Learning the Lighting Lingo

Size: px
Start display at page:

Download "Learning the Lighting Lingo"

Transcription

1 Properties of Light Learning the Lighting Lingo Steve Szewczyk and Roberto Lopez Cultivate 2017 Light is a form of energy referred to as electromagnetic radiation. The amount of energy of each light particle is determined by its wavelength Therefore light can vary in: Quality (color and wavelength), Duration (photoperiod), and Quantity or intensity (quantity of light at each wavelength or color) Natural Tech Consulting@gmail.com Jason Avent Rebecca Knight Properties of Light Light and Production Electromagnetic radiation = energy radiated from the sun, spread as electromagnetic waves Photon = particle of electromagnetic radiation Sun s Electromagnetic Spectrum Light quantity Light quality Light duration (intensity) (distribution) (photoperiod) HPS/ MH lamps filters/ shading incandescent/ LEDs LEDs CFL/LEDs Image: Root & shoot Photomorphogenesis, Flowering, growth, branching, pigmentation dormancy flower size & number Erik Runkle, MSU Light Quality Overview of Entire Electromagnetic Spectrum Light quality is the relative number of photons of blue, green, red, far-red, and other portions of the light spectrum The wavelength is the distance between waves, and different colors have different wavelengths Units of wavelength are in nanometers (nm or billionth of a meter) Not for Publication 1

2 Category Wavelength (nm) Effects Short wavelength (high energy) UV C Water sterilization UV B UV A Visible Light Quality (PAR ) Stem elongation, anthocyanin Photosynthesis, growth Far red Stem elongation, day length perception Infrared Heat Long wavelength (low energy) Shade Avoidance Response As plants grow, they begin to shade one another in a competitive environment (ie. under a forest canopy or tightly spaced greenhouse bench) As shading increases, the red/far-red ratio decreases and promotes stem elongation When stem extension increases in response to shading, it is called a shade avoidance response Canopy Filtering Sunlight R/FR ratio = Green leaf times more FR light is transmitted through a leaf than R light (more R light is absorbed) Canopy Filtering Green leaves reflect, transmit and absorb light of different wavelengths Only a small portion of FR ( nm) is absorbed, while most R is absorbed This is why R/FR is reduced for the light transmitted from a leaf Microclimates of leaves PAR Near infrared Short wave includes PAR and part of NIR Long wave Reflection Transmission Absorption PAR FR Shade Plants Versus Sun Plants Controlling Light Quality Shade plants (typically grow under a tree canopy) Not affected by the R/FR ratio Amount of FR present does not affect stem elongation Sun plants (typically grow in a sunny environment) Are affected by the R/FR ratio The greater the amount of FR present, the greater the rate of stem elongation Using supplemental lighting with relatively high red and low far-red light Plant spacing Using photoselective filter as covering material or shading curtain (under development) Not for Publication 2

3 Light Quality Is Influenced by Light Sources Light source R/FR Sunlight 1.15 High pressure sodium 5.9 Incandescent 0.7 LEDs varies Metal halide 3.3 Cool white fluorescent 8.8 Among the commonly used electric light sources, incandescent lamps have the lowest R/FR ratio Plants grown under incandescent lamp have more stem elongation Other lamp sources do not increase stem elongation Photomorphogenesis Photomorphogenesis is the effect of light on plant morphology and architecture. It describes how light changes the shape of plants. High R Low R Low FR High FR 100% blue LED light Cool-white fluorescent Seedlings grown for the same period of time and at the same light intensity Anthocyanin Production LEDs for Night-Interruption Lighting in the Snapdragon Greenhouse Liberty Classic Cherry 9-hour day with 4-hour night interruption 100% Red LEDs 100% Far red LEDs 9-hour short INC lamps Red to Far-Red Ratio day Days to flower at 68 F Erik Runkle, MSU Spectral Energy Distribution Light Quantity Light quantity or intensity is the number of light particles (called photons) capable of performing photosynthesis Plant growth is driven by photosynthesis, which converts water, carbon dioxide, and energy from light into carbohydrates Not for Publication 3

4 Photosynthetic active radiation (PAR) Humans vs. Plants vs. Pigments The energy used for plant growth is in the visible part of the light spectrum (wave band) of 400 to 700 nanometers (nm) that drive photosynthesis. Lumens are a measure of the total quantity of visible light emitted by a source (lighting for humans) PAR, When measuring light used by plants e units that quantify photons The light absorption of pigments is not a direct indicator of photosynthetic efficiency Photosynthetic active radiation (PAR) Less than half of the energy (43%) from the sun is in the photosynthetically active radiation (PAR) range of 400 to 700 nm Instantaneous Light Photosynthetic photon flux density (PPFD) the number of photons (PAR) that fall within a square meter per second. Unit: µmol m-2 s-1 Photons are packets, or particles, of light energy Figure adapted from research by Daryl Myers Erik Runkle, MSU Photosynthetic active radiation (PAR) Increasing energy in the PAR range, up to an optimal light intensity maximizes photosynthesis, plant growth, and quality Measuring Light Light can be measured instantaneously or cumulatively Instantaneous readings provide a snapshot of the light environment Cumulative readings more accurately reflects light received over the course of a day Not for Publication 4

5 Light Units Photometric (lux or foot candles) Includes visible light Quantum (µmol m 2 s 1 ) includes PAR Radiometric (w m 2 ) Includes radiant energy Light Units Photometric (lux or foot candles) Is the most common unit used to measure instantaneous light by U.S. growers It represents the amount of light visible to the human eye Light Units Quantum (µmol m 2 s 1 ) Measures the amount of photosynthetically active radiation (PAR), 400 to 700 nm This quantum unit quantifies the number of photons of light used in photosynthesis that fall in a square meter every second Measuring Instantaneous Light Hand-held quantum meters are available with a single-or multiple-diode sensor Measuring Instantaneous Light Measuring Instantaneous Light A single-diode sensor is smaller and easier to carry A multiple-diode sensor takes a reading from each diode and reports the average light level, giving a more representative reading Quantum meters may also have the ability of switching between measuring electric and sun light Natural light levels are continuously changing and a single measurement in time does not accurately represent the amount of light a plant has received in a day However, they can be used to make decisions such as whether to pull shade cloth or when to turn on supplemental lamps Not for Publication 5

6 Daily Light Integral DLI) The term daily light integral (DLI) describes this cumulative amount of light (photons of light) that an area or location receives during one day. Therefore, DLI is the cumulative amount of photosynthetic light received in 1 square meter of area (10.8 sq. ft.) each day. Daily Light Integral (DLI) DLI cannot be determined from an instantaneous reading. DLI is similar to a rain gauge. A rain gauge is used to measure the total amount of rain that was received in a particular area during a 24- hour period. Daily Light Integral (DLI) Varies due to factors that influence light intensity and duration: Time of the year (sun s angle) Location and cloud cover Day length (photoperiod) Greenhouse glazing/ covering(s) Structure and obstructions Hanging baskets Supplemental lights Daily Light Integral (DLI) DLI is expressed in units of moles of light (mol) per square meter (m -2 ) per day (d -1 ) or mol m -2 d -1. Values from sunlight outdoors vary from 3 (winter) to 60 mol m -2 d -1 (summer). In a greenhouse, values seldom exceed 30 mol m -2 d -1 because of shading which can reduce light by 40 to 70%. Target minimum DLI inside a greenhouse are 10 to 12 mol m -2 d -1. Outdoor Daily Light Integral DLI in a Greenhouse In a greenhouse without shade In a greenhouse with 50% shade Winter with HPS on for 16 hrs. (4.3 mol. m -2. d -1 ) Daily Light Integral (mol. m -2. d -1 ) feb 10 mar 10 apr 10 may 10 june 10 july 10 aug 10 sept 10 oct 10 nov 10 dec 10 jan 11 feb 11 mar 11 apr 11 may 11 june 11 july 11 aug 11 sept 11 oct 11 nov 11 dec 11 jan 12 feb 12 mar 12 apr 12 may 12 june 12 july 12 aug 12 sept 12 oct 12 nov 12 dec 12 jan 13 feb 13 mar 13 apr 13 may 13 june 13 Month aug 13 sept 13 oct 13 Not for Publication 6

7 Plant Responses to Higher DLI Smaller and thicker leaves More and larger flowers Reduced time to flower (partly due to temperature) Increased branching Increased stem diameter Increased root growth of plugs and cuttings Estimating DLI Inside the Greenhouse If we have an estimate of outside light, we can estimate DLI inside the greenhouse Central Ohio: mol m -2 d -1 outside January = 5 mol m-2 d = 10 mol m-2 d-1 Your DLI: Between 7.5 and 10 mol m-2 d-1 Calculating Daily Light Integral for Sunlight in a Greenhouse Calculating DLI for sunlight in a greenhouse is more difficult than calculating DLI for a constant intensity light source: it changes constantly!!! DLI (mol/ sq m day) /31 11/20 12/10 12/30 01/19 Date First, take the average of discrete time periods: hourly. For example: 0, 0, 0, 0, 0, 44, 102, 198, 255, 410, 454, 600, 532, 627, 466, 376, 303, 187, 91, 45, 47, 44, 43, 0 Heidi Lindberg, MSU Heidi Lindberg, MSU DLI CALC Online Calculator (GOOGLE: DLICALC) DLI Calc: Estimate Your Supplemental DLI Allows you to estimate the supplemental DLI from your supplemental light source Not for Publication 7

8 Allows you to estimate the hours of lamp operation to achieve a target supplemental DLI Estimate Hours of Operation Methods to Increase DLI Minimize overhead obstructions such as hanging baskets. Make sure your glazing is properly cleaned (ie. whitewash, dust, algae removed). Provide supplemental lighting from High Pressure Sodium Lamps (HPS), Metal Halide or Light Emitting Diodes (LEDs). Photoperiod Photoperiod Photoperiod combines the two Greek roots for light and duration of time to describe the duration of the day that is light Photoperiod influences many aspects of plant growth and development including dormancy, storage organ formation and most importantly for many greenhouse producers, flowering The interval of time (day length) between sunrise and sunset changes throughout the year For example, in the U.S., which is in the northern hemisphere, day length increases from December 21 st until June 21 st, after which it decreases Photoperiod Natural Photoperiod during the Year Seasonal fluctuation in day length becomes more dramatic as the latitude increases Seattle For example, the day length in Miami (25.8 N latitude) ranges from approximately 10 ½ hours to a little more than 13 ½ hours The day length in Seattle (47.6 N latitude) ranges from 8 ½ to 16 hours Miami Erik Runkle, MSU Not for Publication 8

9 Natural Photoperiod during the Year Photoperiodic Responses Plants are classified as: Short-day plants Long-day plants Day-neutral plants Furthermore, responses may be categorized as: Obligate (qualitative) Facultative (quantitative) Erik Runkle, MSU Photoperiodic Responses Photoperiodic Responses Photoperiod refers to the duration of light hours in the day It is actually the duration of darkness that is the signal Truncating, extending the day or interrupting the night are the three strategies used to manage photoperiodic plant responses When to Provide Long-day Lighting? Lights for Creating Long Days Most long-day (LD) plants flower faster when the night length is less than approx. 10 hours Long-day lighting can be used to delay flowering of short day crops (ie. poinsettia) In the northern hemisphere, provide LD lighting from Sept. 1 to April 15 Incandescent (INC), compact fluorescent (CFL), light emitting diodes (LEDs) stationary, moving or cyclic highpressure sodium Low intensity lighting of 10 foot-candles (100 lux or 2 µmol m -2 s -1 ) at plant height is adequate for most greenhouse crops Not for Publication 9

10 Creating Long-day Lighting Day-extension Lighting Day-extension lighting: Is the use of artificial light to extend the length of the day Begins at sunset and ends when the desired photoperiod is achieved If you want to provide a 16-hour photoperiod and sunrise is at 7 AM and sunset is at 7 PM, you would light from 7 PM to 11 PM Creating Long-day Lighting Night interruption/ night break lighting/ mum lighting: By interrupting the night length, plants will not perceive a long night, but rather a short night (or long day) Generally 4 hours of lighting are used in the middle of night (ie. 10 PM to 2 AM) Cyclic Long-day Lighting (LD) Three methods: INC lamps are on for 5 to 10 minutes every 30 min. during the lighting period HID lamps are mounted on a moving boom that passes over the crops for at least four hours during the night Fixed HID with an oscillating reflector/ luminaire (ie. Beamflicker) Long-day Lighting (LD) Examples of Cyclic Lighting 12 hours 12 hours 12 hours 6:00 am 12:00 pm 6:00 pm 12:00 am 6:00 am Erik Runkle, Michigan State Univ. HID mounted to a moving boom Fixed HID with an oscillating reflector/luminaire Not for Publication 10

11 Creating Short Days (SD) Under LD conditions, SD plant responses can be achieved by shortening the day length Materials commonly used include: Opaque cloth or fabric that does not allow light to penetrate, commonly referred to as black cloth or blackout cloth Woven blankets consisting of aluminum and plastic strips Black plastic When to Pull and Retract Black Cloth? Black cloth or plastic is traditionally pulled at 5 p.m. and retracted at 8 a.m. to coincide with normal working hours When to Pull and Retract Black Cloth? Automatic systems that are operated by a timer or environmental computer can be used for individual benches or an entire greenhouse Creating Short Days (SD) Potential problems: Accumulation of heat under the fabric or plastic Plastic can collapse on plants due to condensation Sides not properly pulled New Book on Horticultural Lighting FOR MORE INFORMATION Updated and expanded from 2004 Lighting Up Profits book edited by Fisher and Runkle 18 chapters, 20 chapter authors, edited by Lopez and Runkle Published by Meister Media (parent company of Greenhouse Grower) Available in print and digital versions on Amazon Natural Tech Consulting@gmail.com Jason Avent Rebecca Knight Not for Publication 11

Measuring & Monitoring Pn. Light Roberto Lopez, Purdue Univ.

Measuring & Monitoring Pn. Light Roberto Lopez, Purdue Univ. Review of Light Concepts Measuring and Monitoring Photosynthetic Light in a Greenhouse Roberto Lopez Light is a form of energy referred to as electromagnetic radiation. Therefore light can vary in: Duration

More information

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts Effects of & Duration Review of Light Concepts Effects of and Duration on Greenhouse Crops Roberto Lopez Light is a form of energy referred to as electromagnetic radiation. The amount of energy of each

More information

Commercial Greenhouse and Nursery Production

Commercial Greenhouse and Nursery Production Commercial Greenhouse and Nursery Production Purdue Department of Horticulture and Landscape Architecture www.ag.purdue.edu/hla Purdue Floriculture flowers.hort.purdue.edu Michigan State University Department

More information

Yield Responses to Supplemental Lighting

Yield Responses to Supplemental Lighting Yield Responses to Supplemental Lighting Solar radiation Sunlight s full spectrum ranges from 3 to 3 nm Heat Light for plant growth and development Three dimensions Celina Gómez, PhD Environmental Horticulture

More information

Ten aspects of lighting spring crops that can help your bottom line

Ten aspects of lighting spring crops that can help your bottom line Ten aspects of lighting spring crops that can help your bottom line Originally published as Fisher, P.R. and E.S. Runkle. 2005. Ten Lighting Tips for Spring Crops. GMPro. April 2005: 36-40. Light is key

More information

Let light motivate your flowers

Let light motivate your flowers Let light motivate your flowers LightDec Horticulture Light recipes from LEDIG are the best in this market. Their recommendations increased my profits in year one by 23% LED Solutions from LEDIG LED Industrial

More information

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE Electromagnetic radiation Energy emitted by a light source Measured in watts Visible

More information

MY BACKGROUND. Saeid since 1998

MY BACKGROUND. Saeid since 1998 Plant Productivity in Response to LEDs Light Quality Saeid H. Mobini, Ph.D. (saeid.mobini@gov.ab.ca) Greenhouse Research Scientist, Crop Research and Extension Branch, AF MY BACKGROUND Saeid since 1998

More information

Light. Bedding Plants

Light. Bedding Plants Temperature and Light on Bedding Plants Michigan State University research shows what effects temperature and light intensity have on bedding plant production. By Lee Ann Pramuk and Erik Runkle Figure

More information

Managing light, temperature, and relative humidity in greenhouses. Outline. Lighting strategies influence. Measuring light intensity

Managing light, temperature, and relative humidity in greenhouses. Outline. Lighting strategies influence. Measuring light intensity Managing light, temperature, and relative humidity in greenhouses Outline 1. Maximizing light levels and the basics of supplemental and photoperiodic lighting 2. Controlling plant development by managing

More information

LED vs HPS? Dr. Youbin Zheng

LED vs HPS? Dr. Youbin Zheng LED vs HPS? Dr. Youbin Zheng Contents 1. Light 2. Light & Plants 3. LEDs and HPS 4. How to decide which lights are the right choice for you? Light & Plants 1. Light & Assimilation 2. Light & Morphology

More information

Title: The Importance of Daily Light Integral (DLI) for Indoor Cannabis Cultivation

Title: The Importance of Daily Light Integral (DLI) for Indoor Cannabis Cultivation Title: The Importance of Daily Light Integral (DLI) for Indoor Cannabis Cultivation Haley Bishoff - Smart Grow Systems Research Team 1. Bachelors of Science in Nutrition and Dietetics, Oregon State University

More information

2014 Plug & Cutting Conference 9/23/2014. Erik Runkle and Roberto Lopez. Presentation Outline. Propagation Environment.

2014 Plug & Cutting Conference 9/23/2014. Erik Runkle and Roberto Lopez. Presentation Outline. Propagation Environment. Impact & Management of Light & Temperature Erik S. Runkle Michigan State University Department of Horticulture Roberto G. Lopez Purdue University Department of Horticulture and Landscape Architecture Presentation

More information

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy Light and Photosynthesis Supplemental notes Lab 4 Horticultural Therapy Light The Electromagnetic Spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength, the

More information

Developing LED Lighting Technologies and Practices for Greenhouse Crop Production

Developing LED Lighting Technologies and Practices for Greenhouse Crop Production Developing LED Lighting Technologies and Practices for Greenhouse Crop Production C.A. Mitchell 1, A.J. Both 2, C.M. Bourget 3, J.F. Burr 1, C. Kubota 4, R.G. Lopez 1, G.D. Massa 1, R.C. Morrow 3, E.S.

More information

How Much do Hanging Baskets Influence the Light Quality and Quantity for Crops Grown Below?

How Much do Hanging Baskets Influence the Light Quality and Quantity for Crops Grown Below? Volume 4, Number 21 March 2016 by Roberto Lopez rglopez@msu.edu and Joshua Craver jcraver@purdue.edu How Much do Hanging Baskets Influence the Light Quality and Quantity for Crops Grown Below? In this

More information

Samsung Horticulture LEDs

Samsung Horticulture LEDs Samsung Horticulture LEDs Nov. 8 Lighting for Horticulture The objective of artificial lighting is to efficiently deliver the proper type and appropriate amount of illumination for stimulating plant growth

More information

Megaman Horticulture Lighting

Megaman Horticulture Lighting Megaman Horticulture Lighting Horticultural lighting is the LED industry s most explosive new market, revolutionizing the future of farming with technologies and innovations enabling year-round sustainable

More information

Greenhouse Supplemental Light Quality for Vegetable Nurseries

Greenhouse Supplemental Light Quality for Vegetable Nurseries Greenhouse Supplemental Light Quality for Vegetable Nurseries Chieri Kubota and Ricardo Hernández The University of Arizona LED Symposium (Feb 20, 2015) Supplemental lighting from late fall to early spring

More information

GE Consumer & Industrial Lighting. Lighting for growth. Lamps and lighting for horticulture

GE Consumer & Industrial Lighting. Lighting for growth. Lamps and lighting for horticulture GE Consumer & Industrial Lighting Lighting for growth Lamps and lighting for horticulture Extending daylight Growth and development of plants and vegetables is strongly influenced by the quality and amount

More information

Grade 6 Standard 2 Unit Test Astronomy

Grade 6 Standard 2 Unit Test Astronomy Grade 6 Standard 2 Unit Test Astronomy Multiple Choice 1. Why does the air temperature rise in the summer? A. We are closer to the sun. B. The air becomes thicker and more dense. C. The sun s rays are

More information

Lighting Solutions for Horticulture. The Light of Professional Knowledge

Lighting Solutions for Horticulture. The Light of Professional Knowledge Lighting Solutions for Horticulture The Light of Professional Knowledge Hortiled Hortiled began its activity in 2006 promoting research in the field of plant illumination in collaboration with scientists

More information

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING R. D. Heins and H. F. Wilkins Department of Horticultural Science University of

More information

Photosynthesis Light for Horticulture

Photosynthesis Light for Horticulture GE Lighting Photosynthesis Light for Horticulture GE imagination at work www.gelighting.com Horticulture Lamps Lighting for growth Lamps and lighting for horticulture Properly balanced Improves Specially

More information

PAR Meter Instruction Manual. Product # Product # Year Warranty

PAR Meter Instruction Manual. Product # Product # Year Warranty PAR Meter Instruction Manual Product #748200 Product #748205 1 Year Warranty Measuring PPF with Quantum Meter Photosynthesis is driven by the number of photons between 400 and 700 nanometers (nm). This

More information

PHOTOPERIOD CONTROL OF CONTAINER SEEDLINGS. James T. Arnott

PHOTOPERIOD CONTROL OF CONTAINER SEEDLINGS. James T. Arnott PHOTOPERIOD CONTROL OF CONTAINER SEEDLINGS James T. Arnott ABSTRACT: Research at the Pacific Forest Research Centre, Victoria. on the use of photoperiod lighting to grow seedlings of white spruce, Engelmann

More information

Lecture 3. Photosynthesis 1

Lecture 3. Photosynthesis 1 Lecture 3 Photosynthesis 1 Constituent of plant component Plants component: water (70%), organic matter (27%), mineral (3%) - dry matter Water eg. Tomato contain 42-93% water young shoot 90-95% water cereal/grain

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands Control of Plant Height and Branching in Ornamentals Ep Heuvelink Horticulture and Product Physiology group, Wageningen University, the Netherlands Compact plants = desired external quality Currently often

More information

Response Of Blueberry To Day Length During Propagation

Response Of Blueberry To Day Length During Propagation Response Of Blueberry To Day Length During Propagation Internal report for Young Plant Research Center Not for publication or reproduction in part or full without permission of the authors. Paul Fisher

More information

TILT, DAYLIGHT AND SEASONS WORKSHEET

TILT, DAYLIGHT AND SEASONS WORKSHEET TILT, DAYLIGHT AND SEASONS WORKSHEET Activity Description: Students will use a data table to make a graph for the length of day and average high temperature in Utah. They will then answer questions based

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning How do we experience light? How do light and matter interact? How do we experience light?

More information

WHY STRONG WHITE GOLD FULL SPECTRUM CAN GROW ANY SPECIES EVOLUTION OF THE GOLDEN GLOW SPECTRA

WHY STRONG WHITE GOLD FULL SPECTRUM CAN GROW ANY SPECIES EVOLUTION OF THE GOLDEN GLOW SPECTRA GOLDEN GLOW TM SPECTRA WHY STRONG WHITE GOLD FULL SPECTRUM CAN GROW ANY SPECIES GOLDEN GLOW SPECTRA TM Smart Grow Systems has been developing and testing LED technologies with commercial cannabis growers

More information

Many of remote sensing techniques are generic in nature and may be applied to a variety of vegetated landscapes, including

Many of remote sensing techniques are generic in nature and may be applied to a variety of vegetated landscapes, including Remote Sensing of Vegetation Many of remote sensing techniques are generic in nature and may be applied to a variety of vegetated landscapes, including 1. Agriculture 2. Forest 3. Rangeland 4. Wetland,

More information

Exercise 6. Solar Panel Orientation EXERCISE OBJECTIVE DISCUSSION OUTLINE. Introduction to the importance of solar panel orientation DISCUSSION

Exercise 6. Solar Panel Orientation EXERCISE OBJECTIVE DISCUSSION OUTLINE. Introduction to the importance of solar panel orientation DISCUSSION Exercise 6 Solar Panel Orientation EXERCISE OBJECTIVE When you have completed this exercise, you will understand how the solar illumination at any location on Earth varies over the course of a year. You

More information

Unit 6 Exam: Insolation. 1. The hottest climates on Earth are located near the Equator because this region

Unit 6 Exam: Insolation. 1. The hottest climates on Earth are located near the Equator because this region Name: ate: 1. The hottest climates on Earth are located near the Equator because this region A. is usually closest to the Sun. reflects the greatest amount of insolation C. receives the most hours of daylight.

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem Snapdragon Lighting Harrison Flint Department of Floriculture Cornell University One of the greatest problems in the commercial pro duction of winter snapdragons has been the expense brought about by extremely

More information

By the time you read this article, Easter lilies will have been planted, Easter Lilies: Easter Lilies: A Challenge You Can Master

By the time you read this article, Easter lilies will have been planted, Easter Lilies: Easter Lilies: A Challenge You Can Master new crop varieties cultivation Easter Lilies: Easter Lilies: A Challenge You Can Master When it comes to controlling flowering and height of your Easter lily crop, precision is key. Temperature manipulation,

More information

Meteorology Pretest on Chapter 2

Meteorology Pretest on Chapter 2 Meteorology Pretest on Chapter 2 MULTIPLE CHOICE 1. The earth emits terrestrial radiation a) only at night b) all the time c) only during winter d) only over the continents 2. If an imbalance occurs between

More information

Chapter 6. Solar Geometry. Contents

Chapter 6. Solar Geometry. Contents Chapter 6. Solar Geometry Contents 6.1 Introduction 6.2 The Sun 6.3 Elliptical Orbit 6.4 Tilt of the Earth s Axis 6.5 Consequences of the Altitude Angle 6.6 Winter 6.7 The Sun Revolves Around the Earth!

More information

Improving Product Quality and Timing of Kalanchoe: Model Development and Validation

Improving Product Quality and Timing of Kalanchoe: Model Development and Validation Improving Product Quality and Timing of Kalanchoe: Model Development and Validation Susana M.P. Carvalho, Menno J. Bakker and Ep Heuvelink Wageningen University Horticultural Production Chains group Marijkeweg

More information

CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH

CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH CONTROLLING CHRYSANTHEMUM FLOWERING BY ALTERING DAYLENGTH H. KAMEMOTO AND H. Y. NAKASONE Although chrysanthemums are popular in Hawaii, their production has never reached major proportions. This is primarily

More information

? Lighting is in our culture Lighting is in our culture LED USE WHY

? Lighting is in our culture Lighting is in our culture LED USE WHY WHY USE LED? Lighting is in is our in culture our culture THE FUNDAMENTAL REASONING BEHIND THE USE OF GROW LIGHTS - COMMUNITY CONCERNS NOURISHING OUR PLANET AND ITS PEOPLE In the last 50 years, our world

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light? Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact? How do we experience light?

More information

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter Chapter 5 Lecture The Cosmic Perspective Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact?

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

Alert. Flowering of Begonias Sponsors

Alert. Flowering of Begonias Sponsors Alert Volume 4, Number 34 May 2015 by Christopher J. Currey ccurrey@iastate.edu Flowering of Begonias 2015 Sponsors What begonias are you growing? Are your plants flowering too early or too late? This

More information

The Atmosphere: Structure and Temperature

The Atmosphere: Structure and Temperature Chapter The Atmosphere: Structure and Temperature Geologists have uncovered evidence of when Earth was first able to support oxygenrich atmosphere similar to what we experience today and more so, take

More information

Flowering of the Orchid Miltoniopsis Augres Trinity is Influenced by Photoperiod and Temperature

Flowering of the Orchid Miltoniopsis Augres Trinity is Influenced by Photoperiod and Temperature Flowering of the Orchid Miltoniopsis Augres Trinity is Influenced by Photoperiod and Temperature Roberto G. Lopez, Erik S. Runkle and Royal D. Heins Department of Horticulture, Michigan State University

More information

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red Name: Topic 6 Test 1. Which process is responsible for the greatest loss of energy from Earth's surface into space on a clear night? A) condensation B) conduction C) radiation D) convection 2. Base your

More information

Objectives of presentation Advanced PGR Use Annuals Dr. Royal D. Heins Poor rooting check the following

Objectives of presentation Advanced PGR Use Annuals Dr. Royal D. Heins Poor rooting check the following Objectives of presentation Advanced PGR Use Annuals Present and discuss some annual plant responses to growth regulators Rooting Branching Dr. Royal D. Heins Poor rooting check the following Adequate aeration

More information

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December INSOLATION REVIEW 1. The map below shows isolines of average daily insolation received in calories per square centimeter per minute at the Earth s surface. If identical solar collectors are placed at the

More information

carbon dioxide +... (+ light energy) glucose +...

carbon dioxide +... (+ light energy) glucose +... Photosynthesis 1. (i) Complete the word equation for photosynthesis. (ii) carbon dioxide +... (+ light energy) glucose +... Most of the carbon dioxide that a plant uses during photosynthesis is absorbed

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons and Daily Weather

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons and Daily Weather Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons and Daily Weather page - Section A - Introduction: This lab consists of questions dealing with atmospheric science. We beginning

More information

Reprinted from Vol. 107(2), March 1982 Journal of the American Society for Horticultural Science Alexandria, Virginia 22314, USA

Reprinted from Vol. 107(2), March 1982 Journal of the American Society for Horticultural Science Alexandria, Virginia 22314, USA Reprinted from Vol. 107(2), March 1982 Journal of the American Society for Horticultural Science Alexandria, Virginia 22314, USA J. Amer. Soc. Hort. Sci. 107(2):330-335. 1982. The Influence of Light on

More information

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz Sunlight and its Properties Part I EE 446/646 Y. Baghzouz The Sun a Thermonuclear Furnace The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction

More information

Chapter 5: Light and Matter: Reading Messages from the Cosmos

Chapter 5: Light and Matter: Reading Messages from the Cosmos Chapter 5 Lecture Chapter 5: Light and Matter: Reading Messages from the Cosmos Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience

More information

The Problem ADVANCED TECHNIQUES IN CUT FLOWER PRODUCTION: INCREASING STEM LENGTH AND STRENGTH. Where Are You Growing It? What Can I Do About It?

The Problem ADVANCED TECHNIQUES IN CUT FLOWER PRODUCTION: INCREASING STEM LENGTH AND STRENGTH. Where Are You Growing It? What Can I Do About It? ADVANCED TECHNIQUES IN CUT FLOWER PRODUCTION: INCREASING STEM LENGTH AND STRENGTH John Dole The Problem It has a great flower, produces a lot, and lasts a long time, but.. Its too short! Its too weak!

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

Unit C: Plant Physiology. Lesson 2: Understanding Light, Temperature, Air, and Water Effects on Plant Growth

Unit C: Plant Physiology. Lesson 2: Understanding Light, Temperature, Air, and Water Effects on Plant Growth Unit C: Plant Physiology Lesson 2: Understanding Light, Temperature, Air, and Water Effects on Plant Growth 1 Terms Day neutral plant (DNP) Foot-candles Hardiness Long day plant (LDP) Photoperiod Short

More information

Understanding Light, Temperature, Air, and Water Effects on Plant Growth

Understanding Light, Temperature, Air, and Water Effects on Plant Growth Lesson A2 7 Understanding Light, Temperature, Air, and Water Effects on Plant Growth Unit A. Horticultural Science Problem Area 2. Plant Anatomy and Physiology Lesson 7. Understanding Light, Temperature,

More information

LECTURE 13: RUE (Radiation Use Efficiency)

LECTURE 13: RUE (Radiation Use Efficiency) LECTURE 13: RUE (Radiation Use Efficiency) Success is a lousy teacher. It seduces smart people into thinking they can't lose. Bill Gates LECTURE OUTCOMES After the completion of this lecture and mastering

More information

Toward an optimal spectral quality for plant growth and development: Interactions among species and photon flux. Bruce Bugbee Utah State University

Toward an optimal spectral quality for plant growth and development: Interactions among species and photon flux. Bruce Bugbee Utah State University Toward an optimal spectral quality for plant growth and development: Interactions among species and photon flux Bruce Bugbee Utah State University Sun-free farming: Indoor crops under the spotlight New

More information

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June ATM S 111: Global Warming Solar Radiation Jennifer Fletcher Day 2: June 22 2010 Yesterday We Asked What factors influence climate at a given place? Sunshine (and latitude) Topography/mountains Proximity

More information

Atmosphere CHANGE IS IN THE AIR

Atmosphere CHANGE IS IN THE AIR Activity 8 UVs and Frisbees Atmosphere CHANGE IS IN THE AIR Forces of Change» Atmosphere» Activity 8» Page 1 UVs and Frisbees Overview This experiment will help students understand that ultraviolet radiation

More information

Evaluation of Chlormequat and Daminozide Products on Greenhouse Crops

Evaluation of Chlormequat and Daminozide Products on Greenhouse Crops Report Submitted to Fine Americas, Inc. Evaluation of Chlormequat and Daminozide Products on Greenhouse Crops Matthew Blanchard, Mike Olrich, and Erik Runkle Department of Horticulture Michigan State University

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999

PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 PRACTICE EXAM HORT 201 2nd EXAM from Fall 1999 1) Which of the following is the naturally occurring auxin in plants? a) indolebutyric acid b) naphthaleneacetic acid c) indoleacetic acid d) zeatin e) kinetin

More information

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 16 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Spectral reflectance: When the solar radiation is incident upon the earth s surface, it is either

Spectral reflectance: When the solar radiation is incident upon the earth s surface, it is either Spectral reflectance: When the solar radiation is incident upon the earth s surface, it is either reflected by the surface, transmitted into the surface or absorbed and emitted by the surface. Remote sensing

More information

Appendix B. A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis

Appendix B. A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis 19 Appendix B A proposition for updating the environmental standards using real Earth Albedo and Earth IR Romain Peyrou-Lauga (ESA/ESTEC, The Netherlands) 31 st European Space Thermal Analysis Workshop

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

Pre-Lab Exercises Lab 2: Spectroscopy

Pre-Lab Exercises Lab 2: Spectroscopy Pre-Lab Exercises Lab 2: Spectroscopy 1. Which color of visible light has the longest wavelength? Name Date Section 2. List the colors of visible light from highest frequency to lowest frequency. 3. Does

More information

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons

Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons Laboratory Exercise #7 - Introduction to Atmospheric Science: The Seasons page - 1 Section A - Introduction: This lab consists of both computer-based and noncomputer-based questions dealing with atmospheric

More information

Sound and Light. Light

Sound and Light. Light Sound and Light Light What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you

More information

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D) 1. The hottest climates on Earth are located near the Equator because this region A) is usually closest to the Sun B) reflects the greatest amount of insolation C) receives the most hours of daylight D)

More information

Variability of Reference Evapotranspiration Across Nebraska

Variability of Reference Evapotranspiration Across Nebraska Know how. Know now. EC733 Variability of Reference Evapotranspiration Across Nebraska Suat Irmak, Extension Soil and Water Resources and Irrigation Specialist Kari E. Skaggs, Research Associate, Biological

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum Chapter 5 Light and Matter: Reading Messages from the Cosmos What is light? Light is a form of radiant energy Light can act either like a wave or like a particle (photon) Spectrum of the Sun 1 2 Waves

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

What Is the Relationship Between Earth s Tilt and the Seasons?

What Is the Relationship Between Earth s Tilt and the Seasons? Learning Set 2 Why Are There Differences in Temperature? Review Images and Graphics While reading about Earth s tilt and the seasons, pay particular attention to the graphics included. How do they help

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the primary reason New York State is warmer in July than in February? A) The altitude of the noon Sun is greater in February. B) The insolation in New York is greater in July. C) The Earth

More information

D DAVID PUBLISHING. Simulation of Accelerated Ageing of UV-Radiation for Photodegradable Geotextiles/Geomembranes. 1. Introduction

D DAVID PUBLISHING. Simulation of Accelerated Ageing of UV-Radiation for Photodegradable Geotextiles/Geomembranes. 1. Introduction Journal of Geological Resource and Engineering 1 (2016) 44-50 doi:10.17265/2328-2193/2016.01.005 D DAVID PUBLISHING Simulation of Accelerated Ageing of UV-Radiation for Photodegradable Geotextiles/Geomembranes

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Teacher s Discussion Notes Part 1

Teacher s Discussion Notes Part 1 Teacher s Discussion Notes Part 1 PHOTOSYNTHESIS Vocabulary: Chlorophyll--A green substance which gives leaves their color. Chlorophyll absorbs energy from sunlight, which a plant uses to make food. Chloroplast--A

More information

Electromagnetic Radiation (EMR)

Electromagnetic Radiation (EMR) Electromagnetic Radiation (EMR) It is kind of energy with wave character ( exactly as sea waves ) that can be characterized by : Wavelength ( ) : The distance between two identical points on the wave.

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

YACT (Yet Another Climate Tool)? The SPI Explorer

YACT (Yet Another Climate Tool)? The SPI Explorer YACT (Yet Another Climate Tool)? The SPI Explorer Mike Crimmins Assoc. Professor/Extension Specialist Dept. of Soil, Water, & Environmental Science The University of Arizona Yes, another climate tool for

More information

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition Doppler Effect & Motion Extrasolar Planets Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum

More information

NH Agricultural Experiment Station - COLLEGE OF LIFE SCIENCES & AGRICULTURE

NH Agricultural Experiment Station - COLLEGE OF LIFE SCIENCES & AGRICULTURE Temperature Moderating Effects of Low Tunnels Over Winter In Cool Climates 21 Rebecca Grube Sideman 1, Amanda Brown 2, Clifton A. Martin 3, Ruth Hazzard 2, & Andrew Cavanagh 2. 1 University of New Hampshire,

More information

On my honor, I have neither given nor received unauthorized aid on this examination. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE.

On my honor, I have neither given nor received unauthorized aid on this examination. YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE. Instructor: Prof. Seiberling PHYSICS DEPARTMENT MET 1010 Name (print, last rst): 1st Midterm Exam Signature: On my honor, I have neither given nor received unauthorized aid on this examination. YOUR TEST

More information

Plant Growth and Development Part I I

Plant Growth and Development Part I I Plant Growth and Development Part I I 1 Simply defined as: making with light Chlorophyll is needed (in the cells) to trap light energy to make sugars and starches Optimum temperature: 65 o F to 85 o F

More information

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson

Agricultural Science Climatology Semester 2, Anne Green / Richard Thompson Agricultural Science Climatology Semester 2, 2006 Anne Green / Richard Thompson http://www.physics.usyd.edu.au/ag/agschome.htm Course Coordinator: Mike Wheatland Course Goals Evaluate & interpret information,

More information

- global radiative energy balance

- global radiative energy balance (1 of 14) Further Reading: Chapter 04 of the text book Outline - global radiative energy balance - insolation and climatic regimes - composition of the atmosphere (2 of 14) Introduction Last time we discussed

More information

Measurement of Ultraviolet Radiation Canadian Conservation Institute (CCI) Notes 2/2

Measurement of Ultraviolet Radiation Canadian Conservation Institute (CCI) Notes 2/2 1 Measurement of Ultraviolet Radiation Canadian Conservation Institute (CCI) Notes 2/2 Ultraviolet (UV) Radiation Minimizing the exposure of UV on a collection is important due to the cumulative damage

More information

Chapter 2 Available Solar Radiation

Chapter 2 Available Solar Radiation Chapter 2 Available Solar Radiation DEFINITIONS Figure shows the primary radiation fluxes on a surface at or near the ground that are important in connection with solar thermal processes. DEFINITIONS It

More information