Foundations in Microbiology Seventh Edition

Size: px
Start display at page:

Download "Foundations in Microbiology Seventh Edition"

Transcription

1 Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 4 An Introduction to the Prokaryotic Cell, Its Organization, and Members Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 4.1 Characteristics of Cells and Life All living things (single and multicellular) are made of cells that share some common characteristics: Basic shape spherical, cubical, cylindrical Internal content cytoplasm, surrounded by a membrane DNA chromosome(s), ribosomes, metabolic capabilities Two basic cell types: eukaryotic and prokaryotic 2

3 Characteristics of Cells Eukaryotic cells: animals, plants, fungi, and protists Contain membrane-bound organelles that compartmentalize the cytoplasm and perform specific functions Contain double-membrane bound nucleus with DNA chromosomes Prokaryotic cells: bacteria and archaea No nucleus or other membrane-bound organelles 3

4 Characteristics of Life Reproduction and heredity genome composed of DNA packed in chromosomes; produce offspring sexually or asexually Growth and development Metabolism chemical and physical life processes Movement and/or irritability respond to internal/external stimuli; self-propulsion of many organisms Cell support, protection, and storage mechanisms cell walls, vacuoles, granules and inclusions Transport of nutrients and waste 4

5 4.3 Prokaryotic Profiles 5

6 Prokaryotic Profiles Structures that are essential to the functions of all prokaryotic cells are a cell membrane, cytoplasm, ribosomes, and one (or a few) chromosomes 6

7 Figure 4.1 Structure of a bacterial cell 7

8 4.3 External Structures Appendages Two major groups of appendages: Motility flagella and axial filaments (periplasmic flagella) Attachment or channels fimbriae and pili Glycocalyx surface coating 8

9 3 parts: Flagella Filament long, thin, helical structure composed of protein Flagellin Hook curved sheath Basal body stack of rings firmly anchored in cell wall Rotates 360 o Number and arrangement of flagella varies: Monotrichous, lophotrichous, amphitrichous, peritrichous Functions in motility of cell through environment 9

10 Figure 4.2 Flagella 10

11 Flagellar Arrangements 1. Monotrichous single flagellum at one end 2. Lophotrichous small bunches emerging from the same site 3. Amphitrichous flagella at both ends of cell 4. Peritrichous flagella dispersed over surface of cell; slowest 11

12 Figure 4.3 Electron micrographs of flagellar arrangements 12

13 Flagellar Responses Guide bacteria in a direction in response to external stimulus: Chemical stimuli chemotaxis; positive and negative Light stimuli phototaxis Signal sets flagella into rotary motion clockwise or counterclockwise: Counterclockwise results in smooth linear direction run Clockwise tumbles 13

14 Figure 4.4 The operation of flagella 14

15 Figure 4.5 Chemotaxis in bacteria 15

16 Periplasmic Flagella Internal flagella, enclosed in the space between the outer sheath and the cell wall peptidoglycan Produce cellular motility by contracting and imparting twisting or flexing motion 16

17 Figure 4.6 Periplasmic flagella 17

18 Fimbriae Fine, proteinaceous, hairlike bristles emerging from the cell surface Function in adhesion to other cells and surfaces 18

19 Pili Rigid tubular structure made of pilin protein Found only in gram-negative cells Function to join bacterial cells for partial DNA transfer called conjugation 19

20 Glycocalyx Coating of molecules external to the cell wall, made of sugars and/or proteins Two types: 1. Slime layer - loosely organized and attached 2. Capsule - highly organized, tightly attached Functions: Protect cells from dehydration and nutrient loss Inhibit killing by white blood cells by phagocytosis, contributing to pathogenicity Attachment - formation of biofilms 20

21 21

22 22

23 Figure 4.11 Biofilm on a catheter 23

24 4.4 The Cell Envelope External covering outside the cytoplasm Composed of two basic layers: Cell wall and cell membrane Maintains cell integrity Two different groups of bacteria demonstrated by Gram stain: Gram-positive bacteria: thick cell wall composed primarily of peptidoglycan and cell membrane Gram-negative bacteria: outer cell membrane, thin peptidoglycan layer, and cell membrane 24

25 Figure 4.12 Insert figure 4.12 Comparative cell envelopes 25

26 Structure of Cell Walls Determines cell shape, prevents lysis (bursting) or collapsing due to changing osmotic pressures Peptidoglycan is primary component: Unique macromolecule composed of a repeating framework of long glycan chains cross-linked by short peptide fragments 26

27 Figure 4.13 Peptidoglycan 27

28 Gram-Positive Cell Wall Thick, homogeneous sheath of peptidoglycan nm thick Includes teichoic acid and lipoteichoic acid: function in cell wall maintenance and enlargement during cell division; move cations across the cell envelope; stimulate a specific immune response Some cells have a periplasmic space, between the cell membrane and cell wall 28

29 Figure

30 Gram-Negative Cell Wall Composed of an outer membrane and a thin peptidoglycan layer Outer membrane is similar to cell membrane bilayer structure Outermost layer contains lipopolysaccharides and lipoproteins (LPS) Lipid portion (endotoxin) may become toxic when released during infections May function as receptors and blocking immune response Contain porin proteins in upper layer regulate molecules entering and leaving cell Bottom layer is a thin sheet of peptidoglycan Periplasmic space above and below peptidoglycan 30

31 31

32 Table 4.1 Comparison of Gram-Positive and Gram-Negative 32

33 The Gram Stain Differential stain that distinguishes cells with a grampositive cell wall from those with a gram-negative cell wall Gram-positive - retain crystal violet and stain purple Gram-negative - lose crystal violet and stain red from safranin counterstain Important basis of bacterial classification and identification Practical aid in diagnosing infection and guiding drug treatment 33

34 34

35 Nontypical Cell Walls Some bacterial groups lack typical cell wall structure, i.e., Mycobacterium and Nocardia Gram-positive cell wall structure with lipid mycolic acid (cord factor) Pathogenicity and high degree of resistance to certain chemicals and dyes Basis for acid-fast stain used for diagnosis of infections caused by these microorganisms Some have no cell wall, i.e., Mycoplasma Cell wall is stabilized by sterols Pleomorphic 35

36 Figure 4.15 Extreme variation in shape of Mycoplasma pneumoniae 36

37 Cell Membrane Structure Phospholipid bilayer with embedded proteins fluid mosaic model Functions in: Providing site for energy reactions, nutrient processing, and synthesis Passage of nutrients into the cell and the discharge of wastes Cell membrane is selectively permeable 37

38 Figure 4.16 Cell membrane structure 38

39 4.5 Bacterial Internal Structures Cell cytoplasm: Dense gelatinous solution of sugars, amino acids, and salts 70-80% water Serves as solvent for materials used in all cell functions 39

40 Bacterial Internal Structures Chromosome Single, circular, double-stranded DNA molecule that contains all the genetic information required by a cell Aggregated in a dense area called the nucleoid DNA is tightly coiled 40

41 Figure 4.17 Chromosome structure 41

42 Bacterial Internal Structures Plasmids Small circular, double-stranded DNA Free or integrated into the chromosome Duplicated and passed on to offspring Not essential to bacterial growth and metabolism May encode antibiotic resistance, tolerance to toxic metals, enzymes, and toxins Used in genetic engineering - readily manipulated and transferred from cell to cell 42

43 Bacterial Internal Structures Ribosomes Made of 60% ribosomal RNA and 40% protein Consist of two subunits: large and small Prokaryotic differ from eukaryotic ribosomes in size and number of proteins Site of protein synthesis Present in all cells 43

44 Figure 4.18 Prokaryotic ribosome 44

45 Bacterial Internal Structures Inclusions and granules Intracellular storage bodies Vary in size, number, and content Bacterial cell can use them when environmental sources are depleted Examples: glycogen, poly b-hydroxybutyrate, gas vesicles for floating, sulfur and phosphate granules (metachromatic granules), particles of iron oxide 45

46 Figure 4.19 Bacterial inclusion bodies 46

47 Bacterial Internal Structures Cytoskeleton Many bacteria possess an internal network of protein polymers that is closely associated with the cell wall 47

48 Bacterial Internal Structures Endospores Inert, resting, cells produced by some G+ genera: Clostridium, Bacillus, and Sporosarcina Have a 2-phase life cycle: Vegetative cell metabolically active and growing Endospore when exposed to adverse environmental conditions; capable of high resistance and very long-term survival Sporulation - formation of endospores Hardiest of all life forms Withstands extremes in heat, drying, freezing, radiation, and chemicals Not a means of reproduction Germination - return to vegetative growth 48

49 Figure 4.22 Sporulation cycle 49

50 Endospores Resistance linked to high levels of calcium and dipicolinic acid Dehydrated, metabolically inactive Thick coat Longevity verges on immortality, 250 million years Resistant to ordinary cleaning methods and boiling Pressurized steam at 120 o C for minutes will destroy 50

51 4.6 Bacterial Shapes, Arrangements, and Sizes Vary in shape, size, and arrangement but typically described by one of three basic shapes: Coccus spherical Bacillus rod Coccobacillus very short and plump Vibrio gently curved Spirillum helical, comma, twisted rod, Spirochete spring-like 51

52 Figure 4.23 Common bacterial shapes 52

53 Table 4.2 Comparison of Spiral-Shaped Bacteria 53

54 Bacterial Shapes, Arrangements, and Sizes Arrangement of cells is dependent on pattern of division and how cells remain attached after division: Cocci: Singles Diplococci in pairs Tetrads groups of four Irregular clusters Chains Cubical packets (sarcina) Bacilli: Diplobacilli Chains Palisades 54

55 Figure 4.25 Arrangement of cocci 55

56 Figure 4.26 The dimensions of bacteria 56

57 4.7 Classification Systems in the Prokaryotae 1. Microscopic morphology 2. Macroscopic morphology colony appearance 3. Bacterial physiology 4. Serological analysis 5. Genetic and molecular analysis 57

58 Bacterial Taxonomy Based on Bergey s Manual Bergey s Manual of Determinative Bacteriology five volume resource covering all known prokaryotes Classification based on genetic information phylogenetic Two domains: Archaea and Bacteria Five major subgroups with 25 different phyla 58

59 Major Taxonomic Groups of Bacteria Domain Archaea primitive, adapted to extreme habitats and modes of nutrition Domain Bacteria: Phylum Proteobacteria Gram-negative cell walls Phylum Firmicutes mainly gram-positive with low G + C content Phylum Actinobacteria Gram-positive with high G + C content 59

60 Figure 4.27 Universal phylogenetic tree 60

61 Table 4.3 General Classification Scheme 61

62 Diagnostic Scheme for Medical Use Uses phenotypic qualities in identification Restricted to bacterial disease agents Divides bacteria based on cell wall structure, shape, arrangement, and physiological traits 62

63 63

64 Species and Subspecies Species a collection of bacterial cells which share an overall similar pattern of traits in contrast to other bacteria whose pattern differs significantly Strain or variety a culture derived from a single parent that differs in structure or metabolism from other cultures of that species (biovars, morphovars) Type a subspecies that can show differences in antigenic makeup (serotype or serovar), susceptibility to bacterial viruses (phage type) and in pathogenicity (pathotype) 64

65 Prokaryotes with Unusual Characteristics Free-living nonpathogenic bacteria Photosynthetic bacteria use photosynthesis, can synthesize required nutrients from inorganic compounds Cyanobacteria (blue-green algae) Gram-negative cell walls Extensive thylakoids with photosynthetic chlorophyll pigments and gas inclusions Green and purple sulfur bacteria Contain photosynthetic pigment bacteriochlorophyll Do not give off oxygen as a product of photosynthesis Gliding, fruiting bacteria Gram-negative Glide over moist surfaces 65

66 Figure 4.28 Structure of cyanobacteria 66

67 Figure 4.29 Photosynthetic bacteria 67

68 Unusual Forms of Medically Significant Bacteria Obligate intracellular parasites Rickettsias Very tiny, gram-negative bacteria Most are pathogens that alternate between mammals and blood-sucking arthropods Obligate intracellular pathogens Cannot survive or multiply outside of a host cell Cannot carry out metabolism on their own Rickettsia rickettisii Rocky Mountain spotted fever Rickettsia typhi endemic typhus 68

69 Unusual Forms of Medically Significant Bacteria Chlamydias Tiny Obligate intracellular parasites Not transmitted by arthropods Chlamydia trachomatis severe eye infection and one of the most common sexually transmitted diseases Chlamydia pneumoniae lung infections 69

70 4.8 Archaea: The Other Prokaryotes Constitute third Domain Archaea Seem more closely related to Domain Eukarya than to bacteria Contain unique genetic sequences in their rrna Have unique membrane lipids and cell wall construction Live in the most extreme habitats in nature, extremophiles Adapted to heat, salt, acid ph, pressure, and atmosphere Includes: methane producers, hyperthermophiles, extreme halophiles, and sulfur reducers 70

71 Archaea 71

72 Table 4.5 Comparison of Three Cellular Domains 72

An Introduction to the Prokaryotic Cells. BIO370 Dr. Ramos

An Introduction to the Prokaryotic Cells. BIO370 Dr. Ramos An Introduction to the Prokaryotic Cells BIO370 Dr. Ramos Characteristics of Cells and Life All living things (single and multicellular) are made of cells that share some common characteristics: Basic

More information

Ch 3. Bacteria and Archaea

Ch 3. Bacteria and Archaea Ch 3 Bacteria and Archaea SLOs for Culturing of Microorganisms Compare and contrast the overall cell structure of prokaryotes and eukaryotes. List structures all bacteria possess. Describe three basic

More information

Chapter 4. A Survey of Prokaryotic Cells and Microorganisms

Chapter 4. A Survey of Prokaryotic Cells and Microorganisms Chapter 4 A Survey of Prokaryotic Cells and Microorganisms Characteristics of cells and life All living things (single and multicellular) are made of cells that share some common characteristics: Basic

More information

MORPHOLOGY: the study of form and structure

MORPHOLOGY: the study of form and structure MICROBIOLOGY CHAPTER 3 Bacteria Morphology 3:1 Bacteria Structure and Function MORPHOLOGY: the study of form and structure Structure of Bacteria 1. PROKARYOTIC no membrane bound nucleus nor other organelles

More information

Prokaryotic and Eukaryotic Cells. Structure and Function

Prokaryotic and Eukaryotic Cells. Structure and Function Prokaryotic and Eukaryotic Cells Structure and Function In general microbes or microorganisms may be either prokaryotic (bacteria) or eukaryotic (protists, fungi, and some animals). However, there are

More information

Bacterial Morphology and Structure م.م رنا مشعل

Bacterial Morphology and Structure م.م رنا مشعل Bacterial Morphology and Structure م.م رنا مشعل SIZE OF BACTERIA Unit for measurement : Micron or micrometer, μm: 1μm=10-3 mm Size: Varies with kinds of bacteria, and also related to their age and external

More information

Shape, Arrangement, and Size. Cocci (s., coccus) bacillus (pl., bacilli) 9/21/2013

Shape, Arrangement, and Size. Cocci (s., coccus) bacillus (pl., bacilli) 9/21/2013 Shape, Arrangement, and Size Cocci (s., coccus) are roughly spherical cells. The other common shape is that of a rod, sometimes called a bacillus (pl., bacilli). Spiral-shaped procaryotes can be either

More information

Chapter 3. Cell Structure and Function

Chapter 3. Cell Structure and Function Chapter 3 Cell Structure and Function How do you define life? Growth Reproduction Response to stimulus Metabolism Prokaryotic and Eukaryotic Cells: An Overview Cells Prokaryotes Eukaryotes Figure 3.1 Prokaryotes

More information

A Survey of Prokaryotic Cells and Microorganisms

A Survey of Prokaryotic Cells and Microorganisms Chapter 4 A Survey of Prokaryotic Cells and Microorganisms Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Characteristics of Cells and Life All living things

More information

Burton's Microbiology for the Health Sciences

Burton's Microbiology for the Health Sciences Burton's Microbiology for the Health Sciences Chapter 3. Cell Structure and Taxonomy Chapter 3 Outline Introduction Eucaryotic Cell Structure Procaryotic Cell Structure Summary of Structural Differences

More information

Microbial Genetics, Mutation and Repair. 2. State the function of Rec A proteins in homologous genetic recombination.

Microbial Genetics, Mutation and Repair. 2. State the function of Rec A proteins in homologous genetic recombination. Answer the following questions 1. Define genetic recombination. Microbial Genetics, Mutation and Repair 2. State the function of Rec A proteins in homologous genetic recombination. 3. List 3 types of bacterial

More information

= Monera. Taxonomy. Domains (3) BIO162 Page Baluch. Taxonomy: classifying and organizing life

= Monera. Taxonomy. Domains (3) BIO162 Page Baluch. Taxonomy: classifying and organizing life Taxonomy BIO162 Page Baluch Taxonomy: classifying and organizing life species Genus Family Order Class Phylum Kingdom Spaghetti Good For Over Came Phillip King Domains (3) DOMAINS 1. Bacteria 2. Archea

More information

9/8/2010. Chapter 4. Structures Internal to the Cell Wall. The Plasma Membrane. Functional Anatomy of Prokaryotic and Eukaryotic Cells

9/8/2010. Chapter 4. Structures Internal to the Cell Wall. The Plasma Membrane. Functional Anatomy of Prokaryotic and Eukaryotic Cells Chapter 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells Johana Meléndez Part II slides 39-87 Lectures prepared by Christine L. Case Structures Internal to the Cell Wall Learning Objectives 4-8

More information

chapter one: the history of microbiology

chapter one: the history of microbiology chapter one: the history of microbiology Revised 6/19/2018 microbes microscopic (small) organisms, viruses, prions prefix sci. notation frac. equivalent dec. equivalent kilo- (k) 1 10 3 1000/1 = 1000 1000

More information

Biology: Life on Earth

Biology: Life on Earth Teresa Audesirk Gerald Audesirk Bruce E. Byers Biology: Life on Earth Eighth Edition Lecture for Chapter 4 Cell Structure and Function Copyright 2008 Pearson Prentice Hall, Inc. Chapter 4 Outline 4.1 What

More information

BACTERIA. CLS 212: Medical Microbiology Miss Zeina Alkudmani

BACTERIA. CLS 212: Medical Microbiology Miss Zeina Alkudmani BACTERIA CLS 212: Medical Microbiology Miss Zeina Alkudmani Prokaryotes Prokaryotic cells possess simpler structures than eukaryotic cells, since they do not have a nucleus or a lot of cytoplasmic organelles.

More information

Vocabulary- Bacteria (34 words)

Vocabulary- Bacteria (34 words) Biology II BACTERIA Vocabulary- Bacteria (34 words) 1. Prokaryote 21. phototroph 2. Peptidoglycan 22. chemotroph 3. Methanogen 23. obligate anaerobe 4. Halophile 24. facultative anaerobe 5. Thermoacidophile

More information

(A) Exotoxin (B) Endotoxin (C) Cilia (D) Flagella (E) Capsule. A. Incorrect! Only gram-positive bacteria secrete exotoxin.

(A) Exotoxin (B) Endotoxin (C) Cilia (D) Flagella (E) Capsule. A. Incorrect! Only gram-positive bacteria secrete exotoxin. College Biology - Problem Drill 13: Prokaryots and Protists Question No. 1 of 10 1. Gram-negative bacteria can cause disease in humans by release of what substance? Question #01 (A) Exotoxin (B) Endotoxin

More information

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Overview of Cells Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Prokaryotic Cells Archaea Bacteria Come in many different shapes and sizes.5 µm 2 µm, up to 60 µm long Have large

More information

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. 1.

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. 1. Chapter 3 Study Guide Explain the 3 main characteristics that help differentiate prokaryotes from eukaryotes. What are the 7 structures/substances found in all bacterial cells? What are 8 specific structures

More information

MONTGOMERY COUNTY COMMUNITY COLLEGE BIO 140 CHAPTER 4. Functional Anatomy of Prokaryotic and Eukaryotic Cells

MONTGOMERY COUNTY COMMUNITY COLLEGE BIO 140 CHAPTER 4. Functional Anatomy of Prokaryotic and Eukaryotic Cells MONTGOMERY COUNTY COMMUNITY COLLEGE BIO 140 CHAPTER 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells I. PROKARYOTES A. Structure Of The Cell: Chemical Composition And Function 1. Cell Wall a. composition

More information

BACTERIA AND ARCHAEA 10/15/2012

BACTERIA AND ARCHAEA 10/15/2012 BACTERIA AND ARCHAEA Chapter 27 KEY CONCEPTS: Structural and functional adaptations contribute to prokaryotic success Rapid reproduction, mutation, and genetic recombination promote genetic diversity in

More information

Microbiology / Active Lecture Questions Chapter 10 Classification of Microorganisms 1 Chapter 10 Classification of Microorganisms

Microbiology / Active Lecture Questions Chapter 10 Classification of Microorganisms 1 Chapter 10 Classification of Microorganisms 1 2 Bergey s Manual of Systematic Bacteriology differs from Bergey s Manual of Determinative Bacteriology in that the former a. groups bacteria into species. b. groups bacteria according to phylogenetic

More information

Outline. Viruses, Bacteria, and Archaea. Viruses Structure Classification Reproduction Prokaryotes Structure Reproduction Nutrition Bacteria Archaea

Outline. Viruses, Bacteria, and Archaea. Viruses Structure Classification Reproduction Prokaryotes Structure Reproduction Nutrition Bacteria Archaea Viruses, Bacteria, and Archaea Chapter 21 Viruses Structure Classification Reproduction Prokaryotes Structure Reproduction Nutrition Bacteria Archaea Outline The Viruses The Viruses Viruses are noncellular

More information

Cellular Basis of Microbiology

Cellular Basis of Microbiology Presentation Subtitle Dr. Gary Mumaugh Cellular Basis of Microbiology Microorganism: Structure Structure of Prokaryotic Cell Structure of Eukaryotic Cell Microorganism: Varieties of Shapes Microorganism:

More information

SPECIES OF ARCHAEA ARE MORE CLOSELY RELATED TO EUKARYOTES THAN ARE SPECIES OF PROKARYOTES.

SPECIES OF ARCHAEA ARE MORE CLOSELY RELATED TO EUKARYOTES THAN ARE SPECIES OF PROKARYOTES. THE TERMS RUN AND TUMBLE ARE GENERALLY ASSOCIATED WITH A) cell wall fluidity. B) cell membrane structures. C) taxic movements of the cell. D) clustering properties of certain rod-shaped bacteria. A MAJOR

More information

Brief history of life on Earth

Brief history of life on Earth Brief history of life on Earth 4.6 Billion Years ago: Earth forms 3.6 Billion Years ago : First life on the planet (Prokaryotes = Bacteria) 2.8 Billion Years ago : First eukaryotic life (also microbial

More information

MICR2208 Lecture 3: Prokaryotic Structure and Function 1

MICR2208 Lecture 3: Prokaryotic Structure and Function 1 MICR2208 Lecture 3: Prokaryotic Structure and Function 1 Diversity of Prokaryotes Size Not all prokaryotes are similar in size as they all differ, however, most of the prokaryotes cannot be seen from the

More information

Anatomy and Function of Prokaryotes. Dr. Hala Al- Daghistani

Anatomy and Function of Prokaryotes. Dr. Hala Al- Daghistani Anatomy and Function of Prokaryotes Dr. Hala Al- Daghistani Bacteria have many sizes and several shapes. Most bacteria range from 0.2 to 2.0 um in diameter and from 2 to 8 um in length. They have a few

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information

Prokaryotes. Chapter 27. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

Prokaryotes. Chapter 27. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece Chapter 27 Prokaryotes PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: They re (Almost) Everywhere! Most prokaryotes are microscopic But

More information

Dr. Raj Ramakrishnan, Ph.D.

Dr. Raj Ramakrishnan, Ph.D. Page 1 of 5 Concept Questions Read the chapter materials. Take some time to write answers to these questions. If you can answer them, you have a good grasp of the material! Good luck! Chapter 1 1. Identify

More information

9/8/2017. Bacteria and Archaea. Three domain system: The present tree of life. Structural and functional adaptations contribute to prokaryotic success

9/8/2017. Bacteria and Archaea. Three domain system: The present tree of life. Structural and functional adaptations contribute to prokaryotic success 5 m 2 m 9/8/2017 Three domain system: The present tree of life Bacteria and Archaea Chapter 27 Structural and functional adaptations contribute to prokaryotic success Unicellular Small Variety of shapes

More information

Kingdom Monera(Archaebacteria & Eubacteria)

Kingdom Monera(Archaebacteria & Eubacteria) Kingdom Monera(Archaebacteria & All bacteria are prokaryotes Characteristics: 1. No nucleus Eubacteria) 2. No membrane bound organelles 3. Smaller & less ribosomes 4. Most are smaller than eukaryotes 5.

More information

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum.

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum. Bacteria The yellow band surrounding this hot spring is sulfur, a waste product of extremophilic prokaryotes, probably of the Domain Archaea, Kingdom Archaebacteria. Bacteria are prokaryotic cells (no

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 9 THE CLINICAL SIGNIFICANCE OF BACTERIAL ANATOMY WHY IS THIS IMPORTANT? Bacterial structures play a significant role in the five steps required for infection OVERVIEW The Clinical Signifcance of

More information

KINGDOM MONERA. Bacterial Cell Shape 8/22/2010. The Prokaryotes: Archaebacteria and Eubacteria

KINGDOM MONERA. Bacterial Cell Shape 8/22/2010. The Prokaryotes: Archaebacteria and Eubacteria KINGDOM MONERA The Prokaryotes: Archaebacteria and Eubacteria Bacteria are the most organisms living on the Earth. (i.e. 10mL of soil contains 1 x 10 10 bacteria. They are found in nearly every habitat

More information

Archaeal Cell Structure. Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display.

Archaeal Cell Structure. Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 4 Archaeal Cell Structure Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 4.1 A typical Archaeal Cell 2 Archaea Highly diverse with respect to morphology,

More information

Kingdom Monera. These notes are to help you check your answers in your Bacteria unit handout package that you received in class.

Kingdom Monera. These notes are to help you check your answers in your Bacteria unit handout package that you received in class. Kingdom Monera These notes are to help you check your answers in your Bacteria unit handout package that you received in class. Textbook reference pages Textbook Section 17-2 & 17-3 pages 360-375 Basic

More information

Kingdom Monera Bacteria

Kingdom Monera Bacteria Kingdom Monera Bacteria Common bacteria Prokaryotes Strep throat Anthrax Chlamydia E. coli Meningitis Salmonella Micrococcus(intestinal) Streptococcus mutans Haemophilusinfluenzae Cellphonious bacterious

More information

Some history. Now, we know that Robert Hooke was not looking at living cells, but the remains of dead cell walls.

Some history. Now, we know that Robert Hooke was not looking at living cells, but the remains of dead cell walls. The Life of a Cell Some history In 1665, Robert Hooke examined the bark of an oak tree under an early microscope. He thought he was looking at something similar to the small rooms of dormitories and prisons;

More information

Characteristics. Nucleoid Region single circular chromosome plasmids mesosome

Characteristics. Nucleoid Region single circular chromosome plasmids mesosome Prokaryotes Characteristics Nucleoid Region single circular chromosome plasmids mesosome No membranebound organelles Ribosomes (70S) Plasma membrane Cell wall peptidoglycan Capsule glycocalyx Flagella

More information

Principles of Cellular Biology

Principles of Cellular Biology Principles of Cellular Biology آشنایی با مبانی اولیه سلول Biologists are interested in objects ranging in size from small molecules to the tallest trees: Cell Basic building blocks of life Understanding

More information

Ch 3 & 4 Microscopy & Cell Components 1

Ch 3 & 4 Microscopy & Cell Components 1 Objectives 1.White book: Read Chap 3 & p 77-98 & 108 2.Black book: Read Chap 3 & p75-96 & 106 Objectives: 1. List metric measurement units for microorganisms and convert to other metric units (m, mm, um,

More information

Ch 3 & 4 Microscopy & Cell Components 1

Ch 3 & 4 Microscopy & Cell Components 1 Objectives 1.White book: Read Chap 3 & p 77-98 & 108 2.Black book: Read Chap 3 & p75-96 & 106 Objectives: 1. List metric measurement units for microorganisms and convert to other metric units (m, mm, um,

More information

Ch 3 & 4 Microscopy & Cell Components 1

Ch 3 & 4 Microscopy & Cell Components 1 Objectives 1.White book: Read Chap 3 & p 77-98 & 108 2.Black book: Read Chap 3 & p75-96 & 106 Objectives: 1. List metric measurement units for microorganisms and convert to other metric units (m, mm, um,

More information

Current evidence indicates that eukaryotes evolved from prokaryotes between 1 and 1.5 billion years ago.

Current evidence indicates that eukaryotes evolved from prokaryotes between 1 and 1.5 billion years ago. Current evidence indicates that eukaryotes evolved from prokaryotes between 1 and 1.5 billion years ago. Two theories: 1. Infolding theory 2. Endosymbiotic theory The infolding of the prokaryotic plasma

More information

10/1/2014. Chapter Explain why the cell is considered to be the basic unit of life.

10/1/2014. Chapter Explain why the cell is considered to be the basic unit of life. Chapter 4 PSAT $ by October by October 11 Test 3- Tuesday October 14 over Chapter 4 and 5 DFA- Monday October 20 over everything covered so far (Chapters 1-5) Review on Thursday and Friday before 1. Explain

More information

TER 26. Preview for 2/6/02 Dr. Kopeny. Bacteria and Archaea: The Prokaryotic Domains. Nitrogen cycle

TER 26. Preview for 2/6/02 Dr. Kopeny. Bacteria and Archaea: The Prokaryotic Domains. Nitrogen cycle Preview for 2/6/02 Dr. Kopeny Bacteria and Archaea: The Prokaryotic Domains TER 26 Nitrogen cycle Mycobacterium tuberculosis Color-enhanced images shows rod-shaped bacterium responsible for tuberculosis

More information

Goals: Viruses: not considered alive. Living cells. Plants. Bacteria. Animals. Archae Bacteria. Protists. Fungi. The prokaryotic cell structure

Goals: Viruses: not considered alive. Living cells. Plants. Bacteria. Animals. Archae Bacteria. Protists. Fungi. The prokaryotic cell structure Goals: Identify the structures of eukaryotic and prokaryotic cells Identify the differences between viruses, prokaryotes and eukaryotes Use knowledge about differences between types of cells to solve a

More information

Cell Structure and Function

Cell Structure and Function Cell Structure and Function Cell size comparison Animal cell Bacterial cell What jobs do cells have to do for an organism to live Gas exchange CO 2 & O 2 Eat (take in & digest food) Make energy ATP Build

More information

Cells & Bacteria Notes

Cells & Bacteria Notes Cells & Bacteria Notes 4 Major Macromolecules Macromolecules are large molecules. The four groups of macromolecules are essential to the structure and function of a cell. Group Building Block Large Molecule

More information

Bacteria outline-- CHAPTER 19 Bacteria

Bacteria outline-- CHAPTER 19 Bacteria Bacteria outline-- CHAPTER 19 Bacteria Structure and Function Prokaryote & Eukaryote Evolution Cellular Evolution Current evidence indicates that eukaryotes evolved from prokaryotes between 1 and 1.5 billion

More information

Bacteria. Prepared by. Doua a Hamadi Gellan Ibrahim Rahma Younis Doua a Abdul-Hadi Doua a Amjad Hanin Laith Khamael Dawood

Bacteria. Prepared by. Doua a Hamadi Gellan Ibrahim Rahma Younis Doua a Abdul-Hadi Doua a Amjad Hanin Laith Khamael Dawood Bacteria Prepared by Doua a Hamadi Gellan Ibrahim Rahma Younis Doua a Abdul-Hadi Doua a Amjad Hanin Laith Khamael Dawood History of Bacteriology Doua a Hamadi Bacteria were first observed by Antonie van

More information

Subject: Staining-Bacterial Cell Structure Lecture Number: 3 Done by: Joud Baki Corrected by: Issa Deir

Subject: Staining-Bacterial Cell Structure Lecture Number: 3 Done by: Joud Baki Corrected by: Issa Deir Subject: Staining-Bacterial Cell Structure Lecture Number: 3 Done by: Joud Baki Corrected by: Issa Deir 0 Principles of staining: - Revision: Stains can be either simple or differential Gram stains are

More information

Introduction to Microbiology BIOL 220 Summer Session I, 1996 Exam # 1

Introduction to Microbiology BIOL 220 Summer Session I, 1996 Exam # 1 Name I. Multiple Choice (1 point each) Introduction to Microbiology BIOL 220 Summer Session I, 1996 Exam # 1 B 1. Which is possessed by eukaryotes but not by prokaryotes? A. Cell wall B. Distinct nucleus

More information

LABORATORY 7 ENDOSPORE STAIN AND BACTERIAL MOTILITY

LABORATORY 7 ENDOSPORE STAIN AND BACTERIAL MOTILITY LABORATORY 7 ENDOSPORE STAIN AND BACTERIAL MOTILITY A. Endospore Stain B. Bacterial Motility A. ENDOSPORE STAIN DISCUSSION A few genera of bacteria, such as Bacillus and Clostridium have the ability to

More information

Discovery of the Cell

Discovery of the Cell Cell Structure Discovery of the Cell Who discovered cells? 1665 Robert Hooke used a compound microscope to examine a piece of cork (20X magnification) He saw little boxes in the cork and called them cells

More information

1- Which of the following molecules stores hereditary information? A. ATP B. DNA C. protein D. carbohydrates

1- Which of the following molecules stores hereditary information? A. ATP B. DNA C. protein D. carbohydrates Question 1: Multiple Choice (20 Marks) 1- Which of the following molecules stores hereditary information? A. ATP B. DNA C. protein D. carbohydrates 2- What is the name of the molecule in plants that stores

More information

Principles of Biotechnology Lectures of week 4 MICROBIOLOGY AND BIOTECHNOLOGY

Principles of Biotechnology Lectures of week 4 MICROBIOLOGY AND BIOTECHNOLOGY Principles of Biotechnology Lectures of week 4 MICROBIOLOGY AND BIOTECHNOLOGY INTRODUCTION TO MICROBIOLOGY What are microbes? Germs, microbe s s microorganisms are minute living things that individually

More information

Cell Structure. Chapter 4

Cell Structure. Chapter 4 Cell Structure Chapter 4 Cell Theory Cells were discovered in 1665 by Robert Hooke. Early studies of cells were conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden and Schwann proposed

More information

MICROBIOLOGIA GENERALE. Structure and function of prokaryotic cells 3

MICROBIOLOGIA GENERALE. Structure and function of prokaryotic cells 3 MICROBIOLOGIA GENERALE Structure and function of prokaryotic cells 3 Structure and function of prokaryotic cells: in the cytosol The bacterial chromosome is typically one large circular molecule of DNA

More information

STEMscopedia: PLANT AND ANIMAL CELLS

STEMscopedia: PLANT AND ANIMAL CELLS B.L 14.2 and 14.3 Reflect Take a moment to think about all of the living things on Earth. There is great diversity among organisms, from microscopic bacteria to massive blue whales the largest animals

More information

Introduction to microbiology

Introduction to microbiology Sulaimani University College of Pharmacy Microbiology Introduction to microbiology Dr. Abdullah Ahmed Hama PhD. Molecular Medical Parasitology abdullah.hama@spu.edu.iq 1 Definition Microbiology: is the

More information

Dr. Raj Ramakrishnan, Ph.D.

Dr. Raj Ramakrishnan, Ph.D. CONCEPT QUESTIONS FOR EXAMINATION I - Biology 2420, Talaro & Chess 9 th NOTE: The topic sheets prepared by Dr. David Schwartz are being used by me with his kind permission. I have modified them in this

More information

Outline. Cell Structure and Function. Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles. Chapter 4

Outline. Cell Structure and Function. Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles. Chapter 4 Cell Structure and Function Chapter 4 Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles! Nucleus Outline! Endomembrane System! Cytoskeleton! Centrioles, Cilia, and Flagella 1 2 Cell Theory

More information

Kingdom Bacteria Kingdom Archaea

Kingdom Bacteria Kingdom Archaea Section 5.1 Kingdom Bacteria Kingdom Archaea p. 132-139 Kingdom Bacteria General Characteristics: Cell Type: all are prokaryotic. Body Form: most are unicellular, some are colonial. Three main shapes are:

More information

Cell Structure and Function

Cell Structure and Function PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 3 Cell Structure and Function Handout Structure-Function Table Handout Prok vs Euk Table

More information

Cell Structure and Function

Cell Structure and Function PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 3 Cell Structure and Function Processes of Life Growth Reproduction Responsiveness Metabolism

More information

Bacteria and Viruses. 1 Bacteria CHAPTER 18. MAINIDEA Bacteria are prokaryotic cells.

Bacteria and Viruses. 1 Bacteria CHAPTER 18. MAINIDEA Bacteria are prokaryotic cells. CHAPTER 18 Bacteria and Viruses 1 Bacteria 7(F), 8(B), 8(C), 11(C), 12(A) Before You Read When you hear the word bacteria, what comes to mind? On the lines below, describe places you think bacteria might

More information

Cell Organelles. a review of structure and function

Cell Organelles. a review of structure and function Cell Organelles a review of structure and function TEKS and Student Expectations (SE s) B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell 1 Nonliving Levels ATOMS MOLECULES ORGANELLES 2 Living Levels CELLS life starts here TISSUES Similar cells working together 3 More Living Levels ORGANS ORGAN SYSTEMS ORGANISM

More information

B. Correct! Bacillus anthraces produces spores that can cause anthrax. D. Incorrect! Diphtheria is caused by Corynebacterium diphtheriae.

B. Correct! Bacillus anthraces produces spores that can cause anthrax. D. Incorrect! Diphtheria is caused by Corynebacterium diphtheriae. Microbiology - Problem Drill 09 - The Prokaryotes No. 1 of 10 1. Bacillus anthraces is most closely associated with which of the following? (A) Botulism poisoning (B) Anthrax (C) Gangrene (D) Diphtheria

More information

Eubacteria Archaea Eukarya

Eubacteria Archaea Eukarya Taxonomy Eubacteria Archaea Eukarya, mostly heterotrophic, live in all sorts of environments Largest group of organisms on Earth Only a small amount cause disease Most have very important roles:, such

More information

Figure Page 117 Microbiology: An Introduction, 10e (Tortora/ Funke/ Case)

Figure Page 117 Microbiology: An Introduction, 10e (Tortora/ Funke/ Case) Chapter 11 The Prokaryotes: Domains Bacteria and Archaea Objective Questions 1) Which of the following are found primarily in the intestines of humans? A) Gram-negative aerobic rods and cocci B) Aerobic,

More information

TRACING BACK TO THE BEGINNING

TRACING BACK TO THE BEGINNING BACTERIA! TRACING BACK TO THE BEGINNING PROKARYOTES KINGDOM EUBACTERIA KINGDOM ARCHAEBACTERIA CHARACTERISTICS: 1. NO NUCLEUS 2. NO MEMBRANE BOUND ORGANELLES 4. MOST ARE SMALLER THAN EUKARYOTES 5. ARE SINGLE-CELLED

More information

1- What are rod-shaped bacteria called? A. cocci B. bacilli C. spirilla D. halophiles

1- What are rod-shaped bacteria called? A. cocci B. bacilli C. spirilla D. halophiles Question 1: Multiple Choice (20 Marks) 1- What are rod-shaped bacteria called? A. cocci B. bacilli C. spirilla D. halophiles 2- The eukaryotic nucleus houses all of the following except the A. RNA B. DNA

More information

FUNCTIONAL ANATOMY OF PROKARYOTIC AND EUKARYOTIC CELLS. Lecture 2 By : Norhidayah Abd Aziz

FUNCTIONAL ANATOMY OF PROKARYOTIC AND EUKARYOTIC CELLS. Lecture 2 By : Norhidayah Abd Aziz FUNCTIONAL ANATOMY OF PROKARYOTIC AND EUKARYOTIC CELLS Lecture 2 By : Norhidayah Abd Aziz WHAT IS LIFE? Can grow i.e. increase in size. Can reproduce offspring Responsive to environment survival Metabolism

More information

BIODIVERSITY I BIOL 1051 What are Bacteria? INTRODUCTION WHAT ARE MICROORGANISMS? INTRODUCTION WHAT ARE MICROORGANISMS?

BIODIVERSITY I BIOL 1051 What are Bacteria? INTRODUCTION WHAT ARE MICROORGANISMS? INTRODUCTION WHAT ARE MICROORGANISMS? BIODIVERSITY I BIOL 1051 INTRODUCTION WHAT ARE MICROORGANISMS? Professor Marc C. Lavoie marc.lavoie@cavehill.uwi.edu Seen only under the microscope Usually unicellular INTRODUCTION WHAT ARE MICROORGANISMS?

More information

07.1 Structure of Bacteria and Archaea MS MI v2 *

07.1 Structure of Bacteria and Archaea MS MI v2 * OpenStax-CNX module: m61910 1 07.1 Structure of Bacteria and Archaea MS MI v2 * The BIS2A Team Based on Bis2A 10.1 Structure of Bacteria and Archaea by OpenStax Mitch Singer This work is produced by OpenStax-CNX

More information

Cell Structure. Chapter 4. Cell Theory. Cells were discovered in 1665 by Robert Hooke.

Cell Structure. Chapter 4. Cell Theory. Cells were discovered in 1665 by Robert Hooke. Cell Structure Chapter 4 Cell Theory Cells were discovered in 1665 by Robert Hooke. Early studies of cells were conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden and Schwann proposed

More information

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell?

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell? Today s materials: 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote Achadiah Rachmawati What is a cell? Cell Structure and Function All living things are made of cells

More information

20 Viruses and Prokaryotes Bacteria

20 Viruses and Prokaryotes Bacteria 20 Viruses and Prokaryotes 20.2 - Bacteria Classifying Prokaryotes Prokaryote unicellular organisms that lacks a nucleus Most abundant and widespread organisms on Earth Divided into two groups Bacteria

More information

Intro to Prokaryotes Lecture 1 Spring 2014

Intro to Prokaryotes Lecture 1 Spring 2014 Intro to Prokaryotes Lecture 1 Spring 2014 Meet the Prokaryotes 1 Meet the Prokaryotes 2 Meet the Prokaryotes 3 Why study prokaryotes? Deep Time 4 Fig. 25.7 Fossilized stromatolite (above) and living stromatolite

More information

Introductory Microbiology Dr. Hala Al Daghistani

Introductory Microbiology Dr. Hala Al Daghistani Introductory Microbiology Dr. Hala Al Daghistani Why Study Microbes? Microbiology is the branch of biological sciences concerned with the study of the microbes. 1. Microbes and Man in Sickness and Health

More information

Chapter 4 Cell Structure and Function Sections 1-6

Chapter 4 Cell Structure and Function Sections 1-6 Chapter 4 Cell Structure and Function Sections 1-6 4.1 Food For Thought E. coli O157:H7A, strain of bacteria that causes severe illness or death, occasionally contaminates foods such as ground beef and

More information

Introduction to Microbiology. CLS 212: Medical Microbiology Miss Zeina Alkudmani

Introduction to Microbiology. CLS 212: Medical Microbiology Miss Zeina Alkudmani Introduction to Microbiology CLS 212: Medical Microbiology Miss Zeina Alkudmani Microbiology Micro- means very small (that needs a microscope to see). Microbiology is the study of very small living organisms.

More information

Chapter 3. Cell Structure & Function

Chapter 3. Cell Structure & Function Chapter 3 Cell Structure & Function Cytology Study of cells Cell basic unit of life Smallest structure capable of performing all the functions necessary for life Are extremely diverse Most microscopic

More information

Section Title: Archaebacteria vs. Eubacteria

Section Title: Archaebacteria vs. Eubacteria Unit: 3.1 Name: Section Title: Archaebacteria vs. Eubacteria Latin Root Word: Review of Old Information: None New Information: Bacteria Notes Basic Bacteria Facts Classification of Bacteria: Kingdom Archaebacteria

More information

http://koning.ecsu.ctstateu.edu/cell/cell.html 4A: Students will compare and contrast prokaryotic and eukaryotic cells Robert Hooke (1665) Used a compound microscope to look at thin slices of cork (oak

More information

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells.

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells. Class IX: Biology Chapter 5: The fundamental unit of life. Key learnings: Chapter Notes 1) In 1665, Robert Hooke first discovered and named the cells. 2) Cell is the structural and functional unit of all

More information

Eucaryotic Cell Structure and Function

Eucaryotic Cell Structure and Function Chapter 4 Part II Eucaryotic Cell Structure and Function The Nucleus and Cell Division! Constant feature in eukaryotic cells! Place where the cell s genetic information and its control center Nuclear Structure!

More information

A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells

A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells Cell Biology A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells or composed of cells. 1 The interior contents

More information

Part 2. The Basics of Biology:

Part 2. The Basics of Biology: Part 2 The Basics of Biology: An Engineer s Perspective Chapter 2 An Overview of Biological Basics 21 2.1 Cells 2.2 Cell Construction 2.3 Cell Nutrient 2.1 Are all cells the same? Cells Basic unit of living

More information

Cell Structure and Function. Handout Prok vs Euk Table Handout Structure-Function Table. Prokaryotic Microbes

Cell Structure and Function. Handout Prok vs Euk Table Handout Structure-Function Table. Prokaryotic Microbes PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 3 Cell Structure and Function CSLO 1: Describe distinctive characteristics and diverse

More information

CE 421/521 Environmental Biotechnology. The Cell: The common denominator of all living things Chapter 4 in Vaccari et al. Tim Ellis August 24, 2006

CE 421/521 Environmental Biotechnology. The Cell: The common denominator of all living things Chapter 4 in Vaccari et al. Tim Ellis August 24, 2006 CE 421/521 Environmental Biotechnology The Cell: The common denominator of all living things Chapter 4 in Vaccari et al. Tim Ellis August 24, 2006 Introduction Cells were discovered around the same time

More information

Cell Theory. Cell Structure. Chapter 4. Cell is basic unit of life. Cells discovered in 1665 by Robert Hooke

Cell Theory. Cell Structure. Chapter 4. Cell is basic unit of life. Cells discovered in 1665 by Robert Hooke Cell Structure Chapter 4 Cell is basic unit of life Cell Theory Cells discovered in 1665 by Robert Hooke Early cell studies conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden &

More information

Kharkov National Medical University. Head of Microbiology, Virology and Immunology Department Minukhin Valeriy Vladimirivich

Kharkov National Medical University. Head of Microbiology, Virology and Immunology Department Minukhin Valeriy Vladimirivich Kharkov National Medical University Head of Microbiology, Virology and Immunology Department Minukhin Valeriy Vladimirivich Tkachenko Victoria 1, 5, 11, 14, 19, 21, 30 Kovalenko Natalia 2, 12, 25, 29 Siritsa

More information

Announcements KEY CONCEPTS

Announcements KEY CONCEPTS What do these things have in common? Announcements Lab this week: bring textbook and photo atlas. Relevant reading BEFORE lab: Ch. 30 http://i.cnn.net/cnn/specials/2001/trade.center/images/anthrax.jpg

More information