Agent-based models of animal behaviour From micro to macro and back.

Size: px
Start display at page:

Download "Agent-based models of animal behaviour From micro to macro and back."

Transcription

1 Agent-based models of animal behaviour From micro to macro and back. Ellen Evers, Behavioural Biology, University Utrecht.

2 Outline... - genome cell organism group population ecosystem -... Organization, structure, patterns (spatial, temporal, social,...) Behaviour of animal groups (coordination) Self-organization (complexity arises from simple rules) Tool to understand and study: Agent-based Models (ABM)

3 Flocking Examples real: Starlings, ants (movie), fish

4 Collective motion Bird flocks (starlings), insect swarms (flies), mammal herds (wildebeest), fish schools (herring)

5 Fish schooling School level: Locomotion: Simultaneous change of direction Defense: Flash expansion, fountain effect, aggregation No disorganized crowd, but coordinated behaviour between members of the group! HOW to get structure, patterns, organization in a system?

6 Organization Leader: Well informed (top-down) Provides everyone with instructions No! Fish change position within school Blueprint, Recipe, Template: Plan or procedure Fixed, not very flexible No! Unlikely in big groups

7 Fish schooling Individual level: Vision (location of neighbours) Lateral line (orientation of neighbours) Coordination only with nearest neighbours, whole swarm locomotion through: SELF-ORGANIZATION!

8 Self-Organization... process in which a pattern at the global level of a system emerges solely from numerous interactions among the lower-level components of the system. (Camezine et al, 2001) No external, centralized control (no leader) Local information, simple rules (no global plan, overview) ORGANIZATION! (bottom-up) FISH SCHOOLING? COLLECTIVE MOTION?

9 Fish schooling Self-Organization Hypothesis: Few simple rules in response to local information from neighbouring fish generate schooling patterns without directly coding for them. (Huth & Wissel, 1992) Schooling rules: 1. Cohesion 2. Separation 3. Alignment

10 Fish schooling Self-Organization Hypothesis: Few simple rules in response to local information from neighbouring fish generate schooling patterns without directly coding for them. (Huth & Wissel, 1992) To test hypothesis and understand mechanism: Models?! Agent-Based Models (ABM)

11 Models What is a model?

12 Models

13 Models

14 Models

15 Models

16 Models Definition: Representation of a system of entities, phenomena, or processes to simplify, visualize, simulate, manipulate and gain intuition about the entity, phenomenon or process being represented. Simplified Realistic Understandable Predictive Explaining Precise Simplification versus Realism

17 Collective motion Model rules: 1. Cohesion 2. Separation 3. Alignment Craig Reynolds 1987: bird flocking (BOIDS) Huth & Wissel 1992: fish schooling Hooper, 1999: predator avoidance (cool school)

18 Collective motion Conclusions from the model: Simple rules can account for complex pattern No leader, no external cue nessecary Schools could be self-organizing No proof of real mechanism Proven: possible explanation works

19 2nd part

20 Scientific models Spatial CA nonlinear dynamical ordinary AGENT-BASED differential equations MODELS deterministic stochastic (ABM) IBM monte carlo simulation IOM partial differential equations agent-based models complex systems ORDINARY static probabalistic ABM (ODE) DIFFERENTIAL EQUATIONS difference equation ODE PDE cellular automata linear

21 Predator-prey system + sheep - + wolves - a) data: b) model: sheep sheep wolves wolves

22 - + sheep wolves - +

23 - + sheep wolves - + ODE: ABM: Population densities Discrete indiviuals sheep wolves

24 - + sheep wolves - + ODE: ABM: Equations Rules (if-then, loop, scheduling) ds/dt dw/dt = bs psw = psw - dw Sheep = + birth*sheep pred.*sheep*wolves Wolves = + pred.*sheep*wolves death*wolves SHEEP: If I meet wolve: die! With chance = birthrate: Reproduce! WOLVES: If I meet sheep: energy +1 If energy (from sheep) = 0: die! With chance = birthrate: Reproduce!

25 - + sheep wolves - + ODE: ABM: Deterministic Stochasticity (pseudo-random numbers) sheep wolves... to represent variability of processes that cannot or need not to be modelled deterministically After Grimm 2005

26 - + sheep wolves - + ODE: ABM: Non-spatial Homogenity Well mixed Explicitly spatial Heterogenity Local interactions (bottom-up, adaptive) Patterns

27 - + sheep wolves - + ODE: ABM: Homogeneous population Individual variation (age, colour, knowledge, spatial position, size, sex,...)

28 Agent-based Models = Agent-based Models (ABM) = Individual-based Models (IBM) = Individual-oriented Models (IOM)... describe behaviour, variability and interactions of autonomous individuals. After Grimm 2005

29 Collective foraging Ants: Trail formation, transporter recruitment, efficient path finding, PHEROMONES!

30 Collective foraging Collective decision of colony: Selection of richest of two foods Selection of shortest path Hyp 1: directed by leader (queen?) Hyp 2: Self-organization Global pattern emerges from simple rules and local information

31 Collective foraging Foraging rules: Execute random walk or follow strongest pheromone trail Food found: walk home & leave pheromone trace Resnick, M. (1994)

32 Collective foraging Self-organization: Simple rules No global knowledge, local information Self-reinforcing phermone trails Feedback via environment Emergence of accurate (not perfect!) collective decision: efficient path selection.

33 Self-organization Mechanism: Information from neighbours Information from local environment (stigmergy) Feedback from emerging structure (control, signal)

34 Emergent properties... arise out of interactions between lower-level entities, yet are novel and irreducible to them. (Stanford Encyclopedia of Philosophy) Emergent property: Order, organization, pattern on group level Entities: Individuals without global knowledge, plan or intent

35 Emergence Self-organization Complex Systems physical and chemical systems (liquid) biological systems (cell, brain) social systems and organizations (stock market, social structures) Complex system patterns often emerge through self-organization.

36 Complex Systems Multiple levels of organization! Individual < subgroup < population Interconnected, interdependent Higher level affects lower one Higher level has behaviour on its own Emergent property: Substrate to evolution

37 3rd part

38 ABM in science? Criticism: Too complex to be understood Impossible to include everything in a model Too many parameters unknown Hard to test Parameters can tweak everything Gaming After Grimm 2005

39 Modelling cycle After Grimm 2005

40 Modelling cycle Formulate the question: Filter for essential processes Not model per se, but for specific purpose After Grimm 2005

41 Modelling cycle Assemble hypotheses: Starting point: conceptual model (drawing) Based on empirical data, experience, theory, gut feeling What do we expect to see? PATTERNS (at multiple levels) After Grimm 2005

42 Modelling cycle Chose model structure: Which entities? Which processes? How to model/represent processes? After Grimm 2005

43 Modelling cycle Implement model: Write program code (if-then rules, loops) After Grimm 2005

44 Modelling cycle Analyze the model I: Controlled simulation experiments (visual debugging, process understanding, extreme tests) Design and analysis just as with real experiments (statistics on program generated data) After Grimm 2005

45 Modelling cycle Analyze the model II: Much freedom and control in experimental setup (upscale numbers and time, hypothetical thought experiments) Can the model reproduce PATTERNS? (at multiple levels!!!) After Grimm 2005

46 Modelling cycle Analyze the model IIIa: Change parameter/rule: Group Group Effect on system behaviour? Same parameter setting: (knockout, sufficient & neccessary) Individual Individual Group Individual Group Individual Changing parameter setting: Group Individual Group Individual Group Individual Group Individual After Grimm 2005

47 Modelling cycle Analyze the model IIIb: Multiple runs, same parameter set (account for stochasticity) Same parameter setting: Group Group Group Group Individual Individual Individual Individual After Grimm 2005

48 Modelling cycle Communicate the model: Materials & Methods Reproducability of results After Grimm 2005

49 ABM a scientific method Model validation: New hypotheses from the model Not built into the model beforehand Can be tested in real system After Grimm 2005

50 Primate social cognition Social structure: dominance hierachy Spatial structure: centrality of dominants

51 Primate social cognition DOMWORLD (Hemelrijk 1999, Hogeweg1988) Simple rules > complex behaviour 1. Grouping rules: Max view Near view Personal space

52 Primate social cognition Dom-value: rank (initially all the same) 2. Interaction rules: Prediction (mental simulation) Dominance contest: Win chance ~ rank Loser flees, winner chases Dom-value update according to expected outcome (winner-loser effect)

53 Primate social cognition Dominance hierarchy (differentiation from initially equal individuals) (individual variation!!!) Emergence of spatial structure (centrality of dominant individuals as unintentional side-effect) Hemelrijk, 1998 Stabilizing feedback from spatial structure on social structure: neighbors of similar rank no unexpected outcomes no big updates of dom-value

54 Primate social cognition INSIGHTS: No centripetal instinct necessary for spatial structure From side effect to evolutionary substrate Emerging spatial structure feeds back on social structure ABM internship:

55 Evolution in silico Evolution ingredients: Mutations: Inheritence of traits (to offspring) Chance of changing traits Selection: Define fitness measure Explicit selection (once in a while: take out 100 best and reproduce) Reproduction/death (dependent on fitness measure)

56 Conclusions Biological systems: Organisation / patterns Several possibilities: Central, fixed control (leader, blueprint,...) Self-organisation Interactions between individuals Emergence of pattern on group level

57 Conclusions ABM: useful tool to study / understand Multiple connected levels (individual, group) Behavioural rules Explicit spatiality: Locality Heterogenous space Individual variation (hierarchy, evolution) Heraklit: You never enter the same river twice.

58 Conclusions Models are useful: Development: Explicit formulation of processes Simplification: Identify essential (sufficient & nessecary) processes Scientific research tool: Controlled experiments (knockout, change parameter/rule) Series of runs (variation) Statistics on generated data Material & methods Reproduced results: validation Group Group Group Individual Individual Individual

59 Conclusions Models advantages: Freedom in experimental setup Little time, money, animals, facilities needed No ethical objections Generate new hypotheses Reveal general and unexpected properties of a system Help understanding a system Change way of thinking about a system Proust: The real voyage of discovery lies not in finding new landscapes, but in having new eyes.

60 Sources Modelling, general J. J. Bryson, Y. Ando, and H. Lehmann, Agent-based modelling as scientific method: a case study analysing primate social behaviour, Philosophical Transactions of the Royal Society B: Biological Sciences 362, no (2007): D. L. DeAngelis and W. M. Mooij, Individual-based modeling of ecological and evolutionary processes. Annual Reviews in Ecology, Evolution and Systematics 36: V. Grimm, Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future?, Ecological Modelling 115, no. 2 (1999): V. Grimm and S. F. Railsback, Individual-based Modeling and Ecology (Princeton University Press, 2005). V. Grimm et al., Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology, Science 310, no (November 11, 2005): J. W. Haefner, Modeling Biological Systems: Principles and Applications, 2nd ed. (Springer, 2005). C. K. Hemelrijk, Understanding Social Behaviour with the Help of Complexity Science (Invited Article), Ethology 108, no. 8 (2002): P. Hogeweg, MIRROR beyond MIRROR, Puddles of LIFE, Artificial Life (1989): T. J. Prescott, J. J. Bryson, and A. K. Seth, Introduction. Modelling natural action selection, Philosophical Transactions of the Royal Society B: Biological Sciences 362, no (2007): Complexity, Emergence and Self-organization, general Biological examples of emergence and self-organization J. Buck, Synchronous Rhythmic Flashing of Fireflies. II., The Quarterly Review of Biology 63, no. 3 (1988): 265. S. Camazine et al., Self-Organization in Biological Systems: (Princeton University Press, 2003).

61 Sources Agent-based models of animal behaviour R. Axelrod, The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration (Princeton University Press, 1997). R. Axelrod and W. D. Hamilton, The evolution of cooperation, Science 211, no (1981): H. de Vries and J. C. Biesmeijer, Modelling collective foraging by means of individual behaviour rules in honey-bees, Behavioral Ecology and Sociobiology 44, no. 2 (1998): H. de Vries and J. C. Biesmeijer, Self-organization in collective honeybee foraging: emergence of symmetry breaking, cross inhibition and equal harvest-rate distribution, Behavioral Ecology and Sociobiology 51, no. 6 (2002): C. K. Hemelrijk, Towards the integration of social dominance and spatial structure, Animal Behaviour 59, no. 5 (May 2000): , doi: /anbe C. K. Hemelrijk, Social phenomena emerging by self-organisation in a competitive, virtual world ( DomWorld ), 1st International Conference of the European Society for Social Simulation (ESSA 2003), Groningen, September (2003). P. Hogeweg, MIRROR beyond MIRROR, Puddles of LIFE, Artificial Life (1989): P. Hogeweg and B. Hesper, The ontogeny of the interaction structure in bumble bee colonies: A MIRROR model, Behavioral Ecology and Sociobiology 12, no. 4 (1983): C. Honk and P. Hogeweg, The ontogeny of the social structure in a captive Bombus terrestris colony, Behavioral Ecology and Sociobiology 9, no. 2 (1981): H. Lehmann, J. Wang, and J. J. Bryson, Tolerance and Sexual Attraction in Despotic Societies: A Replication and Analysis of Hemelrijk (2002), Modelling Natural Action Selecton: Proceedings of an International Workshop, Edinburgh. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB) (2005). S. C. Pratt et al., An agent-based model of collective nest choice by the ant Temnothorax albipennis, Animal Behaviour 70, no. 5 (2005): M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds (MIT Press, 1994). C. W. Reynolds, Flocks, Herds, and Schools: A Distributed Behavioral Model, Computer Graphics 21, no. 4 (1987): W. I. Sellers, R. A. Hill, and B. S. Logan, An agent-based model of group decision making in baboons, Philosophical Transactions of the Royal Society B: Biological Sciences 362, no (2007): D. J. van der Post and P. Hogeweg, Resource distributions and diet development by trial-and-error learning, Behavioral Ecology and Sociobiology 61, no. 1 (2006): D. J. van der Post and P. Hogeweg, Diet traditions and cumulative cultural processes as side-effects of grouping, Animal Behaviour 75, no. 1 (2008):

depending only on local relations. All cells use the same updating rule, Time advances in discrete steps. All cells update synchronously.

depending only on local relations. All cells use the same updating rule, Time advances in discrete steps. All cells update synchronously. Swarm Intelligence Systems Cellular Automata Christian Jacob jacob@cpsc.ucalgary.ca Global Effects from Local Rules Department of Computer Science University of Calgary Cellular Automata One-dimensional

More information

Swarm Intelligence Systems

Swarm Intelligence Systems Swarm Intelligence Systems Christian Jacob jacob@cpsc.ucalgary.ca Department of Computer Science University of Calgary Cellular Automata Global Effects from Local Rules Cellular Automata The CA space is

More information

Lecture 2: Individual-based Modelling

Lecture 2: Individual-based Modelling Lecture 2: Individual-based Modelling Part I Steve Railsback Humboldt State University Department of Mathematics & Lang, Railsback & Associates Arcata, California USA www.langrailsback.com 1 Outline 1.

More information

Self-Organization in Social Insects

Self-Organization in Social Insects Self-Organization in Social Insects Kazuo Uyehara 5/04/2008 Self-organization is a process in which complex patterns or behaviors are produced without direction from an outside or supervising source. This

More information

Self-Organization Hypothesis. Lecture 18

Self-Organization Hypothesis. Lecture 18 Self-Organization Hypothesis Lecture 18 Simple attraction & repulsion rules generate schooling behavior positive feedback: brings individuals together negative feedback: but not too close Rules rely on

More information

Mathematical modeling of complex systems Part 1. Overview

Mathematical modeling of complex systems Part 1. Overview 1 Mathematical modeling of complex systems Part 1. Overview P. Degond Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

More information

Situation. The XPS project. PSO publication pattern. Problem. Aims. Areas

Situation. The XPS project. PSO publication pattern. Problem. Aims. Areas Situation The XPS project we are looking at a paradigm in its youth, full of potential and fertile with new ideas and new perspectives Researchers in many countries are experimenting with particle swarms

More information

Introduction to Swarm Robotics

Introduction to Swarm Robotics COMP 4766 Introduction to Autonomous Robotics Introduction to Swarm Robotics By Andrew Vardy April 1, 2014 Outline 1 Initial Definitions 2 Examples of SI in Biology 3 Self-Organization 4 Stigmergy 5 Swarm

More information

Outline. 1 Initial Definitions. 2 Examples of SI in Biology. 3 Self-Organization. 4 Stigmergy. 5 Swarm Robotics

Outline. 1 Initial Definitions. 2 Examples of SI in Biology. 3 Self-Organization. 4 Stigmergy. 5 Swarm Robotics Outline COMP 4766 Introduction to Autonomous Robotics 1 Initial Definitions Introduction to Swarm Robotics 2 Examples of SI in Biology 3 Self-Organization By Andrew Vardy 4 Stigmergy April 1, 2014 5 Swarm

More information

The Evolution of Animal Grouping and Collective Motion

The Evolution of Animal Grouping and Collective Motion The Evolution of Animal Grouping and Collective Motion Vishwesha Guttal and Iain D. Couzin Department of Ecology and Evolutionary Biology, Princeton University Department of Theoretical Physics, Tata Institute

More information

Towards Synthesizing Artificial Neural Networks that Exhibit Cooperative Intelligent Behavior: Some Open Issues in Artificial Life Michael G.

Towards Synthesizing Artificial Neural Networks that Exhibit Cooperative Intelligent Behavior: Some Open Issues in Artificial Life Michael G. Towards Synthesizing Artificial Neural Networks that Exhibit Cooperative Intelligent Behavior: Some Open Issues in Artificial Life Michael G. Dyer Computer Science Department, UCLA Overview Introduction

More information

Can You do Maths in a Crowd? Chris Budd

Can You do Maths in a Crowd? Chris Budd Can You do Maths in a Crowd? Chris Budd Human beings are social animals We usually have to make decisions in the context of interactions with many other individuals Examples Crowds in a sports stadium

More information

Computational Intelligence Methods

Computational Intelligence Methods Computational Intelligence Methods Ant Colony Optimization, Partical Swarm Optimization Pavel Kordík, Martin Šlapák Katedra teoretické informatiky FIT České vysoké učení technické v Praze MI-MVI, ZS 2011/12,

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

Introduction to Scientific Modeling Stephanie Forrest Dept. of Computer Science Univ. of New Mexico Albuquerque, NM

Introduction to Scientific Modeling Stephanie Forrest Dept. of Computer Science Univ. of New Mexico Albuquerque, NM Introduction to Scientific Modeling Stephanie Forrest Dept. of Computer Science Univ. of New Mexico Albuquerque, NM August, 20112 http://cs.unm.edu/~forrest forrest@cs.unm.edu " Introduction" The three

More information

Regents Review Assignment #8-A08 Living Environment: Comet Part A Questions

Regents Review Assignment #8-A08 Living Environment: Comet Part A Questions Part A Questions 1. A student notices that fruit flies with the curlywing trait develop straight wings if kept at a temperature of 16 C, but develop curly wings if kept at 25 C. The best explanation for

More information

Chapter 44. Table of Contents. Section 1 Development of Behavior. Section 2 Types of Animal Behavior. Animal Behavior

Chapter 44. Table of Contents. Section 1 Development of Behavior. Section 2 Types of Animal Behavior. Animal Behavior Animal Behavior Table of Contents Section 1 Development of Behavior Section 2 Types of Animal Behavior Section 1 Development of Behavior Objectives Identify four questions asked by biologists who study

More information

Composable Group Behaviors

Composable Group Behaviors Composable Group Behaviors Perpetual Amoah Undergraduate S. Researcher Sam Rodriguez Graduate Student Mentor Jyh-Ming Lien Graduate Student Mentor John Maffei Graduate Student Mentor Nancy M. Amato Faculty

More information

NGSS Example Bundles. Page 1 of 23

NGSS Example Bundles. Page 1 of 23 High School Conceptual Progressions Model III Bundle 2 Evolution of Life This is the second bundle of the High School Conceptual Progressions Model Course III. Each bundle has connections to the other

More information

INFORMATION CRITERIA AND APPROXIMATE BAYESIAN COMPUTING FOR AGENT-BASED MODELLING IN ECOLOGY

INFORMATION CRITERIA AND APPROXIMATE BAYESIAN COMPUTING FOR AGENT-BASED MODELLING IN ECOLOGY INFORMATION CRITERIA AND APPROXIMATE BAYESIAN COMPUTING FOR AGENT-BASED MODELLING IN ECOLOGY New tools to infer on Individual-level processes Cyril Piou Biomath 2015 June 17 Plan Agent Based Modelling

More information

NGSS Example Bundles. 1 of 15

NGSS Example Bundles. 1 of 15 Middle School Topics Model Course III Bundle 3 Mechanisms of Diversity This is the third bundle of the Middle School Topics Model Course III. Each bundle has connections to the other bundles in the course,

More information

Emergent Teamwork. Craig Reynolds. Cognitive Animation Workshop June 4-5, 2008 Yosemite

Emergent Teamwork. Craig Reynolds. Cognitive Animation Workshop June 4-5, 2008 Yosemite Emergent Teamwork Craig Reynolds Cognitive Animation Workshop June 4-5, 2008 Yosemite 1 This talk Whirlwind tour of collective behavior in nature Some earlier simulation models Recent work on agent-based

More information

Swarm-bots. Marco Dorigo FNRS Research Director IRIDIA Université Libre de Bruxelles

Swarm-bots. Marco Dorigo FNRS Research Director IRIDIA Université Libre de Bruxelles Swarm-bots Marco Dorigo FNRS Research Director IRIDIA Université Libre de Bruxelles Swarm-bots The swarm-bot is an experiment in swarm robotics Swarm robotics is the application of swarm intelligence principles

More information

Complex Systems Theory and Evolution

Complex Systems Theory and Evolution Complex Systems Theory and Evolution Melanie Mitchell and Mark Newman Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 In Encyclopedia of Evolution (M. Pagel, editor), New York: Oxford University

More information

VI" Autonomous Agents" &" Self-Organization! Part A" Nest Building! Autonomous Agent! Nest Building by Termites" (Natural and Artificial)!

VI Autonomous Agents & Self-Organization! Part A Nest Building! Autonomous Agent! Nest Building by Termites (Natural and Artificial)! VI" Autonomous Agents" &" Self-Organization! Part A" Nest Building! 1! 2! Autonomous Agent!! a unit that interacts with its environment " (which probably consists of other agents)!! but acts independently

More information

A Summary of Economic Methodology

A Summary of Economic Methodology A Summary of Economic Methodology I. The Methodology of Theoretical Economics All economic analysis begins with theory, based in part on intuitive insights that naturally spring from certain stylized facts,

More information

Environmental signals

Environmental signals Environmental signals Why are environmental signals rare? Pp 632-635 Resource recruitment signals Costs and benefits Vertebrates and social insects Predator detection signals Types Patterns of usage Intertrophic

More information

Available online at ScienceDirect. Procedia Computer Science 20 (2013 ) 90 95

Available online at  ScienceDirect. Procedia Computer Science 20 (2013 ) 90 95 Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 20 (2013 ) 90 95 Complex Adaptive Systems, Publication 3 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri

More information

MS-LS3-1 Heredity: Inheritance and Variation of Traits

MS-LS3-1 Heredity: Inheritance and Variation of Traits MS-LS3-1 Heredity: Inheritance and Variation of Traits MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result

More information

Cooperative Control and Mobile Sensor Networks

Cooperative Control and Mobile Sensor Networks Cooperative Control and Mobile Sensor Networks Cooperative Control, Part I, A-C Naomi Ehrich Leonard Mechanical and Aerospace Engineering Princeton University and Electrical Systems and Automation University

More information

Chapter 14 The Evolution of Social Behavior (1 st lecture)

Chapter 14 The Evolution of Social Behavior (1 st lecture) Chapter 14 The Evolution of Social Behavior (1 st lecture) Society A group of individuals of the same species that is organized in a cooperative manner, extending beyond sexual and parental care Colonial

More information

Contact Information CS 420/527. Biologically-Inspired Computation. CS 420 vs. CS 527. Grading. Prerequisites. Textbook 1/11/12

Contact Information CS 420/527. Biologically-Inspired Computation. CS 420 vs. CS 527. Grading. Prerequisites. Textbook 1/11/12 CS 420/527 Biologically-Inspired Computation Bruce MacLennan web.eecs.utk.edu/~mclennan/classes/420 Contact Information Instructor: Bruce MacLennan maclennan@eecs.utk.edu Min Kao 425 Office Hours: 3:30

More information

Swarm-bots and Swarmanoid: Two experiments in embodied swarm intelligence

Swarm-bots and Swarmanoid: Two experiments in embodied swarm intelligence Swarm-bots and Swarmanoid: Two experiments in embodied swarm intelligence Marco Dorigo FNRS Research Director IRIDIA Université Libre de Bruxelles IAT - 17.9.2009 - Milano, Italy What is swarm intelligence?

More information

BIOLOGY 111. CHAPTER 1: An Introduction to the Science of Life

BIOLOGY 111. CHAPTER 1: An Introduction to the Science of Life BIOLOGY 111 CHAPTER 1: An Introduction to the Science of Life An Introduction to the Science of Life: Chapter Learning Outcomes 1.1) Describe the properties of life common to all living things. (Module

More information

The Effects of Varying Parameter Values and Heterogeneity in an Individual-Based Model of Predator-Prey Interaction

The Effects of Varying Parameter Values and Heterogeneity in an Individual-Based Model of Predator-Prey Interaction The Effects of Varying Parameter Values and Heterogeneity in an Individual-Based Model of Predator- Interaction William J. Chivers ab and Ric D. Herbert a a Faculty of Science and Information Technology,

More information

Contact Information. CS 420/594 (Advanced Topics in Machine Intelligence) Biologically-Inspired Computation. Grading. CS 420 vs. CS 594.

Contact Information. CS 420/594 (Advanced Topics in Machine Intelligence) Biologically-Inspired Computation. Grading. CS 420 vs. CS 594. CS 420/594 (Advanced Topics in Machine Intelligence) Biologically-Inspired Computation Bruce MacLennan http://www.cs.utk.edu/~mclennan/classes/420 Contact Information Instructor: Bruce MacLennan maclennan@eecs.utk.edu

More information

Short Course: Multiagent Systems. Multiagent Systems. Lecture 1: Basics Agents Environments. Reinforcement Learning. This course is about:

Short Course: Multiagent Systems. Multiagent Systems. Lecture 1: Basics Agents Environments. Reinforcement Learning. This course is about: Short Course: Multiagent Systems Lecture 1: Basics Agents Environments Reinforcement Learning Multiagent Systems This course is about: Agents: Sensing, reasoning, acting Multiagent Systems: Distributed

More information

STAAR Biology Assessment

STAAR Biology Assessment STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules as building blocks of cells, and that cells are the basic unit of

More information

MS-LS4-1 Biological Evolution: Unity and Diversity

MS-LS4-1 Biological Evolution: Unity and Diversity MS-LS4-1 Biological Evolution: Unity and Diversity MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout

More information

Nonlinear Dynamics between Micromotives and Macrobehavior

Nonlinear Dynamics between Micromotives and Macrobehavior Nonlinear Dynamics between Micromotives and Macrobehavior Saori Iwanaga & kira Namatame Dept. of Computer Science, National Defense cademy, Yokosuka, 239-8686, JPN, E-mail: {g38042, nama}@nda.ac.jp Tel:

More information

Living in groups 1. What are three costs and three benefits of living in groups?

Living in groups 1. What are three costs and three benefits of living in groups? Study questions Living in groups 1. What are three costs and three benefits of living in groups? 2. What is the dilution effect? What is a key assumption of the dilution effect hypothesis? What is a biological

More information

Chapter 1 Introduction

Chapter 1 Introduction 1 Chapter 1 Introduction Figure 1.1: Westlake Plaza A warm sunny day on a downtown street and plaza, pedestrians pass on the sidewalks, people sit on benches and steps, enjoying a cup of coffee, shoppers

More information

Synchronization and Swarming: Clocks and Flocks

Synchronization and Swarming: Clocks and Flocks Synchronization and Swarming: Clocks and Flocks Andrew J. Bernoff, Harvey Mudd College Thanks to Chad Topaz, Macalester College Andrew J. Bernoff Harvey Mudd College ajb@hmc.edu Chad M. Topaz Macalester

More information

Introduction. charlotte k. hemelrijk University of Groningen

Introduction. charlotte k. hemelrijk University of Groningen Introduction charlotte k. hemelrijk University of Groningen This book contains a collection of studies of social behaviour that are mainly biologically oriented and are carried out from the perspective

More information

Evolutionary Games and Computer Simulations

Evolutionary Games and Computer Simulations Evolutionary Games and Computer Simulations Bernardo A. Huberman and Natalie S. Glance Dynamics of Computation Group Xerox Palo Alto Research Center Palo Alto, CA 94304 Abstract The prisoner s dilemma

More information

Biology Assessment. Eligible Texas Essential Knowledge and Skills

Biology Assessment. Eligible Texas Essential Knowledge and Skills Biology Assessment Eligible Texas Essential Knowledge and Skills STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules

More information

Self-Organization and Collective Decision Making in Animal and Human Societies

Self-Organization and Collective Decision Making in Animal and Human Societies Self-Organization and Collective Decision Making... Frank Schweitzer SYSS Dresden 31 March 26 1 / 23 Self-Organization and Collective Decision Making in Animal and Human Societies Frank Schweitzer fschweitzer@ethz.ch

More information

Recent Advances in Consensus of Multi-Agent Systems

Recent Advances in Consensus of Multi-Agent Systems Int. Workshop on Complex Eng. Systems and Design, Hong Kong, 22 May 2009 Recent Advances in Consensus of Multi-Agent Systems Jinhu Lü Academy of Mathematics and Systems Science Chinese Academy of Sciences

More information

Course Name: Biology Level: A Points: 5 Teacher Name: Claire E. Boudreau

Course Name: Biology Level: A Points: 5 Teacher Name: Claire E. Boudreau Course Name: Biology Level: A Points: 5 Teacher Name: Claire E. Boudreau Texts/Instructional Materials: Biology : Concepts and Connections 5 th edition Campbell, Reece, Taylor and Simon Pearson Syllabus:

More information

A Simulation Study on the Form of Fish Schooling for Escape from Predator

A Simulation Study on the Form of Fish Schooling for Escape from Predator Original Paper Forma, 18, 119 131, 2003 A Simulation Study on the Form of Fish Schooling for Escape from Predator Tamon OBOSHI, Shohei KATO*, Atsuko MUTOH and Hidenori ITOH Nagoya Institute of Technology,

More information

Cell-based Model For GIS Generalization

Cell-based Model For GIS Generalization Cell-based Model For GIS Generalization Bo Li, Graeme G. Wilkinson & Souheil Khaddaj School of Computing & Information Systems Kingston University Penrhyn Road, Kingston upon Thames Surrey, KT1 2EE UK

More information

Agent-Based Modeling in ArcGIS. Kevin M. Johnston

Agent-Based Modeling in ArcGIS. Kevin M. Johnston Agent-Based Modeling in ArcGIS Kevin M. Johnston The problem Have a phenomenon that changes with time and space Want to model time and space explicitly not as a snap shot Want to model the interactions

More information

Literature revision Agent-based models

Literature revision Agent-based models Literature revision Agent-based models Report 12 Universitat Politècnica de Catalunya Centre de Política de Sòl i Valoracions Literature revision Agent-based models Eduardo Chica Mejía Personal de recerca

More information

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics ARTIFICIAL INTELLIGENCE Solving search problems Informed local search strategies Nature-inspired algorithms March, 2017 2 Topics A. Short

More information

Life Science Curriculum Sixth Grade

Life Science Curriculum Sixth Grade Life Science Curriculum Sixth Grade The Sixth Grade life science curriculum emphasizes a more complex understanding of cycles, patterns and relationships in the living world. Students build on basic principles

More information

Agent-Based Modeling Using Swarm Intelligence in Geographical Information Systems

Agent-Based Modeling Using Swarm Intelligence in Geographical Information Systems Agent-Based Modeling Using Swarm Intelligence in Geographical Information Systems Rawan Ghnemat, Cyrille Bertelle, Gérard H.E. Duchamp To cite this version: Rawan Ghnemat, Cyrille Bertelle, Gérard H.E.

More information

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) 1 Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) Focus Standards BIO1.LS1.2 Evaluate comparative models of various cell types with a focus on organic molecules

More information

Exercise 3 Exploring Fitness and Population Change under Selection

Exercise 3 Exploring Fitness and Population Change under Selection Exercise 3 Exploring Fitness and Population Change under Selection Avidians descended from ancestors with different adaptations are competing in a selective environment. Can we predict how natural selection

More information

Sensitive Ant Model for Combinatorial Optimization

Sensitive Ant Model for Combinatorial Optimization Sensitive Ant Model for Combinatorial Optimization CAMELIA CHIRA cchira@cs.ubbcluj.ro D. DUMITRESCU ddumitr@cs.ubbcluj.ro CAMELIA-MIHAELA PINTEA cmpintea@cs.ubbcluj.ro Abstract: A combinatorial optimization

More information

Application of Chaotic Number Generators in Econophysics

Application of Chaotic Number Generators in Econophysics 1 Application of Chaotic Number Generators in Econophysics Carmen Pellicer-Lostao 1, Ricardo López-Ruiz 2 Department of Computer Science and BIFI, Universidad de Zaragoza, 50009 - Zaragoza, Spain. e-mail

More information

What is behavior? What questions can we ask? Why study behavior? Evolutionary perspective. Innate behaviors 4/8/2016.

What is behavior? What questions can we ask? Why study behavior? Evolutionary perspective. Innate behaviors 4/8/2016. What is behavior? Animal Behavior Behavior everything an animal does & how it does it response to stimuli in its environment Innate (instinct) inherited automatic & consistent learned ability to learn

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Changes in Migration Patterns of the Capelin as an Indicator of Temperature Changes in the Arctic Ocean

Changes in Migration Patterns of the Capelin as an Indicator of Temperature Changes in the Arctic Ocean Changes in Migration Patterns of the Capelin as an Indicator of Temperature Changes in the Arctic Ocean Björn Birnir Sven Þ Sigurðsson Baldvin Einarsson Alethea Barbaro Department of Mathematics and Center

More information

Swarm Intelligence W13: From Aggregation and Segregation to Structure Building

Swarm Intelligence W13: From Aggregation and Segregation to Structure Building Swarm Intelligence W13: From Aggregation and Segregation to Structure Building Stigmergy Quantitative Qualitative Outline Distributed building in: natural systems artificial virtual systems artificial

More information

HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.

HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. Boone County Biology Curriculum Map Unit 1, Matter and Energy How do organisms obtain and use the energy they need to live and grow? How do matter and energy move through ecosystems? Construct an explanation

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

932 Yang Wei-Song et al Vol. 12 Table 1. An example of two strategies hold by an agent in a minority game with m=3 and S=2. History Strategy 1 Strateg

932 Yang Wei-Song et al Vol. 12 Table 1. An example of two strategies hold by an agent in a minority game with m=3 and S=2. History Strategy 1 Strateg Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0931-05 Chinese Physics and IOP Publishing Ltd Sub-strategy updating evolution in minority game * Yang Wei-Song(fflffΦ) a), Wang

More information

Decrease in Number of Piles. Lecture 10. Why does the number of piles decrease? More Termites. An Experiment to Make the Number Decrease More Quickly

Decrease in Number of Piles. Lecture 10. Why does the number of piles decrease? More Termites. An Experiment to Make the Number Decrease More Quickly Decrease in Number of Piles Lecture 10 9/25/07 1 9/25/07 2 Why does the number of piles decrease? A pile can grow or shrink But once the last chip is taken from a pile, it can never restart Is there any

More information

On prey grouping and predator confusion in artifical fish schools

On prey grouping and predator confusion in artifical fish schools On prey grouping and predator confusion in artifical fish schools Hanspeter Kunz 1, Thomas Züblin 1, Charlotte K. Hemelrijk 2 1 AILab, Department of Informatics, University of Zurich, Switzerland 2 Centre

More information

A Correlation of. To the. New York High School Standards Life Science

A Correlation of. To the. New York High School Standards Life Science A Correlation of 2017 To the New York High School Standards Life Science 9 12 High School Life Science (HS.SF) Structure and Function A Correlation of Miller & Levine Biology, 2017 to the (HS LS1 1) Construct

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

Anthro 101: Human Biological Evolution. Lecture 11: Cooperation, Intelligence, Communication, Culture, & Human Behavior. Prof.

Anthro 101: Human Biological Evolution. Lecture 11: Cooperation, Intelligence, Communication, Culture, & Human Behavior. Prof. Anthro 101: Human Biological Evolution Lecture 11: Cooperation, Intelligence, Communication, Culture, & Human Behavior Prof. Kenneth Feldmeier Reminders Fossil lecture for homework Quiz about material

More information

Cellular Automata Models of Pedestrian Dynamics

Cellular Automata Models of Pedestrian Dynamics Cellular Automata Models of Pedestrian Dynamics Andreas Schadschneider Institute for Theoretical Physics University of Cologne Germany www.thp.uni-koeln.de/~as www.thp.uni-koeln.de/ant-traffic Overview

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

GRADE 6 SCIENCE REVISED 2014

GRADE 6 SCIENCE REVISED 2014 QUARTER 1 Developing and Using Models Develop and use a model to describe phenomena. (MS-LS1-2) Develop a model to describe unobservable mechanisms. (MS-LS1-7) Planning and Carrying Out Investigations

More information

Engineering Self-Organization and Emergence: issues and directions

Engineering Self-Organization and Emergence: issues and directions 5/0/ Engineering Self-Organization and Emergence: issues and directions Franco Zambonelli franco.zambonelli@unimore.it Agents and Pervasive Computing Group Università di Modena e Reggio Emilia SOAS 005

More information

28 3 Insects Slide 1 of 44

28 3 Insects Slide 1 of 44 1 of 44 Class Insecta contains more species than any other group of animals. 2 of 44 What Is an Insect? What Is an Insect? Insects have a body divided into three parts head, thorax, and abdomen. Three

More information

Eusocial species. Eusociality. Phylogeny showing only eusociality Eusocial insects. Eusociality: Cooperation to the extreme

Eusocial species. Eusociality. Phylogeny showing only eusociality Eusocial insects. Eusociality: Cooperation to the extreme Eusociality: Cooperation to the extreme Groups form colonies with reproductive and worker castes. Eusociality has evolved most often in insects: Ants Eusocial species Honeybees Termites Wasps Phylogeny

More information

A SYSTEM VIEW TO URBAN PLANNING: AN INTRODUCTION

A SYSTEM VIEW TO URBAN PLANNING: AN INTRODUCTION A SYSTEM VIEW TO URBAN PLANNING: AN INTRODUCTION Research Seminar Urban Systems Prof. Leandro Madrazo School of Architecture La Salle November 2015 SYSTEM THEORY DEFINITIONS OF SYSTEM A system can be defined

More information

Models of Termite Nest Construction Daniel Ladley Computer Science 2003/2004

Models of Termite Nest Construction Daniel Ladley Computer Science 2003/2004 Models of Termite Nest Construction Daniel Ladley Computer Science 2003/2004 The candidate confirms that the work submitted is their own and the appropriate credit has been given where reference has been

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Field 045: Science Life Science Assessment Blueprint

Field 045: Science Life Science Assessment Blueprint Field 045: Science Life Science Assessment Blueprint Domain I Foundations of Science 0001 The Nature and Processes of Science (Standard 1) 0002 Central Concepts and Connections in Science (Standard 2)

More information

Ecosystems/ Ecological Processes

Ecosystems/ Ecological Processes Ecosystems/ Ecological Processes I. Factors that Influence Ecosystem A. Limiting factors 1. Abiotic Factors 2. Biotic Factor Competition: interspecific and intraspecific Predation/Parasitism Amensalism

More information

Biology 1. NATURE OF LIFE 2. THE CHEMISTRY OF LIFE 3. CELL STRUCTURE AND FUNCTION 4. CELLULAR ENERGETICS. Tutorial Outline

Biology 1. NATURE OF LIFE 2. THE CHEMISTRY OF LIFE 3. CELL STRUCTURE AND FUNCTION 4. CELLULAR ENERGETICS. Tutorial Outline Tutorial Outline Science Tutorials offer targeted instruction, practice, and review designed to help students develop fluency, deepen conceptual understanding, and apply scientific thinking skills. Students

More information

An ant colony algorithm for multiple sequence alignment in bioinformatics

An ant colony algorithm for multiple sequence alignment in bioinformatics An ant colony algorithm for multiple sequence alignment in bioinformatics Jonathan Moss and Colin G. Johnson Computing Laboratory University of Kent at Canterbury Canterbury, Kent, CT2 7NF, England. C.G.Johnson@ukc.ac.uk

More information

Deterministic Nonlinear Modeling of Ant Algorithm with Logistic Multi-Agent System

Deterministic Nonlinear Modeling of Ant Algorithm with Logistic Multi-Agent System Deterministic Nonlinear Modeling of Ant Algorithm with Logistic Multi-Agent System Rodolphe Charrier, Christine Bourjot, François Charpillet To cite this version: Rodolphe Charrier, Christine Bourjot,

More information

Questions About Social Behavior

Questions About Social Behavior April 17: Altruism: Questions Questions About Social Behavior 1. Why live in groups? Costs: disease, competition, cannibalism, visibility to predators Benefits: more efficient foraging; defenses against

More information

5/7/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display.

5/7/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. 36 1 CHAPTER 36 Animal Behavior Ethology 36 2 Science of Animal Behavior Study of animal behavior as a science had its roots in the 1872 work of Charles Darwin Ethology Science of animal behavior in its

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Biology Unit Overview and Pacing Guide

Biology Unit Overview and Pacing Guide This document provides teachers with an overview of each unit in the Biology curriculum. The Curriculum Engine provides additional information including knowledge and performance learning targets, key

More information

SWARMING, or aggregations of organizms in groups, can

SWARMING, or aggregations of organizms in groups, can IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004 539 Stability Analysis of Social Foraging Swarms Veysel Gazi, Member, IEEE, and Kevin M. Passino, Senior

More information

Groningen Institute for Evolutionary Life Sciences

Groningen Institute for Evolutionary Life Sciences Mechanism Endocrinology Genetics Neurobiology Perception Physiology Integrative expertise groups Largest institute of FMNS 43 PI s, 42 support staff, >125 PhD s Unique facilities Algae, birds, fish, insects,

More information

Principles of Animal Behavior

Principles of Animal Behavior Animals and Humans! Lee Alan Dugatkin Principles of Animal Behavior THIRD EDITION Chapter 1 Principles of Animal Behavior We are surrounded by animals and many humans like to know them" Early human art

More information

Introduction to Digital Evolution Handout Answers

Introduction to Digital Evolution Handout Answers Introduction to Digital Evolution Handout Answers Note to teacher: The questions in this handout and the suggested answers (in red, below) are meant to guide discussion, not be an assessment. It is recommended

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Norbert Wiener 26.11.1894-18.03.1964 Biocybernetics Lecture outline Cybernetics Cybernetic systems Feedback

More information

Stockton Unified School District Instructional Guide for BIOLOGY NGSS Pilot for both 4X4 and Traditional. 1st Quarter

Stockton Unified School District Instructional Guide for BIOLOGY NGSS Pilot for both 4X4 and Traditional. 1st Quarter 1st Quarter Unit NGSS Standards Required Labs Supporting Text Content Academic Suggested Labs and Activities Biochemistry HS-LS-1-6 Ch. 1 & 2 molecules elements amino acids Carbon-based Carbon Hydrogen

More information

Sociobiological Approaches. What We Will Cover in This Section. Overview. Overview Evolutionary Theory Sociobiology Summary

Sociobiological Approaches. What We Will Cover in This Section. Overview. Overview Evolutionary Theory Sociobiology Summary Sociobiological Approaches What We Will Cover in This Section Overview Evolutionary Theory Sociobiology Summary 7/22/2007 Sociobiological Approaches.ppt 2 Overview Total focus on internal aspects of personality

More information

Computer Simulations

Computer Simulations Computer Simulations A practical approach to simulation Semra Gündüç gunduc@ankara.edu.tr Ankara University Faculty of Engineering, Department of Computer Engineering 2014-2015 Spring Term Ankara University

More information

Outline. Ant Colony Optimization. Outline. Swarm Intelligence DM812 METAHEURISTICS. 1. Ant Colony Optimization Context Inspiration from Nature

Outline. Ant Colony Optimization. Outline. Swarm Intelligence DM812 METAHEURISTICS. 1. Ant Colony Optimization Context Inspiration from Nature DM812 METAHEURISTICS Outline Lecture 8 http://www.aco-metaheuristic.org/ 1. 2. 3. Marco Chiarandini Department of Mathematics and Computer Science University of Southern Denmark, Odense, Denmark

More information

Topic 7: Evolution. 1. The graph below represents the populations of two different species in an ecosystem over a period of several years.

Topic 7: Evolution. 1. The graph below represents the populations of two different species in an ecosystem over a period of several years. 1. The graph below represents the populations of two different species in an ecosystem over a period of several years. Which statement is a possible explanation for the changes shown? (1) Species A is

More information