, (2011)

10 Our Technology Break S 8 molecule into S 4 and S 2 by increasing temperatures Stabilize S 4 and S 2 through physically encapsulating the S 4, S 2 into 5.0 Å porous carbon S 4 S 2 Avoid to form soluble high order polysulfides Temperature S 8 S 6 S 4 S 2 Size 6.8 Å 6.0 Å 5.2 Å 4.0 Å Stability X. Xin et al. JACS 2012, 134,

11 Intercalation of S into Expanded Graphite interlayer Layer distance: nm 0.43 nm 0.37 nm In-situ Reduction and Intercalation of Graphite Oxides using sulfur 33.8% 10% 8% S loading: 52% Adv. Energy. Mat., 2014

12 Intercalation of S into Expanded Graphite interlayer In-situ Sulfur Reduction and Intercalation of Graphite Oxides for Li-S Battery Cathodes (c) HRTEM micrographs of RGO/S, (d) and (e) the corresponding EDS maps of C and S in image (c). Adv. Energy. Mat

13 Intercalation of S into Expanded Graphite interlayer In-situ Sulfur Reduction and Intercalation of Graphite Oxides for Li-S Battery Cathodes CS 2 wash Adv. Energy. Mat

14 Outline Expanded graphite for Na-ion battery anode S C Composites for Na-ion and Li-ion battery cathode Organic materials for Li/Na-ion Batteries

15 Challenges in organic electrodes High solubility in organic electrolyte Pulverization induced by volume change Poor electronic conductivity

16 Graphene oxide wrapped croconic acid disodium salt Pristine CADS scads GO-CADS Reducing Size Carbon Coating Chao Luo, Yujie Zhu, Yunhua Xu, Yihang Liu, Tao Gao, Jing Wang, Chunsheng Wang J. Power Sources 2014, 250,

17 Specific Capacity (mah/g) Chao Luo, Yujie Zhu, Yunhua Xu, Yihang Liu, Tao Gao, Jing Wang, Chunsheng Wang J. Power Sources 2014, 250, GO-CADS Cycle life of CADS electrodes Cycled GO-CADS scads pristine CADS scads GO-CADS Cycled scads Pristine CADS Cycle Number Cycled Pristine CA

18 Croconic Acid Disodium Salt (CADS) CADS micropillar CADS microwire CADS nanowire Minimizing particle size to reduce pulverization CADS nanowire Chao Luo, Ruiming Huang, Ruslan Kevorkyants, Michele Pavanello, Huixin He, Chunsheng Wang Nano Lett. 2014, 14,

19 Voltage (V) versus Li + /Li Specific Capacity (mah g -1 ) Coulombic Efficiency (%) Cyclic stability of CADS electrodes CADS nanowire CADS Nanowire CADS microwire CADS micropillar CADS microwire Cycle Number CADS micropillar CADS microwire CADS nanowire CADS micropillar CADS microwire 1.2 CADS nanowire 0.8 CADS micropillar Specific Capacity (mah g -1 ) Chao Luo, Ruiming Huang, Ruslan Kevorkyants, Michele Pavanello, Huixin He, Chunsheng Wang Nano Lett. 2014, 14,

20 Acknowledges Group Funding

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries JOUL, Volume 3 Supplemental Information Lightweight Metallic MgB 2 Mediates Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries Quan Pang, Chun Yuen Kwok, Dipan Kundu, Xiao Liang,

More information

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries Supporting Information Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries Ding-Rong Deng, Fei Xue, Yue-Ju Jia, Jian-Chuan Ye, Cheng-Dong Bai,

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries SUPPLEMENTARY INFORMATION Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries Qiang Sun, Bin He, Xiang-Qian Zhang, and An-Hui Lu* State Key Laboratory

More information

Batteries: Now and Future

Batteries: Now and Future Batteries: Now and Future Yi Cui Department of Materials Science and Engineering Stanford University Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Mobile Phone

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 1 XRD pattern of pure 3D PGC framework. The pure 3D PGC was obtained by immersing NaCl Na 2 S@GC in water to remove the NaCl and Na 2 S. The broad reflection peak in the range of 15

More information

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium-

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium- Electronic Supplementary Information Sulfur-Infiltrated Porous Carbon Microspheres with Controllable Multi-Modal Pore Size Distribution for High Energy Lithium- Sulfur Batteries Cunyu Zhao, a Lianjun Liu,

More information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information Supporting Information Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and Long-Life Anodes for Lithium-Ion Batteries Lichun Yang, a Xiang Li, a Yunpeng Ouyang, a Qingsheng Gao, b Liuzhang

More information

An Advanced Anode Material for Sodium Ion. Batteries

An Advanced Anode Material for Sodium Ion. Batteries Layered-Structure SbPO 4 /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries Jun Pan, Shulin Chen, # Qiang Fu, Yuanwei Sun, # Yuchen Zhang, Na Lin, Peng Gao,* # Jian Yang,* and

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Kinetically-Enhanced Polysulfide

More information

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Supporting Information Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage Wei Tian a, Han Hu b, Yixian Wang a, Peng Li c, Jingyan

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2017 Supporting Information Asymmetric hybrid energy storage of battery-type nickel

More information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage Supporting Information In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on Reduced Graphene Oxide for Reversible Lithium Storage Yingbin Tan, [a] Ming Liang, [b, c] Peili Lou, [a] Zhonghui Cui,

More information

Supporting information for. The development of cobalt hydroxide as a bifunctional catalyst for oxygen. electrocatalysis in alkaline solution.

Supporting information for. The development of cobalt hydroxide as a bifunctional catalyst for oxygen. electrocatalysis in alkaline solution. Supporting information for The development of cobalt hydroxide as a bifunctional catalyst for oxygen electrocatalysis in alkaline solution Yi Zhan, a Guojun Du, b Shiliu Yang, a Chaohe Xu, a Meihua Lu,

More information

High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2

High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2 Supporting Information High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2 Alloy Anode in Noncorrosive Electrolyte Yi-Hong Tan,, Wei-Tang Yao,*, Tianwen Zhang, Tao Ma, Lei-Lei Lu, Fei Zhou,

More information

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes

Supplemental Information. Crumpled Graphene Balls Stabilized. Dendrite-free Lithium Metal Anodes JOUL, Volume 2 Supplemental Information Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes Shan Liu, Aoxuan Wang, Qianqian Li, Jinsong Wu, Kevin Chiou, Jiaxing Huang, and Jiayan Luo

More information

Please do not adjust margins. Electronic supplementary information

Please do not adjust margins. Electronic supplementary information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2017 not adjust margins Journal of Materials Chemistry A Electronic

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun-Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi

More information

2014 GCEP Report - External

2014 GCEP Report - External 2014 GCEP Report - External Project title: High-Energy-Density Lithium Ion Battery using Self-Healing Polymers Investigators Zhenan Bao, Professor, Chemical Engineering Yi Cui, Professor, Material Sciences

More information

Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Rechargeable Magnesium Batteries

Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Rechargeable Magnesium Batteries Supporting Information for: Atomic Substitution Enabled Synthesis of Vacancy-Rich Two- Dimensional Black TiO 2-x Nanoflakes for High-Performance Rechargeable Magnesium Batteries Authors: Yanrong Wang,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Na3V2(PO4)2F3-SWCNT: A High Voltage Cathode for

More information

Enhancing Sodium Ion Battery Performance by. Strongly Binding Nanostructured Sb 2 S 3 on

Enhancing Sodium Ion Battery Performance by. Strongly Binding Nanostructured Sb 2 S 3 on Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb 2 S 3 on Sulfur-Doped Graphene Sheets Xunhui Xiong, Guanhua Wang, Yuwei Lin, Ying Wang, Xing Ou, Fenghua Zheng, Chenghao Yang,*,a

More information

Department of Chemical Engineering, Tsinghua University, Beijing , P. R. China

Department of Chemical Engineering, Tsinghua University, Beijing , P. R. China Beyond Lithium Ion X, IBM, Almaden CA, June 27-29, 2017 Rational Design of Lithium Metal Matrix and its Protective Solid Electrolyte Interphase Qiang Zhang Tsinghua University, China E-mail: zhang-qiang@mails.tsinghua.edu.cn

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for Energy & Environmental Science.

More information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Supporting Information Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Wei Huang,, Shuo Li, Xianyi Cao, Chengyi Hou, Zhen Zhang, Jinkui Feng,

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/12/eaao7233/dc1 Supplementary Materials for Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life Hao Chen, Hanyan Xu, Siyao Wang, Tieqi

More information

Supporting Information

Supporting Information Supporting Information Heterostructured Bi 2 S 3 -Bi 2 O 3 Nanosheets with a Built-In Electric Field for Improved Sodium Storage Wen Luo, a,b Feng Li, a Qidong Li, a Xuanpeng Wang, a Wei Yang, a Liang

More information

Supporting information

Supporting information Supporting information 3D porous MXene (Ti 3 C 2 )/reduced graphene oxide hybrid s for advanced lithium storage Zhiying Ma,, Xufeng Zhou,*, Wei Deng,, Da Lei,, and Zhaoping Liu *,. Key Laboratory of Graphene

More information

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction Supporting Information: Magnesiothermic synthesis of sulfur-doped as an efficient metal-free electrocatalyst for oxygen reduction Jiacheng Wang, 1,2,3, * Ruguang Ma, 1,2,3 Zhenzhen Zhou, 1,2,3 Guanghui

More information

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China Electronic Supplementary Material A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various ph media

More information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization Supporting Information High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization Zhuo Wang, Tingting Yan, Guorong Chen, Liyi Shi and Dengsong Zhang* Research Center

More information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Supporting Information Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage Zhisheng Chai,, Nannan Zhang,, Peng Sun, Yi Huang, Chuanxi Zhao, Hong Jin Fan, Xing Fan,*,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Mesoporous C-coated SnO x nanosheets

More information

Enhancing the Reversibility of Mg/S Battery Chemistry through Li + Mediation

Enhancing the Reversibility of Mg/S Battery Chemistry through Li + Mediation Enhancing the Reversibility of Mg/S Battery Chemistry through Li + Mediation Tao Gao, Malachi Noked, * Alex J Pearse, Eleanor Gillette, Xiulin Fan, Yujie Zhu, Chao Luo, Liumin Suo, Marshall A Schroeder,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information NiSe 2 Pyramids Deposited on N-doped Graphene Encapsulated

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

2015 GCEP Report - external

2015 GCEP Report - external 2015 GCEP Report - external Project title: Self-Healing Polymers for High-Energy-Density Lithium Ion Battery Investigators Zhenan Bao, Professor, Chemical Engineering Yi Cui, Professor, Material Sciences

More information

Supporting Information

Supporting Information Supporting Information Sulfonic groups originated dual-functional interlayer for high performance lithium-sulfur battery Yang Lu, a,b Sui Gu, a,b Jing Guo a,b, Kun Rui, a,b Chunhua Chen, c Sanpei Zhang,

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets Supporting Information Available ot Electron of Au Nanorods Activates the Electrocatalysis of ydrogen Evolution on MoS Nanosheets Yi Shi, Jiong Wang, Chen Wang, Ting-Ting Zhai, Wen-Jing Bao, Jing-Juan

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Si/SiO x Hollow Nanospheres/Nitrogen-Doped Carbon

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries

Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries Wuxing Hua, Zhi Yang*, Huagui Nie, Zhongyu Li, Jizhang Yang, Zeqing Guo, Chunping Ruan, Xi an Chen and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Pyrite FeS 2 for High-rate and Long-life Rechargeable

More information

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance

Electronic Supplementary Information. Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Electronic Supplementary Information Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance Yi-Chun Lu, a Betar M. Gallant, b David G. Kwabi, b Jonathon R. Harding, c Robert

More information

Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery

Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery Longtao Ma 1, Shengmei Chen 1, Zengxia Pei 1 *, Yan Huang 2, Guojin Liang 1, Funian Mo 1,

More information

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall Supplementary Information for High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Yu et al. Supplementary Figure 1. A typical TEM image of as-prepared FeP/Ni

More information

Topotactically synthesized TiO 2 nanowires as promising anode materials for high-performance lithium-ion batteries

Topotactically synthesized TiO 2 nanowires as promising anode materials for high-performance lithium-ion batteries Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (2014 ) 2562 2566 The 6 th International Conference on Applied Energy ICAE2014 Topotactically synthesized TiO 2 nanowires as promising

More information

Synergistically Enhanced Electrochemical Performance of Hierarchical MoS 2 /TiNb 2 O 7 Hetero-Nanostructures as Anode Materials for Li-Ion Batteries

Synergistically Enhanced Electrochemical Performance of Hierarchical MoS 2 /TiNb 2 O 7 Hetero-Nanostructures as Anode Materials for Li-Ion Batteries Supporting Information for Synergistically Enhanced Electrochemical Performance of Hierarchical MoS 2 /TiNb 2 O 7 Hetero-Nanostructures as Anode Materials for Li-Ion Batteries De Pham-Cong, Jun Hee Choi,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting information Layered Nickel metal-organic framework for high

More information

Graphene-Wrapped Sulfur Particles as a Rechargeable. Lithium-Sulfur-Battery Cathode Material with High Capacity and

Graphene-Wrapped Sulfur Particles as a Rechargeable. Lithium-Sulfur-Battery Cathode Material with High Capacity and 1 Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur-Battery Cathode Material with High Capacity and Cycling Stability Hailiang Wang, 1, Yuan Yang, 2, Yongye Liang, 1 Joshua Tucker Robinson,

More information

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Inexpensive Colloidal SnSb Nanoalloys as

More information

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich

The Role of Cesium Cation in Controlling Interphasial. Chemistry on Graphite Anode in Propylene Carbonate-Rich Supporting Information The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes Hongfa Xiang,,# Donghai Mei, + Pengfei Yan, Priyanka Bhattacharya,

More information

Supporting Information

Supporting Information Supporting Information Iron Telluride Decorated Reduced Graphene Oxide Hybrid Microspheres as Anode Materials with Improved Na-Ion Storage Properties Jung Sang Cho 1, Seung Yeon Lee 1, Jung-Kul Lee 2,

More information

Supporting Information for: High Rate Sodium Ion Battery Anodes from Block Copolymer Templated Mesoporous Nickel- Cobalt Carbonates and Oxides

Supporting Information for: High Rate Sodium Ion Battery Anodes from Block Copolymer Templated Mesoporous Nickel- Cobalt Carbonates and Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information for: High Rate Sodium Ion Battery Anodes from Block

More information

Supporting Information for

Supporting Information for Supporting Information for A Few-Layer SnS 2 /Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage Fengzhang Tu,, Xin Xu, Pengzi Wang, Ling Si, Xiaosi Zhou,*, and Jianchun Bao*, Jiangsu

More information

Supplementary Figure 1 Structure of InHCF. a, Selected-area electron diffraction pattern of individual InHCF nanocube (scale bar 5 nm -1 ).

Supplementary Figure 1 Structure of InHCF. a, Selected-area electron diffraction pattern of individual InHCF nanocube (scale bar 5 nm -1 ). Supplementary Figure 1 Structure of InHCF. a, Selected-area electron diffraction pattern of individual InHCF nanocube (scale bar 5 nm -1 ). b and c, SEM and TEM image of InHCF/Gr (scale bar 100 nm). 1

More information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Supporting Information for Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Zhu-Yin Sui, Pei-Ying Zhang,, Meng-Ying Xu,

More information

New Territories of Sustainable Batteries by Carbon-Based Materials

New Territories of Sustainable Batteries by Carbon-Based Materials New Territories of Sustainable Batteries by Carbon-Based Materials Xingfeng Wang, Dr. Clement Bommier, Zhifei Li, Dr. Zhenyu Xing, Dr. Zelang Jian, Dr. Xianyong Wu, and Prof. Xiulei Ji Department of Chemistry

More information

A new, high performance CuO/LiNi 0.5 Mn 1.5 O 4 lithium-ion battery

A new, high performance CuO/LiNi 0.5 Mn 1.5 O 4 lithium-ion battery A new, high performance /LiNi 0.5 Mn 1.5 O 4 lithium-ion battery Roberta Verrelli and Jusef Hassoun Department of Chemistry, University Sapienza of Rome, Italy Attila Farkas, Timo Jacob and Bruno Scrosati

More information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced Supporting Information Dominating Role of Aligned MoS 2 /Ni 3 S 2 Nanoarrays Supported on 3D Ni Foam with Hydrophilic Interface for Highly Enhanced Hydrogen Evolution Reaction Jiamu Cao a, Jing Zhou a,

More information

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and Supplementary Figure 1 Morpholigical properties of TiO 2-x s. The statistical particle size distribution (a) of the defective {1}-TiO 2-x s and their typical TEM images (b, c). Quantity Adsorbed (cm 3

More information

Supporting Information

Supporting Information Supporting Information MoS 2 Nanosheets Vertically Grown on Graphene Sheets for Lithium Ion Battery Anodes Yongqiang Teng 1, Hailei Zhao 1, 2,*, Zijia Zhang 1, Zhaolin Li 1, Qing Xia 1, Yang Zhang 1, Lina

More information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI ) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 218 Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI

More information

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion Supporting Information A Scalable Synthesis of Few-layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-performance Li and Na Ion Battery Anodes Seung-Keun Park, a,b Jeongyeon Lee,

More information

Materials and Structural Design for Advanced Energy Storage Devices

Materials and Structural Design for Advanced Energy Storage Devices Materials and Structural Design for Advanced Energy Storage Devices Imran Shakir Sustainable Energy Technologies Center (SET) King Saud University Saudi Arabia Specific Power (W/kg) Introduction and Motivation

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Nano-embedded microstructured FeS 2 @C as a high

More information

Supplementary Information for. Red Phosphorus as High-Performance Anode Materials for Naion. Batteries

Supplementary Information for. Red Phosphorus as High-Performance Anode Materials for Naion. Batteries Supplementary Information for Inexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Naion Batteries Marc Walter, 1, 2 Rolf Erni, 3 and Maksym

More information

Journal of Chemical and Pharmaceutical Research, 2015, 7(8): Review Article

Journal of Chemical and Pharmaceutical Research, 2015, 7(8): Review Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(8):286-290 Review Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Carbon nanostructured as cathode materials for lithium-sulfur

More information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium Supporting Information Revelation of the Excellent Intrinsic Activity of MoS2 NiS MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium Chuanqin Wang a,b, Bin Tian b, Mei Wu b, Jiahai Wang

More information

Energy Storage. Light-emitting. Nano-Carbons. H 2 Energy. CNT synthesis. Graphene synthesis Top-down. Solar H 2 generation

Energy Storage. Light-emitting. Nano-Carbons. H 2 Energy. CNT synthesis. Graphene synthesis Top-down. Solar H 2 generation Nano-Carbon battery Graphene synthesis Top-down CNT synthesis CVD reactor hydrocarbon gas Catalyst CNTs Chemical Modification COO O NO 2 COO COO COO Bottom-up O O NO NO 2 2 COO COO Nano-Carbons 20 nm Light-emitting

More information

Hierarchical Nanocomposite by Integrating Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO 2 Capture

Hierarchical Nanocomposite by Integrating Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO 2 Capture Supporting Information Hierarchical Nanocomposite by Integrating Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO 2 Capture Ping Li, and Hua Chun Zeng* Department

More information

Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and

Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and Supplementary Figure 1. XRD pattern for pristine graphite (PG), graphite oxide (GO) and expanded graphites (EG-1hr and EG-5hr). The crystalline structures of PG, GO, EG-1hr, and EG-5hr were characterized

More information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels Supporting Information Engineering Two-Dimensional Mass-Transport Channels of MoS 2 Nanocatalyst towards Improved Hydrogen Evolution Performance Ge Wang a, Jingying Tao a, Yijie Zhang a, Shengping Wang

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

Manganese reduction/oxidation reaction on graphene. composites as a reversible process for storing enormous

Manganese reduction/oxidation reaction on graphene. composites as a reversible process for storing enormous Manganese reduction/oxidation reaction on graphene composites as a reversible process for storing enormous energy at a fast rate Yanyi Chen 1,2, Chengjun Xu 1 *, Shan Shi 1,2, Jia Li 1, Feiyu Kang 1,2,

More information

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Supporting Information Pomegranate-Like N, P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution Yu-Yun Chen,,,# Yun Zhang,,# Wen-Jie Jiang,, Xing Zhang,, Zhihui

More information

Supporting Information

Supporting Information Supporting Information Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes Hongwei Zhang, Owen Noonan, Xiaodan Huang, Yannan Yang, Chun Xu, Liang Zhou, and Chengzhong

More information

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique Supporting Information Design 3D hierarchical architectures of carbon and highly active transition-metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithiumair batteries Dongxiao Ji, Shengjie

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Experimental section Materials: Tannic acid (TA), silver nitrate

More information

ORGANIC ELECTRODE MATERIALS AND THEIR APPLICATIONS IN RECHARGEABLE BATTERIES

ORGANIC ELECTRODE MATERIALS AND THEIR APPLICATIONS IN RECHARGEABLE BATTERIES ORGANIC ELECTRODE MATERIALS AND THEIR APPLICATIONS IN RECHARGEABLE BATTERIES Assoc. Prof. Burak ESAT Fatih University, Department Of Chemistry Istanbul-Turkey besat@fatih.edu.tr COST-EXIL October 2015

More information

High-Energy Secondary Metal-Sulfur Batteries Cathode and Anode Solutions

High-Energy Secondary Metal-Sulfur Batteries Cathode and Anode Solutions High-Energy Secondary Metal-Sulfur Batteries Cathode and Anode Solutions Lynden A. Archer (laa25@cornell.edu) October 20, 2016 Acknowledgements: NSF-DMR1609125, ARPAE-DE-AR0000750 & DOE-BESC00016082 Pros

More information

Supporting Information. Supercapacitors

Supporting Information. Supercapacitors Supporting Information Ni(OH) 2 Nanoflower/Graphene Hydrogels: A New Assembly for Supercapacitors Ronghua Wang ab, Anjali Jayakumar a, Chaohe Xu* c and Jong-Min Lee* a [a] School of Chemical and Biomedical

More information

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage

Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation. Capacity and Stable Lithium Storage Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Strong Anchoring Effect of Ferric Chloride-Graphite

More information

Supporting Information

Supporting Information Supporting Information NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn Air Batteries Jie Yin, Yuxuan Li, Fan Lv, Qiaohui Fan, Yong-Qing Zhao, Qiaolan Zhang, Wei Wang, Fangyi Cheng,

More information

Supporting Information

Supporting Information Supporting Information A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction Kun Wang, Yi Wang*, Yexiang Tong, Zhangweihao Pan, Shuqin Song* a The Key Lab of Low- Chemistry & Energy

More information

Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultra-Stable Li S Batteries

Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultra-Stable Li S Batteries Supporting information Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultra-Stable Li S Batteries Syed Ali Abbas, Jiang Ding, Sheng Hui Wu, Jason

More information

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu*

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu* Supporting Information for Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn 1.8 Fe 1.2 O 4 Nanospheres: Synergism between Mn and Fe Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

Reviewers' Comments: Reviewer #1 (Remarks to the Author) Reviewers' Comments: Reviewer #1 (Remarks to the Author) The manuscript reports the synthesis of a series of Mo2C@NPC-rGO hybrid HER electrocatalysts by employing the precursor of PMo12 (H3PMo12O40)-PPy/rGO

More information