Adding missing post-transcriptional regulations to a regulatory network

Size: px
Start display at page:

Download "Adding missing post-transcriptional regulations to a regulatory network"

Transcription

1 Adding missing post-transcriptional regulations to a regulatory network Carito Guziolowski, Sylvain Blachon, Anne Siegel Project Symbiose - IRISA-INRIA - Rennes Journée satellite JOBIM 2008

2 Approach Objective: confront regulatory knowledge with experimental data Tool: Qualitative constraint modeling, causal rules. Results: diagnosis of shift-equilibria Curation of network models Prediction of fluctuation of protein/gene expression Advantage: Large-scale networks (> 1000 products) Disadvantage: No system dynamics

3 Consistency check process Concentration changes add data Experiments validate with Prediction yes System of constraints Consistent? no Influence network model correction Diagnosis Bioquali

4 Input: Influence network Signed and oriented graph Nodes: mrna / TF active proteins, protein complexes? Edges: A > C : Increase of product A influences production of C + : activation : inhibition Bindings, phosphorylation, sequestration, release...?

5 Input: Influence network Signed and oriented graph Nodes: mrna / TF active proteins, protein complexes? Edges: A > C : Increase of product A influences production of C + : activation : inhibition Bindings, phosphorylation, sequestration, release...?

6 Input: Influence network Signed and oriented graph Nodes: mrna / TF active proteins, protein complexes? Edges: A > C : Increase of product A influences production of C + : activation : inhibition Bindings, phosphorylation, sequestration, release...?

7 Input: Qualitative experimental data Compare 2 stable conditions of a cell Map observations into {+, } Examples: Microarray outputs: Statistically significant up/down regulated genes Correlated vs anti-correlated changes with a phenotype Literature: Experimentally observed differentially expressend genes

8 Consistency: causal boolean rule The variation of one molecule in the network must be explained by an influence received from at least one of its predecessors in the network (Siegel et al Biosystems) General rule : transcriptional regulations A, B observed A, B observed. A, B, C observed. A B C A B C +? +? A B C C predicted C NOT predicted. unfixed INCONSISTENCY

9 Consistency: Validation and Lessons Validated on E. coli transcriptional network (Guziolowski et al JBPC) mrna variation active protein variation Problems Inconsistencies False positive predictions Unfixed values (too many) Solutions Missing post-transcriptional interactions Separate mrna from active proteins Refine general rule into specific boolean rules (avoid dynamic) All solutions include post-transcriptional reasoning

10 Consistency: Validation and Lessons Validated on E. coli transcriptional network (Guziolowski et al JBPC) mrna variation active protein variation Problems Inconsistencies False positive predictions Unfixed values (too many) Solutions Missing post-transcriptional interactions Separate mrna from active proteins Refine general rule into specific boolean rules (avoid dynamic) All solutions include post-transcriptional reasoning

11 Consistency: Validation and Lessons Validated on E. coli transcriptional network (Guziolowski et al JBPC) mrna variation active protein variation Problems Inconsistencies False positive predictions Unfixed values (too many) Solutions Missing post-transcriptional interactions Separate mrna from active proteins Refine general rule into specific boolean rules (avoid dynamic) All solutions include post-transcriptional reasoning

12 Consistency: Validation and Lessons Validated on E. coli transcriptional network (Guziolowski et al JBPC) mrna variation active protein variation Problems Inconsistencies False positive predictions Unfixed values (too many) Solutions Missing post-transcriptional interactions Separate mrna from active proteins Refine general rule into specific boolean rules (avoid dynamic) All solutions include post-transcriptional reasoning

13 Consistency: Validation and Lessons Validated on E. coli transcriptional network (Guziolowski et al JBPC) mrna variation active protein variation Problems Inconsistencies False positive predictions Unfixed values (too many) Solutions Missing post-transcriptional interactions Separate mrna from active proteins Refine general rule into specific boolean rules (avoid dynamic) All solutions include post-transcriptional reasoning

14 Applications Escherichia coli Goal: validate approach Transcriptional network large-scale: 1763 nodes, 4491 edges Hierarchical topology RegulonDB (Salgado et al. 2006) EWING network Goal: analyse consistency Signalling network middle-scale 130 nodes, 325 edges Complex topology Stoll et al. ICSB 2007

15 Applications: E. coli (1) Input data: Experimental condition: exponential-stationary growth shift. 45 literature curated gene variations (RegulonDB) Inconsistency Inconsistent data with network Proposed correction (Atlung et al. 1996) External signal Consistent after adding post-transcriptional effect 0,01% of network products changed as {+, }

16 Applications: E. coli (1) Input data: Experimental condition: exponential-stationary growth shift. 45 literature curated gene variations (RegulonDB) Inconsistency Inconsistent data with network Proposed correction (Atlung et al. 1996) External signal Consistent after adding post-transcriptional effect 0,01% of network products changed as {+, }

17 Applications: E. coli (1) Input data: Experimental condition: exponential-stationary growth shift. 45 literature curated gene variations (RegulonDB) Inconsistency Inconsistent data with network Proposed correction (Atlung et al. 1996) External signal Consistent after adding post-transcriptional effect 0,01% of network products changed as {+, }

18 Applications: E. coli (2) New rule added: protein-complex behaviour rule The weakest takes it all (Radulescu et al. FOSBE 2007) The concentration of a protein complex at the steady state follows the concentration of the limiting subunit A, B observed, C protein complex A, B observed, C protein complex. B limited A B C +? A B C + C NOT predicted C predicted Applied to the IHF protein complex in E. coli 30% products of the network changed as {+, }

19 Applications: E. coli (2) New rule added: protein-complex behaviour rule The weakest takes it all (Radulescu et al. FOSBE 2007) The concentration of a protein complex at the steady state follows the concentration of the limiting subunit A, B observed, C protein complex A, B observed, C protein complex. B limited A B C +? A B C + C NOT predicted C predicted Applied to the IHF protein complex in E. coli 30% products of the network changed as {+, }

20 Applications: E. coli (2) New rule added: protein-complex behaviour rule The weakest takes it all (Radulescu et al. FOSBE 2007) The concentration of a protein complex at the steady state follows the concentration of the limiting subunit A, B observed, C protein complex A, B observed, C protein complex. B limited A B C +? A B C + C NOT predicted C predicted Applied to the IHF protein complex in E. coli 30% products of the network changed as {+, }

21 Applications: E. coli (3) Validation of predictions Compared to microarray outputs (Faith et al PLoS Biology) 80% of the reported changes were in agreement And the rest? Expression Data ihfa = + ihfb = fic = +

22 Applications: E. coli (3) Validation of predictions Compared to microarray outputs (Faith et al PLoS Biology) 80% of the reported changes were in agreement And the rest? Expression Data ihfa = + ihfb = fic = + Prediction crp = ompa = rpod = rpos = + IHF =

23 Applications: E. coli (3) Validation of predictions Compared to microarray outputs (Faith et al PLoS Biology) 80% of the reported changes were in agreement And the rest? Expression Data ihfa = + ihfb = fic = + Prediction crp = ompa = rpod = rpos = + IHF = Rsd protein forms a complex with RpoD preventing it to bind RNA-polymerase (Jishage and Ishihama 1998) active RpoD predicted not rpod mrna

24 Applications: E. coli (3) Validation of predictions Compared to microarray outputs (Faith et al PLoS Biology) 80% of the reported changes were in agreement And the rest? Expression Data ihfa = + ihfb = fic = + Prediction crp = ompa = rpod = rpos = + IHF = Rsd protein forms a complex with RpoD preventing it to bind RNA-polymerase (Jishage and Ishihama 1998) active RpoD predicted not rpod mrna

25 Applications: E. coli (3) Validation of predictions Compared to microarray outputs (Faith et al PLoS Biology) 80% of the reported changes were in agreement And the rest? Expression Data ihfa = + ihfb = fic = + Prediction crp = ompa = rpod = rpos = + IHF = Rsd protein forms a complex with RpoD preventing it to bind RNA-polymerase (Jishage and Ishihama 1998) active RpoD predicted not rpod mrna

26 Ewing s network Include protein complex rule Many post-transcriptional interactions Dividing mrna from active protein (Baumuratova et al. SBMC 2008) Before After Consequences: Distinguish the type of predicted molecule New way of modeling phosphorylations

27 Ewing: Modelling phosphorylation The RB1 example active protein RB1 = hypophosphorylated RB1 Old model: New one:

28 Ewing: Modelling competitions (1) The RB1, (E2F.) example RB1 does not directly inhibit (E2F.) Both proteins and the cell cycle S may be active (+) at the same moment Old model: New one:

29 Ewing: Modelling competitions(2) Model: Active RB1 wins active (E2F.) in the cell cycle S control (DeGregori 2002 BBA) Known behaviour: (E2F.) RB1 E2F:RB1 cc S We need is to add a new qualitative boolean rule: f(e2f, RB1) > cell cycle S

30 Ewing: Modelling competitions(2) Model: Active RB1 wins active (E2F.) in the cell cycle S control (DeGregori 2002 BBA) Known behaviour: (E2F.) RB1 E2F:RB1 cc S We need is to add a new qualitative boolean rule: f(e2f, RB1) > cell cycle S

31 Conclusion Reasoning from a general rule allow us to retrieve missing post-transcriptional mechanisms (E. coli) Any given literature curated network model may be post-transcriptionally refined (Ewing): Division between mrna/active protein Treating phosphorylation interactions Inhibitor-activator competition models mapped into logical functions Direct results of including post-transcriptional: Better validation of experimental outputs Enlarging predictions to (mrna, active protein, protein complex) Boolean rules may be appropiate to describe equilibria-shifts (work in progress) New Bioquali: including logical rules

32 Acknowledgements: Rennes Anne Siegel Sylvain Blachon Michel Le Borgne Jeremy Gruel Ovidiu Radulescu Philippe Veber Tatiana Baumaratova SITCON project bioinfo-out.curie.fr/projects/sitcon/

33 Merci!

Qualitative modelling of post-transcriptional effects in the EWS/FLI1 signalling network

Qualitative modelling of post-transcriptional effects in the EWS/FLI1 signalling network Qualitative modelling of post-transcriptional effects in the EWS/FLI1 signalling network Carito Guziolowski Project Symbiose - IRISA - INRIA May 2008 How to analyse EWS/FLI1 network? 1 Construct a influence

More information

Curating a Large-scale Regulatory Network by Evaluating its Consistency with Expression Datasets

Curating a Large-scale Regulatory Network by Evaluating its Consistency with Expression Datasets Curating a Large-scale Regulatory Network by Evaluating its Consistency with Expression Datasets Carito Guziolowski 1, Jeremy Gruel 2, Ovidiu Radulescu 3, and Anne Siegel 4 1 Centre INRIA Rennes Bretagne

More information

Checking Consistency Between Expression Data and Large Scale Regulatory Networks: A Case Study

Checking Consistency Between Expression Data and Large Scale Regulatory Networks: A Case Study Checking Consistency Between Expression Data and Large Scale Regulatory Networks: A Case Study Carito Guziolowski, Philippe Veber, Michel Le Borgne, Ovidiu Radulescu, Anne Siegel Project Symbiose - IRISA

More information

Designing logical rules to model the response of biomolecular networks with complex interactions: an application to cancer modeling

Designing logical rules to model the response of biomolecular networks with complex interactions: an application to cancer modeling JOURNAL OF L A T E X 1 Designing logical rules to model the response of biomolecular networks with complex interactions: an application to cancer modeling Carito Guziolowski, Sylvain Blachon, Tatiana Baumuratova,

More information

Interaction graph, modules and large scale networks

Interaction graph, modules and large scale networks Interaction graph, modules and large scale networks A. Siegel, P. Veber, C. Guziolowski, M. Le Borgne CNRS - IRISA 24 juin 2007 Modules? A module exists by the question it is associated to A module is

More information

BMC Genomics. Open Access. Abstract

BMC Genomics. Open Access. Abstract BMC Genomics BioMed Central Software BioQuali Cytoscape plugin: analysing the global consistency of regulatory networks Carito Guziolowski* 1, Annabel Bourdé* 2, Francois Moreews 1,3 and Anne Siegel 1,4

More information

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus L3.1: Circuits: Introduction to Transcription Networks Cellular Design Principles Prof. Jenna Rickus In this lecture Cognitive problem of the Cell Introduce transcription networks Key processing network

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data 1 Gene Networks Definition: A gene network is a set of molecular components, such as genes and proteins, and interactions between

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Lecture 4: Transcription networks basic concepts

Lecture 4: Transcription networks basic concepts Lecture 4: Transcription networks basic concepts - Activators and repressors - Input functions; Logic input functions; Multidimensional input functions - Dynamics and response time 2.1 Introduction The

More information

New Computational Methods for Systems Biology

New Computational Methods for Systems Biology New Computational Methods for Systems Biology François Fages, Sylvain Soliman The French National Institute for Research in Computer Science and Control INRIA Paris-Rocquencourt Constraint Programming

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

Inferring gene regulatory networks

Inferring gene regulatory networks BENG 203: Genomics, Proteomics & Network Biology Inferring gene regulatory networks Trey Ideker Vineet Bafna Reading assignment Gardner, di Bernardo, Lorenz, and Collins. Inferring Genetic Networks and

More information

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Boolean models of gene regulatory networks Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Gene expression Gene expression is a process that takes gene info and creates

More information

Welcome to Class 21!

Welcome to Class 21! Welcome to Class 21! Introductory Biochemistry! Lecture 21: Outline and Objectives l Regulation of Gene Expression in Prokaryotes! l transcriptional regulation! l principles! l lac operon! l trp attenuation!

More information

Control of Gene Expression in Prokaryotes

Control of Gene Expression in Prokaryotes Why? Control of Expression in Prokaryotes How do prokaryotes use operons to control gene expression? Houses usually have a light source in every room, but it would be a waste of energy to leave every light

More information

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB)

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) Biology of the the noisy gene Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) day III: noisy bacteria - Regulation of noise (B. subtilis) - Intrinsic/Extrinsic

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Translation and Operons

Translation and Operons Translation and Operons You Should Be Able To 1. Describe the three stages translation. including the movement of trna molecules through the ribosome. 2. Compare and contrast the roles of three different

More information

Proteomics Systems Biology

Proteomics Systems Biology Dr. Sanjeeva Srivastava IIT Bombay Proteomics Systems Biology IIT Bombay 2 1 DNA Genomics RNA Transcriptomics Global Cellular Protein Proteomics Global Cellular Metabolite Metabolomics Global Cellular

More information

step, the activation signal for protein X is removed. When X * falls below K xy and K xz, the

step, the activation signal for protein X is removed. When X * falls below K xy and K xz, the CHAPTER 3: RESULTS 3.1 Dynamics of C2-FFL with AND/OR gate Figure 3.1 shows the dynamics for C2-FFL with AND gate. At the ON step, transcription factor X is activated by its inducer, causing the concentration

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

Gene Regulation and Expression

Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium that contains more than 4000 genes.

More information

12-5 Gene Regulation

12-5 Gene Regulation 12-5 Gene Regulation Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 1 of 26 12-5 Gene Regulation Gene Regulation: An Example Gene

More information

A genomic-scale search for regulatory binding sites in the integration host factor regulon of Escherichia coli K12

A genomic-scale search for regulatory binding sites in the integration host factor regulon of Escherichia coli K12 The integration host factor regulon of E. coli K12 genome 783 A genomic-scale search for regulatory binding sites in the integration host factor regulon of Escherichia coli K12 M. Trindade dos Santos and

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

Attractor computation using interconnected Boolean networks: testing growth rate models in E. Coli

Attractor computation using interconnected Boolean networks: testing growth rate models in E. Coli Attractor computation using interconnected Boolean networks: testing growth rate models in E. Coli Madalena Chaves, Alfonso Carta To cite this version: Madalena Chaves, Alfonso Carta. Attractor computation

More information

Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks

Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks Supplementary Information Characterizing the interplay between multiple levels of organization within bacterial sigma factor regulatory networks Yu Qiu 1, Harish Nagarajan 1, Mallory Embree 1, Wendy Shieu

More information

APGRU6L2. Control of Prokaryotic (Bacterial) Genes

APGRU6L2. Control of Prokaryotic (Bacterial) Genes APGRU6L2 Control of Prokaryotic (Bacterial) Genes 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP u if they have enough of a product, need to stop production

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Unit 3: Control and regulation Higher Biology

Unit 3: Control and regulation Higher Biology Unit 3: Control and regulation Higher Biology To study the roles that genes play in the control of growth and development of organisms To be able to Give some examples of features which are controlled

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Models of transcriptional regulation

Models of transcriptional regulation Models of transcriptional regulation We have already discussed four simple mechanisms of transcriptional regulation, nuclear exclusion nuclear concentration modification of bound activator redirection

More information

Basic modeling approaches for biological systems. Mahesh Bule

Basic modeling approaches for biological systems. Mahesh Bule Basic modeling approaches for biological systems Mahesh Bule The hierarchy of life from atoms to living organisms Modeling biological processes often requires accounting for action and feedback involving

More information

Emergence of gene regulatory networks under functional constraints

Emergence of gene regulatory networks under functional constraints under functional constraints Institute of Physics, Jagiellonian University, Kraków, Poland in collaboration with Zdzislaw Burda, Andre Krzywicki and Olivier C. Martin 30 November 2012, Leipzig, CompPhys12

More information

More Protein Synthesis and a Model for Protein Transcription Error Rates

More Protein Synthesis and a Model for Protein Transcription Error Rates More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Signal Patterns Example

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1 7.32/7.81J/8.591J: Systems Biology Fall 2013 Exam #1 Instructions 1) Please do not open exam until instructed to do so. 2) This exam is closed- book and closed- notes. 3) Please do all problems. 4) Use

More information

ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS. Abstract

ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS. Abstract ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS E. Fenyvesi 1, G. Palla 2 1 University of Debrecen, Department of Experimental Physics, 4032 Debrecen, Egyetem 1,

More information

Gene Autoregulation via Intronic micrornas and its Functions

Gene Autoregulation via Intronic micrornas and its Functions Gene Autoregulation via Intronic micrornas and its Functions Carla Bosia Department of Theoretical Physics University of Torino and INFN, Italy cbosia@to.infn.it Annecy-le-Vieux 20-22/10/2010 OUTLINE microrna

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Authors: Fan Zhang, Runsheng Liu and Jie Zheng Presented by: Fan Wu School of Computer Science and

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

CHAPTER : Prokaryotic Genetics

CHAPTER : Prokaryotic Genetics CHAPTER 13.3 13.5: Prokaryotic Genetics 1. Most bacteria are not pathogenic. Identify several important roles they play in the ecosystem and human culture. 2. How do variations arise in bacteria considering

More information

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 M. Elowitz and R. M. Murray Winter 2013 CALIFORNIA INSTITUTE OF TECHNOLOGY Biology and Biological Engineering (BBE) BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 1. (Shaping pulses; based

More information

Comparative Network Analysis

Comparative Network Analysis Comparative Network Analysis BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

More information

Matteo Figliuzzi

Matteo Figliuzzi Supervisors: Prof. Andrea De Martino, Prof. Enzo Marinari Dottorato in sica, XXVI ciclo (N,1) model (N,M) model 25-10-2013 Systems Biology & Networks (N,1) model (N,M) model Arabidopsis regulatory network

More information

Random Boolean Networks

Random Boolean Networks Random Boolean Networks Boolean network definition The first Boolean networks were proposed by Stuart A. Kauffman in 1969, as random models of genetic regulatory networks (Kauffman 1969, 1993). A Random

More information

SUPPLEMENTARY METHODS

SUPPLEMENTARY METHODS SUPPLEMENTARY METHODS M1: ALGORITHM TO RECONSTRUCT TRANSCRIPTIONAL NETWORKS M-2 Figure 1: Procedure to reconstruct transcriptional regulatory networks M-2 M2: PROCEDURE TO IDENTIFY ORTHOLOGOUS PROTEINSM-3

More information

Boolean Network Identification from Perturbation Time Series Data combining Dynamics Abstraction and Logic Programming

Boolean Network Identification from Perturbation Time Series Data combining Dynamics Abstraction and Logic Programming Boolean Network Identification from Perturbation Time Series Data combining Dynamics Abstraction and Logic Programming Max Ostrowski, Loïc Paulevé, Torsten Schaub, Anne Siegel, Carito Guziolowski To cite

More information

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter 9/10/2008 1 Learning Objectives Explain why a cell cycle was selected for during evolution

More information

Modeling and Systems Analysis of Gene Regulatory Networks

Modeling and Systems Analysis of Gene Regulatory Networks Modeling and Systems Analysis of Gene Regulatory Networks Mustafa Khammash Center for Control Dynamical-Systems and Computations University of California, Santa Barbara Outline Deterministic A case study:

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g.

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g. Gene Expression- Overview Differentiating cells Achieved through changes in gene expression All cells contain the same whole genome A typical differentiated cell only expresses ~50% of its total gene Overview

More information

Regulation of Gene Expression at the level of Transcription

Regulation of Gene Expression at the level of Transcription Regulation of Gene Expression at the level of Transcription (examples are mostly bacterial) Diarmaid Hughes ICM/Microbiology VT2009 Regulation of Gene Expression at the level of Transcription (examples

More information

Multistability in the lactose utilization network of E. coli. Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J.

Multistability in the lactose utilization network of E. coli. Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Multistability in the lactose utilization network of E. coli Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Ruby Abrams Motivation Understanding biological switches in the

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression Mechanisms of Gene Control Gene Control in Eukaryotes Master Genes Gene Control In Prokaryotes Epigenetics Gene Expression The overall process by which information flows from

More information

GENE REGULATION AND PROBLEMS OF DEVELOPMENT

GENE REGULATION AND PROBLEMS OF DEVELOPMENT GENE REGULATION AND PROBLEMS OF DEVELOPMENT By Surinder Kaur DIET Ropar Surinder_1998@ yahoo.in Mob No 9988530775 GENE REGULATION Gene is a segment of DNA that codes for a unit of function (polypeptide,

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes Chapter 16 Lecture Concepts Of Genetics Tenth Edition Regulation of Gene Expression in Prokaryotes Chapter Contents 16.1 Prokaryotes Regulate Gene Expression in Response to Environmental Conditions 16.2

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

Petri net models. tokens placed on places define the state of the Petri net

Petri net models. tokens placed on places define the state of the Petri net Petri nets Petri net models Named after Carl Adam Petri who, in the early sixties, proposed a graphical and mathematical formalism suitable for the modeling and analysis of concurrent, asynchronous distributed

More information

Gene regulation II Biochemistry 302. Bob Kelm February 28, 2005

Gene regulation II Biochemistry 302. Bob Kelm February 28, 2005 Gene regulation II Biochemistry 302 Bob Kelm February 28, 2005 Catabolic operons: Regulation by multiple signals targeting different TFs Catabolite repression: Activity of lac operon is restricted when

More information

Predicting causal effects in large-scale systems from observational data

Predicting causal effects in large-scale systems from observational data nature methods Predicting causal effects in large-scale systems from observational data Marloes H Maathuis 1, Diego Colombo 1, Markus Kalisch 1 & Peter Bühlmann 1,2 Supplementary figures and text: Supplementary

More information

Biomolecular Feedback Systems

Biomolecular Feedback Systems Biomolecular Feedback Systems Domitilla Del Vecchio MIT Richard M. Murray Caltech Version 1.0b, September 14, 2014 c 2014 by Princeton University Press All rights reserved. This is the electronic edition

More information

Hybrid Model of gene regulatory networks, the case of the lac-operon

Hybrid Model of gene regulatory networks, the case of the lac-operon Hybrid Model of gene regulatory networks, the case of the lac-operon Laurent Tournier and Etienne Farcot LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France Laurent.Tournier@imag.fr, Etienne.Farcot@imag.fr

More information

Regulation of gene expression. Premedical - Biology

Regulation of gene expression. Premedical - Biology Regulation of gene expression Premedical - Biology Regulation of gene expression in prokaryotic cell Operon units system of negative feedback positive and negative regulation in eukaryotic cell - at any

More information

Effective interaction graphs arising from resource limitations in gene networks

Effective interaction graphs arising from resource limitations in gene networks Effective interaction graphs arising from resource limitations in gene networks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22)

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Warm-Up Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Yesterday s Picture The first cell on Earth (approx. 3.5 billion years ago) was simple and prokaryotic,

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

Dynamic optimisation identifies optimal programs for pathway regulation in prokaryotes. - Supplementary Information -

Dynamic optimisation identifies optimal programs for pathway regulation in prokaryotes. - Supplementary Information - Dynamic optimisation identifies optimal programs for pathway regulation in prokaryotes - Supplementary Information - Martin Bartl a, Martin Kötzing a,b, Stefan Schuster c, Pu Li a, Christoph Kaleta b a

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

On the Use of the Hill Functions in Mathematical Models of Gene Regulatory Networks

On the Use of the Hill Functions in Mathematical Models of Gene Regulatory Networks Math. Model. Nat. Phenom. Vol. 3, No. 2, 2008, pp. 85-97 On the Use of the Hill Functions in Mathematical Models of Gene Regulatory Networks M. Santillán 1 Centro de Investigación y de Estudios Avanzados

More information

1. In most cases, genes code for and it is that

1. In most cases, genes code for and it is that Name Chapter 10 Reading Guide From DNA to Protein: Gene Expression Concept 10.1 Genetics Shows That Genes Code for Proteins 1. In most cases, genes code for and it is that determine. 2. Describe what Garrod

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

CELL CYCLE AND DIFFERENTIATION

CELL CYCLE AND DIFFERENTIATION CELL CYCLE AND DIFFERENTIATION Dewajani Purnomosari Department of Histology and Cell Biology Faculty of Medicine Universitas Gadjah Mada d.purnomosari@ugm.ac.id WHAT IS CELL CYCLE? 09/12/14 d.purnomosari@ugm.ac.id

More information

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon REGULATION OF GENE EXPRESSION Bacterial Genetics Lac and Trp Operon Levels of Metabolic Control The amount of cellular products can be controlled by regulating: Enzyme activity: alters protein function

More information

Chapter 12. Genes: Expression and Regulation

Chapter 12. Genes: Expression and Regulation Chapter 12 Genes: Expression and Regulation 1 DNA Transcription or RNA Synthesis produces three types of RNA trna carries amino acids during protein synthesis rrna component of ribosomes mrna directs protein

More information

UNIVERSITY OF YORK. BA, BSc, and MSc Degree Examinations Department : BIOLOGY. Title of Exam: Molecular microbiology

UNIVERSITY OF YORK. BA, BSc, and MSc Degree Examinations Department : BIOLOGY. Title of Exam: Molecular microbiology Examination Candidate Number: Desk Number: UNIVERSITY OF YORK BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Molecular microbiology Time Allowed: 1 hour 30 minutes Marking

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types

More information

Multistability in the lactose utilization network of Escherichia coli

Multistability in the lactose utilization network of Escherichia coli Multistability in the lactose utilization network of Escherichia coli Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Ruby Abrams Agenda Motivation Intro to multistability Purpose

More information

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005 Gene regulation I Biochemistry 302 Bob Kelm February 25, 2005 Principles of gene regulation (cellular versus molecular level) Extracellular signals Chemical (e.g. hormones, growth factors) Environmental

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Chapter 17. From Gene to Protein. Biology Kevin Dees

Chapter 17. From Gene to Protein. Biology Kevin Dees Chapter 17 From Gene to Protein DNA The information molecule Sequences of bases is a code DNA organized in to chromosomes Chromosomes are organized into genes What do the genes actually say??? Reflecting

More information