Evolution and Population Genetics INTRODUCTION

Size: px
Start display at page:

Download "Evolution and Population Genetics INTRODUCTION"

Transcription

1 Evolution and Population Genetics INTRODUCTION In 1831 Charles Darwin began a five-year journey as ship's naturalist on the H.M.S. Beagle. During this time he visited South America, Australia, South Africa, and islands of the Pacific and South Atlantic. He later published his travels in The Voyage of the Beagle where he introduced many themes that later became crucial to the arguments presented the more-familiar The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (published in 1859 and more coonly known as "The Origin of Species"). Majors in the sciences and those interested in philosophy should read this monograph. You won't find it easy reading because the language is often archaic and the arguments are sometimes difficult to follow, but it represents one of the most important contributions made to Western culture. Although Darwin is often referred to as "the father of evolution", he was not the first to introduce the idea of changing species. Maupertuis and Diderot in the mid 18th century, for example, wrote of evolution and the ideas of changing life are part of many religions. Darwin's contribution was to provide a mechanism through which evolution could function. Briefly, the Darwinian argument is as follows: Variation exists within a species. Although we may consider all houseflies as being more-or-less alike, on closer examination you find that they are nearly as recognizable as one person is from another. Some of this variation has a genetic basis. Evolution can act only on traits that are passed genetically from one generation to the next. Just as an animal or plant breeder has no interest in non-genetic traits, evolution can not work on differences caused by trauma, parasitism, and other environmental variation. The reproductive potential of organisms is vast. Darwin calculated that a single pair of elephants could have 19 million descendants within 75 years if each animal lived to be 1 and each pair had six calves. Calculations for other organisms produce similar increases in population size. Elephants are not the most coon beasts, the oceans are not overflowing with fish and we aren't nose-deep in ragweed (although it sometimes seems that way). Therefore something must happen to all these extra offspring and, unless species other than man practice birth control, most of the young must die before they reproduce. Because individuals differ from one another, some should be more capable than others in eluding predators, coping with environmental extremes, or in competing with members of their own or other species. Those that are more capable should leave more offspring to the succeeding generation. Since some aspects of coping must be tied to genetic attributes, the favorable genes are passed on to the next generation. The genetic makeup of the population changes and evolution is said to occur. This varying reproductive success of individuals based on their different genetic constitutions is natural selection. Often the concept of natural selection is simplified to "survival of the fittest". Fitness in evolutionary terms has an exact meaning related to the number of surviving offspring produced by an individual in comparison to less well-endowed individuals. Evolutionary fitness is therefore more than just the ability to run quickly or fight off competitors. Evolution is not a historical process; it is occurring at this moment. Populations constantly adapt in response to changes in their environment and thereby accumulate changes in the genes that are available to the species through its gene pool. In today's lab you will explore some of the evidence for evolution and will examine a few of the mechanisms through which evolution acts. The saga of the pepper moth (Biston betularia) and it's response to industrial pollution in England is a wellknown example of selection in natural populations. In brief, the pepper moth is found in two forms (or "MORPHS"): a mottled form and a dark-colored melanic morph. During the mid 18s, the mottled form predominated the countryside near Manchester, England; making up better than 99 percent of the population. By 1898, however, the situation was reversed, with the melanic (dark) form comprising the greater percentage of the population.

2 Researchers noted that the spread of the melanic form paralleled an increase in industrial pollution and hypothesized that the melanic form was better camouflaged than the lighter morph when they rested on the soot-darkened tree trunks (Fig 1a). Apparently, the light forms were removed from the population by birds because they were so conspicuous on the trees. Additional support for this hypothesis came from nonindustrial regions (or those areas upwind from polluters) where the mottled form greatly outnumbered the melanic moths. Here, situation was reversed and the mottled moths had the advantage in hiding from birds on the lichen-covered trunks (Fig 1b). Figure 1. and mottled peppered moths on trees in polluted (A) and unpolluted environments (B) The hypothesis was tested by releasing an equal number of melanic and mottled forms in an unpolluted area and then observing the feeding activities of birds from a blind. Apparently, birds had the same difficulty as the researchers in recognizing the mottled moths against the lichen background: they ate only 26 of the light forms while 164 of the poorly-camouflaged melanic moths were captured. In another series of experiments it was found that the melanic form had the advantage in polluted areas. Recent advances in controlling pollution have returned many areas of Great Briton to their previous state. With this, the pepper moth population is shifting again toward a predominance of the mottled form. It is also known that a single gene controls the expression of this trait and that the melanic gene is dominant over the light gene. In this laboratory we will simulate the changes in a population of pepper moths. Before we can do so, however, we need to review both Mendelian and population genetics. Population genetics, in its' simplest form is only an extension of the familiar Mendelian genetics. As an example, let M represent the dominant melanic allele and m the recessive mottled form. Using this notation, moths with a homozygous genotype will have a mottled phenotype while those that are either homozygous for the melanic allele () or heterozygous () will be dark in color. Assume that two heterozygous moths are mated (eg. X ). A punnett square for this mating is: Male Gametes Female Gametes M m M m

3 From such a cross you would expect that 25% of the offspring would be of the mottled form () while the remainder would appear melanic (with genotypes of or ). This simple Mendelian cross can be easily expanded to a population problem. Assume that we have 1 moths (all heterozygous ). These moths carry 2 of the genes for the color trait, evenly divided between the M and m alleles. Let the frequency of the M allele be denoted as "p" and the frequency of the m allele as "q". In a population of 1 heterozygous moths, the frequency of each allele is.5 (p=.5, q=.5). In a general form, a populationbased Punnett square would be: Male Gametes Female Gametes In a more general format, the genotypic frequencies of the next generation are described by the Hardy- Weinburg formula: p 2 + 2pq + q 2 = 1.. In our example, all you need do is substitute the frequencies of the p and q genes in the formula: p 2 + 2pq + q 2 = 1. (.5) 2 + 2[(.5)(.5)] + (.5) 2 = 1. Finishing the calculations, and substituting the genotypes for p and q gives us: =1. If we assume that the next generation will double in size to 2 moths, the expected number of each genotype is:.25( +.5( +.25( = = 2 Note that when frequencies are used in the calculations, the equation must add up to 1. (or close if there is rounding error). For actual population numbers, the sum of the genotypes must add up to the total population size (assuming that there is no rounding). The phenotypic ratios for the next generation are 5 mottled moths to 15 melanic moths (5 + 1 =15). EXERCISE 1 p q p p 2 pq q pq q 2 PURPOSE: To simulate selection in a population of pepper moths. MATERIALS NEEDED: Pictures of pepper moth genotypes. Simulated habitats (low, medium, and high pollution). Scissors and tape. Calculators. In this section of the laboratory you will simulate changes in a population of pepper moths due to selection in a polluted environment. Selection in the remaining two environments should be run at home. The general procedure is as follows: Place 1 heterozygous moths in the envi ronment. Gently shuffle the environment back and forth to redistribute the moths in the environment. Simulate birds feeding on the poorly-camouflaged moths. Make a count of the remaining moths for each genotype.calculate the gene frequencies for the remaining population. Plug the gene frequencies into the Hardy-Weinburg formula to determine the expected gene frequencies for the next generation. Assume that the remaining population will double in size and use the results of the Hardy-Weinburg formula to calculate the expected numbers for each genotype. Round your calculations to the nearest whole number Introduce new moths of each type to the arena. If your calculations indicate that the population should have five mottled moths and three remain in the environment, you should add only two (do not add five more). Shuffle the environment as before to redistribute your moths and then continue your calculations for four generations. See Table 1 for an example of the calculations.

4 DETAILED PROCEDURE: 1- Setting up the simulation. Cut out your pepper moths and the polluted habitat. Separate your pepper moths into three groups. Fold the habitat along the dotted lines and tape at the edge (Fig. 2- Work in groups of two for the first simulation. Complete the simulation of moths in the moderate and low pollution environments at home. Place 1 heterozygous () individuals (Fig in the environment. Refer to the "" example for Generation in Table I during the following discussion and then run your experiment in the same fashion. For your own work, fill in the tables in the Results section. 3- Gently shuffle the habitat back and forth to randomly distribute the moths. If you shake the habitat too hard, they may pile up at one corner of the habitat or may stick together (pull them apart and try again). Figure 2. Procedure for setting up and running the simulation. 4- Select against moths that are poorly camouflaged. Remove all mottled moths () from the dark (polluted) environment blocks and all melanic moths ( and ) from the light (unpolluted) environment blocks. When a moth overlaps two or more blocks, use the position of the head to determine which block the moth is occupying. An example of the condition after selection is shown in table I. Note that three moths died in this simulation. 5- Determine the total number of M and m alleles by direct count (there are 7 of each in our example. 6- Continue with the Hardy-Weinburg calculations. First add up the total number of alleles (14 in the example) and determine the frequency of the M allele (p) by dividing the number of M alleles by the total number of alleles (7/14=.5 in the example). Do the same for the m allele and call this quantity "q" (q=.5). 7- Plug the values of p and q into the Hardy-Weinburg formula (p 2 +2pq+q 2 =1.). This results in the expected frequencies of the, Mn, and genotypes in the next generation (.25,.5, and.25 in our example). 8- Now that selection is finished, let the population double in size. Since there were 7 individuals left after selection, there should be 14 in the following generation. 9- Use the frequencies from the Hardy-Weinburg formula to determine the expected number of each genotype in the next generation if the total population size is 14. For the genotype, you would expect.25(14)=3.5 individuals (which rounds out to 4). Do the same for the and genotypes. 1- The new quantities become the starting values for the next generation (generation 2 at the top of Table I). Add enough individuals of each genotype to the environment to bring each to the new generation size. 11- Continue with the simulation at step 3 in the procedure until 4 generations have been run. The example in Table I shows the results for the first generation. 12- Plot the frequency of each genotype (Y-axis) vs generation time (X-axis). Interpret the results of your graphs. 13- At home work through the simulations for the moderate and low pollution environments. Plot the frequencies and interpret your results.

5 Table 1. EXAMPLE CALCULATIONS FOR A POLLUTED ENVIRONMENT 2 2 p + 2pq + q = 1. Expected Next Generation 2 p (2 X Population Size) Always start with 1 Heterozygotes. Selection is simulated and 3 moths die. Since moths have a copy of each allele, put a "7" in both blanks. 7/14 =.5 (.5) 2+ 2(.5 X.5) + (.5) 2 Double the remaining population for the next generation and multiply by the predicted frequencies. p 2 + 2pq + q 2 = 1. Expected Next Generation p 2 (2 X Population Size) M m Round the moth totals for the next generation. Simulate selection by shaking the arena and getting the new allelic counts. There are 2 total alleles. 12/2=.6 (=p); 8/2=.4 (=q) (.6) (.6 X.4) + (.4) Compute the new expected frequencies for the third generation (now doubled to twenty). Calculating Fitness Values. Another series of calculations will allow you to quantify the effects of selection on the population. To perform these calculations you need the frequencies of each genotype both before and after selection. The values before selection can be actual counts or the expected values based on the Hardy-Weinberg formula. The values after selection are counts of those organisms left in the population after removal of the less well adapted individuals. As an example, consider the following population with two alleles (M and m)

6 1. First calculate the survival rate ( ω ). This is the proportion of organisms of each genotype that survive after selection. Divide the number present after selection by the number that were present before selection for each genotype: ω=8/1=.8; ω=13/15=.87; ω=3/5= Next compute the estimated fitness (λ). Fitness compares each genotype to that with the greatest survival rate ( ). Divide each of the genotype's survival rate by the maximum survival rate: λ = ω /ω =.8/.87 =.92 λ = ω /ω =.87/.87 = 1. λ = ω /ω =.6/.87 =.69 These values show that the most fit genotype is, followed by, with the lowest fitness held by the genotype. REPORT 1. Enter the results for the peppered moth simulation in the following data sheets (Do one series for each of the environments. 2. Use bar graphs to plot the frequencies of the genotypes for the low, moderate, and high pollution environments. (Use the page with three graphs). 3. Plot the frequencies of the p and q alleles for each of the habitats on the page with two graphs. Make a line graph and use different colors or symbols to distinguish among the three habitats. 4. Show the results of your fitness calculations for the last generation (compared to the first). Number of Each Genotype Survival Rate Estimated Fitness Habitat Polluted Moderate Low 5. Briefly interpret the results of your simulation.

7 1 1 1 p 2 + 2pq + q 2= 1. p 2 + 2pq + q 2= 1. Expected Generation 1 Expected Generation 4 p 2 (2 X Population Size) 2 p (2 X Population Size) p 2 + 2pq + q 2= 1. p 2 + 2pq + q 2= 1. Expected Generation 2 p 2 (2 X Population Size) Expected Generation 5 p 2 (2 X Population Size) p 2 + 2pq + q 2= 1. Expected Generation 3 2 p (2 X Population Size) Data Sheet for Selection Simulation Pollution Level (Check One) High Pollution Moderate Pollution Low Pollution

8 1 1 1 p 2 + 2pq + q 2= 1. p 2 + 2pq + q 2= 1. Expected Generation 1 Expected Generation 4 p 2 (2 X Population Size) 2 p (2 X Population Size) p 2 + 2pq + q 2= 1. p 2 + 2pq + q 2= 1. Expected Generation 2 p 2 (2 X Population Size) Expected Generation 5 p 2 (2 X Population Size) p 2 + 2pq + q 2= 1. Expected Generation 3 2 p (2 X Population Size) Data Sheet for Selection Simulation Pollution Level (Check One) High Pollution Moderate Pollution Low Pollution

9 Polluted Environment

10 Moderately Polluted Environment

11 Low Pollution Environment

12

13 1. Effect of Selection on p Allele Frequency of p Allele Generations of Pepper 1. Effect of Selection on q Allele Frequency of q Allele Generations of Pepper

14 1 Selection in Low Pollution Habitat Frequency of (Percent) Gen. Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Generations Selection in Moderate Pollution Habitat Frequency of (Percent) Gen. Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Generations Selection in High Pollution Habitat Frequency of (Percent) Gen. Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Generations

Natural Selection and Evolution

Natural Selection and Evolution Natural Selection and Evolution Our plant has been evolving from its simplest beginnings into a vast range of organisms present today This has happened by natural selection Natural Selection and Evolution

More information

Natural Selection. Charles Darwin & Alfred Russell Wallace

Natural Selection. Charles Darwin & Alfred Russell Wallace Natural Selection Charles Darwin & Alfred Russell Wallace Darwin s Influences Darwin observed such variations in species on his voyage as a naturalist on the HMS Beagle Darwin s Influences Kept vast diaries

More information

Theory of Evolution. Evolution The process of change over time. Specifically, a change in the frequency of a gene or allele in a population over time

Theory of Evolution. Evolution The process of change over time. Specifically, a change in the frequency of a gene or allele in a population over time Theory of Evolution Learning Goals Define "Evolution" & "Natural Selection". Describe the 4 steps of Natural Selection, giving an example of each. Explain the importance of "Variation". Does Natural Selection

More information

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms Vocab! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms! Theory - well-tested explanation that unifies a broad range of observations

More information

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A

Computer Simulations on Evolution BiologyLabs On-line. Laboratory 1 for Section B. Laboratory 2 for Section A Computer Simulations on Evolution BiologyLabs On-line Laboratory 1 for Section B Laboratory 2 for Section A The following was taken from http://www.biologylabsonline.com/protected/evolutionlab/ Introduction

More information

IV. Comparative Anatomy

IV. Comparative Anatomy Whale Evolution: Fossil Record of Evolution Modern toothed whales Rodhocetus kasrani reduced hind limbs could not walk; swam with up-down motion like modern whales Pakicetus attocki lived on land; skull

More information

A Simulation of the Process of Evolution Modified from Biology Labs On-Line (Pearson)

A Simulation of the Process of Evolution Modified from Biology Labs On-Line (Pearson) A Simulation of the Process of Evolution Modified from Biology Labs On-Line (Pearson) Biology Labs On-line EvolutionLab is a simulation which allows you to study the principles and processes behind the

More information

THE THEORY OF EVOLUTION

THE THEORY OF EVOLUTION THE THEORY OF EVOLUTION Name: Period: Date: I. Evolution- A brief overview EVOLUTION IS: 1. 2. Descent with modifications 3. Plants and animals of today are forms of plants and animals of the past 4. Organisms

More information

The Mechanisms of Evolution

The Mechanisms of Evolution The Mechanisms of Evolution Figure.1 Darwin and the Voyage of the Beagle (Part 1) 2/8/2006 Dr. Michod Intro Biology 182 (PP 3) 4 The Mechanisms of Evolution Charles Darwin s Theory of Evolution Genetic

More information

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics Mechanisms of Evolution Microevolution Population Genetics Key Concepts 23.1: Population genetics provides a foundation for studying evolution 23.2: Mutation and sexual recombination produce the variation

More information

POPULATIONS. p t+1 = p t (1-u) + q t (v) p t+1 = p t (1-u) + (1-p t ) (v) Phenotypic Evolution: Process HOW DOES MUTATION CHANGE ALLELE FREQUENCIES?

POPULATIONS. p t+1 = p t (1-u) + q t (v) p t+1 = p t (1-u) + (1-p t ) (v) Phenotypic Evolution: Process HOW DOES MUTATION CHANGE ALLELE FREQUENCIES? Phenotypic Evolution: Process MUTATION SELECTION + POPULATIONS +/ MIGRATION DRIFT HOW DOES MUTATION CHANGE ALLELE FREQUENCIES? Assume: a single autosomal locus with 2 alleles. Frequency (A) = p Frequency

More information

Modes of Natural Selection Guided Notes What is Natural Selection?

Modes of Natural Selection Guided Notes What is Natural Selection? What is Natural Selection? Natural selection is a random process in which an organism containing some desirable traits are most likely to survive and can reproduce in the environment in which it is living.

More information

Introduction to Evolution

Introduction to Evolution Introduction to Evolution What is evolution? A basic definition of evolution evolution can be precisely defined as any change in the frequency of alleles within a gene pool from one generation to the

More information

Theory of Natural Selection

Theory of Natural Selection 5 The Theory of Natural Selection T his chapter introduces formal population genetic models. We first establish what the variables are that the models are concerned with, and the general structure of population

More information

I. Theories of Evolution Evolution: Adaptation: Jean Baptiste de Lamarck: a) Use & Disuse: b) Inheritance of Acquired Characteristics:

I. Theories of Evolution Evolution: Adaptation: Jean Baptiste de Lamarck: a) Use & Disuse: b) Inheritance of Acquired Characteristics: I. Theories of Evolution Evolution: Adaptation: Jean Baptiste de Lamarck: a) Use & Disuse: b) Inheritance of Acquired Characteristics: Figure 1: Lamarckian Evolution III. Darwin & Evolution The Voyage

More information

Darwin s Theory of Natural Selection

Darwin s Theory of Natural Selection Darwin s Theory of Natural Selection Question: Has Life Ever Changed? In 1700 s, scientists examined fossils that showed how extinct species look very different than they do today. Scientists began to

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

Darwin s Observations & Conclusions The Struggle for Existence

Darwin s Observations & Conclusions The Struggle for Existence Darwin s Observations & Conclusions The Struggle for Existence 1 Voyage of the Beagle During His Travels, Darwin Made Numerous Observations And Collected Evidence That Led Him To Propose A Revolutionary

More information

Evolution. Darwin s Voyage

Evolution. Darwin s Voyage Evolution Darwin s Voyage Charles Darwin Explorer on an observation trip to the Galapagos Islands. He set sail on the HMS Beagle in 1858 from England on a 5 year trip. He was a naturalist (a person who

More information

Microevolution (Ch 16) Test Bank

Microevolution (Ch 16) Test Bank Microevolution (Ch 16) Test Bank Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements describes what all members

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection What is evolution? What is evolution? The change in the genetic makeup of a population over time (narrowly defined) Evolution accounts for the diversity of life on Earth

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

Who developed the theory of acquired characteristics? a. Darwin b. Lamarck c. Charles Lyell d. Aristotle

Who developed the theory of acquired characteristics? a. Darwin b. Lamarck c. Charles Lyell d. Aristotle Who developed the theory of acquired characteristics? a. Darwin b. Lamarck c. Charles Lyell d. Aristotle 1 Who developed the theory of natural selection, and survival of the fittest? a. Darwin b. Lamarck

More information

Chapter 02 Population Genetics

Chapter 02 Population Genetics Chapter 02 Population Genetics Multiple Choice Questions 1. The first person to publish a theory that species change over time was A. Plato B. Lamarck C. Darwin D. Wallace E. Mendel 2. Charles Robert Darwin

More information

Evolution of Populations

Evolution of Populations Evolution of Populations Gene Pools 1. All of the genes in a population - Contains 2 or more alleles (forms of a gene) for each trait 2. Relative frequencies - # of times an allele occurs in a gene pool

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Evidence of evolution

Evidence of evolution The Theory of Evolution Charles Darwin Evidence for evolution Mechanisms for evolution Natural selection Speciation Evidence of evolution Structural adaptations Mimicry Camouflage Physiological adaptations

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME LIFE SCIENCES GRADE 12 SESSION 4 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME LIFE SCIENCES GRADE 12 SESSION 4 (LEARNER NOTES) TOPIC 2: THEORIES OF EVOLUTION (PART 1) Learner Note: Evolution is a theory. Evolution is change over time. Diversity is the RESULT of this change over time. If a trait is good, the organism survives and

More information

Genetics Unit Review

Genetics Unit Review Genetics Unit Review Directions: Please do not make any marks on the test copy. Please write all of your answers on the answer sheet provided to you. Multiple Choice - Choose the best and most complete

More information

IV. Natural Selection

IV. Natural Selection IV. Natural Selection A. Important points (1) Natural selection does not cause genetic changes in individuals (2) Change in allele frequency occurs in populations (3) Fitness!" Reproductive Success = survival

More information

ADAPTATIONS. Characteristics that give an organism a better chance of survival.

ADAPTATIONS. Characteristics that give an organism a better chance of survival. ADAPTATIONS Characteristics that give an organism a better chance of survival. Special traits that help living organisms survive in a particular environment. Ex: Polar bear s thick white fur keeps him

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Voyage of the Beagle

Voyage of the Beagle Diversity 0The variety of living things that inhabit the Earth is called biological diversity. 0Evolutionary theory is a collection of scientific facts, observations, and hypotheses. 0This theory is a

More information

Genes Within Populations

Genes Within Populations Genes Within Populations Chapter 20 1 Nothing in Biology Makes Sense Except in the Light of Evolution The American Biology Teacher, March 1973 (35:125-129). Theodosius Dobzhansky (1900-1975). 2 Genetic

More information

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms Guided Notes: Evolution The Theory of Evolution is the change in traits through generations over! Occurs in, NOT individual organisms How Have Organisms Changed? At the time life emerged, the Earth was

More information

Extensive evidence indicates that life on Earth began more than 3 billion years ago.

Extensive evidence indicates that life on Earth began more than 3 billion years ago. V Extensive evidence indicates that life on Earth began more than 3 billion years ago. Fossils found in ancient rocks have given us many clues to the kind of life that existed long ago. The first living

More information

THE THEORY OF EVOLUTION. Darwin, the people who contributed to his ideas, and what it all really means.

THE THEORY OF EVOLUTION. Darwin, the people who contributed to his ideas, and what it all really means. THE THEORY OF EVOLUTION Darwin, the people who contributed to his ideas, and what it all really means. DARWIN S JOURNEY Charles Darwin was born in England on February 12, 1809. Geologists were suggesting

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Copyright 2014 Edmentum - All rights reserved. AP Biology Unity and Diversity Blizzard Bag 2014-20151. The sawfish, also known as the carpenter shark, lives in estuaries off the coast of Australia. A scientist

More information

Natural Selection: For the Birds

Natural Selection: For the Birds Huntington Library, Art Collections, and Botanical Gardens Natural Selection: For the Birds Adapted from a Discovery Institute CUNY lesson (http://discovery.csi.cuny.edu/pdf/lessonplandraft.pdf) Overview

More information

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection CONCEPT 1 EVOLUTION 1. Natural Selection a. Major mechanism of change over time Darwin s theory of evolution b. There is variation among phenotypes genetic mutations play a role in increasing variation

More information

THE HISTORY OF THE THEORY. Darwin presented that happens and offered an of how it happens. Theory a broad that has been and

THE HISTORY OF THE THEORY. Darwin presented that happens and offered an of how it happens. Theory a broad that has been and Evolution Notes THE HISTORY OF THE THEORY Why is the evolutionary theory associated with Charles Darwin? Darwin presented that happens and offered an of how it happens. o Evolution the process by which

More information

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological Mechanisms of Evolution Honors Biology 2012 1 Adaptations Behavioral Structural Biochemical Physiological 2 Old Ideas about Evolution Aristotle (viewed species perfect and unchanging) Lamarck suggested

More information

EQ: How are genetic variations caused and how do they lead to natural selection?

EQ: How are genetic variations caused and how do they lead to natural selection? EQ: How are genetic variations caused and how do they lead to natural selection? What is natural selection Individuals that have physical or behavioral traits that better suit their environment are more

More information

CH_15_Evolution.notebook. February 28, Cellular Evolution. Jean Baptiste de Lamarck. Endosymbiont Theory. Charles Darwin

CH_15_Evolution.notebook. February 28, Cellular Evolution. Jean Baptiste de Lamarck. Endosymbiont Theory. Charles Darwin Cellular Evolution The first cells were prokaryotic They did not need oxygen (the atmosphere did not contain oxygen until 1.8 billion years ago) Eukaryotic cells were found in the fossil record about 2

More information

NOTES Ch 17: Genes and. Variation

NOTES Ch 17: Genes and. Variation NOTES Ch 17: Genes and Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Variation 17.1 Genes & Variation Darwin developed

More information

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature ) Chapter 2 Section 2: how traits are passed from the parents

More information

Mastery. Chapter Content. Natural Selection CHAPTER 5 LESSON 1

Mastery. Chapter Content. Natural Selection CHAPTER 5 LESSON 1 Chapter Content Mastery Natural Selection LESSON 1 Directions: Circle the term in parentheses that correctly completes the sentence. 1. Darwin hypothesized that species in the wild evolve through a process

More information

CH 16: Evolution of Population

CH 16: Evolution of Population CH 16: Evolution of Population 16.1 Genes and Variation A. Introduction 1. Darwin s theory of evolution by natural selection explained how 2. What Darwin did not know was how were passed down through each

More information

What is Evolution? Study of how things change over time

What is Evolution? Study of how things change over time 10.2 15 Darwin s Theory Observations of Evolution What is Evolution? Study of how things change over time 10.2 15 Darwin s Theory Observations of Evolution Theories of Evolution - Lamarck Jean Baptiste

More information

Chapter 16 and 17: Evolution Darwin s Voyage of Discovery

Chapter 16 and 17: Evolution Darwin s Voyage of Discovery Chapter 16 and 17: Evolution Darwin s Voyage of Discovery Father of Evolution:. Born in England (2/12/1809) In 1831, Darwin became a naturalist on the HMS Studied and life on a mapping expedition to South

More information

Changes through time. Survival of the Fittest

Changes through time. Survival of the Fittest Changes through time Survival of the Fittest Evidence that life has changed and is now changing Fossil Record Fossils are remains or traces of organisms that lived in the past. Fossil Record Fossils are

More information

InGen: Dino Genetics Lab Post-Lab Activity: DNA and Genetics

InGen: Dino Genetics Lab Post-Lab Activity: DNA and Genetics InGen: Dino Genetics Lab Post-Lab Activity: DNA and Genetics This activity is meant to extend your students knowledge of the topics covered in our DNA and Genetics lab. Through this activity, pairs of

More information

Unit 8: EVOLUTION NOTES

Unit 8: EVOLUTION NOTES Unit 8: EVOLUTION NOTES Canale LE EVOLUTION is the change in gene frequency in a population over time. Generally, organisms change from simple to more complex, and happens over many generations. **Evolution

More information

1. E, or change over time, is the process by which modern organisms have descended from ancient organisms

1. E, or change over time, is the process by which modern organisms have descended from ancient organisms Name Date Period EVOLUTION STARTS WITH? 1. E, or change over time, is the process by which modern organisms have descended from ancient organisms 2. A scientific T is a well supported, testable explanation

More information

THE THEORY OF EVOLUTION

THE THEORY OF EVOLUTION THE THEORY OF EVOLUTION Why evolution matters Theory: A well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation

More information

EVOLUTION. Charles Darwin

EVOLUTION. Charles Darwin EVOLUTION Charles Darwin Question for Thought Earth has millions of other kinds of organisms of every imaginable shape, size, and habitat. This variety of living things is called biological diversity.

More information

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly). Name: REVIEW 6: EVOLUTION 1. Define evolution: 2. Modern Theory of Evolution: a. Charles Darwin: Was not the first to think of evolution, but he did figure out how it works (mostly). However, Darwin didn

More information

Darwin s Theory of Evolution

Darwin s Theory of Evolution Chapter 15 Darwin s Theory of Evolution Section 15 1 The Puzzle of Life s Diversity (pages 369 372) This section outlines Charles Darwin s contribution to science It also describes the pattern of diversity

More information

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population The Evolution of Populations What is Evolution? A change over time in the genetic composition of a population Human evolution The gene pool Is the total aggregate of genes for a particular trait in a population

More information

EVOLUTION change in populations over time

EVOLUTION change in populations over time EVOLUTION change in populations over time HISTORY ideas that shaped the current theory James Hutton (1785) proposes that Earth is shaped by geological forces that took place over extremely long periods

More information

Companion to Cells, Heredity & Classification Student Resources

Companion to Cells, Heredity & Classification Student Resources Companion to Cells, Heredity & Classification Student Resources The 21st Century Center for Research and Development in Cognition and Science Instruction The CaSEbook Companion: Student Resource Book

More information

Evolution Open Ended Questions:

Evolution Open Ended Questions: Evolution Open Ended Questions: Answer the following questions to the best of your ability: Make sure you read each question carefully and provide answers to all of the parts of the question. Do not leave

More information

The Evidence for Evolution Chapter 21. Evidence of Natural Selection. Evidence of Natural Selection 4/4/14

The Evidence for Evolution Chapter 21. Evidence of Natural Selection. Evidence of Natural Selection 4/4/14 The Evidence for Chapter 21 1 Darwin collected a closely related group of 14 finch species in the Galápagos Islands All were similar except for beak characteristics Darwin hypothesized that different beak

More information

Darwin and Natural Selection

Darwin and Natural Selection Darwin and Natural Selection Background: Students know Evolution is change over time Essential Question: What was Darwin s conclusion about his observations? (CIRCLE ans. ) Vocabulary: Highlight or underline

More information

AP Biology Evolution Review Slides

AP Biology Evolution Review Slides AP Biology Evolution Review Slides How would one go about studying the evolution of a tetrapod limb from a fish s fin? Compare limb/fin structure of existing related species of fish to tetrapods Figure

More information

DUE TODAY DUE TODAY. HOMEWORK: Student Weekly Grade Tracking #25. CLASSWORK: Blood Typing Lab Ernie s Exit (Turn in) Admit Ticket

DUE TODAY DUE TODAY. HOMEWORK: Student Weekly Grade Tracking #25. CLASSWORK: Blood Typing Lab Ernie s Exit (Turn in) Admit Ticket Admit Ticket WOR KS HEE T Read Blood Types Sheet Complete Blood Type Worksheets DUE TODAY DUE TODAY HOMEWORK: Student Weekly Grade Tracking #25 CLASSWORK: Blood Typing Lab Ernie s Exit (Turn in) http://www.powerpointhintergrund.com/uploads/new-year-ppt-background-8.jpg

More information

Charles Darwin & Natural Selection

Charles Darwin & Natural Selection Charles Darwin & Natural Selection Darwin Born in Shrewsbury, England, in 1809 Studied medicine at Edinburgh University (1825-1827) where the sight of blood and surgery without anesthetics repulsed him

More information

Biology 11 UNIT 1: EVOLUTION LESSON 1: WHY EVOLUTION?? TEXTBOOK: UNIT 5

Biology 11 UNIT 1: EVOLUTION LESSON 1: WHY EVOLUTION?? TEXTBOOK: UNIT 5 Biology 11 UNIT 1: EVOLUTION LESSON 1: WHY EVOLUTION?? TEXTBOOK: UNIT 5 Objectives: By the end of the lesson you should be able to: Explain why DNA is so important to the theory of evolution State the

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 009 Population genetics Outline of lectures 3-6 1. We want to know what theory says about the reproduction of genotypes in a population. This results

More information

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33 Chapter 11 Introduction to Genetics Chapter Vocabulary Review Matching On the lines provided, write the letter of the definition of each term. 1. genetics a. likelihood that something will happen 2. trait

More information

Darwin s Theory of Evolution The Puzzle of Life s Diversity Chapter 15

Darwin s Theory of Evolution The Puzzle of Life s Diversity Chapter 15 Darwin s Theory of Evolution The Puzzle of Life s Diversity Chapter 15 Image from: Biology by Miller and Levine; Prentice Hall Publishing 2006 EVOLUTION: WRITE A DEFINITION: change over time; the process

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

Biology Chapter 15 Evolution Notes

Biology Chapter 15 Evolution Notes Biology Chapter 15 Evolution Notes Section 1: Darwin's Theory of Evolution by Natural Selection Charles Darwin- English naturalist that studied animals over a number of years before developing the theory

More information

Evolution Notes Darwin and His Ideas

Evolution Notes Darwin and His Ideas Evolution Notes Darwin and His Ideas Charles Darwin Charles Darwin was born in 1809 (on the same day as Abraham Lincoln) In Darwin s day, scientists were just starting to come around to the idea the Earth

More information

Evolution. Chapters 16 & 17

Evolution. Chapters 16 & 17 Evolution Chapters 16 & 17 Darwin s Voyage Chapter 16 Change over time Evolution Charles Darwin Developed a scientific theory that explains how modern organisms evolved over long periods of time through

More information

Darwin s theory of evolution by natural selection

Darwin s theory of evolution by natural selection Percorso interdisciplinare di avviamento al CLIL Darwin s theory of evolution by natural selection CLASSE 5^B Prof. A. Le Piane Prof. F. Minissale Theory of Evolution Evolution: the process of change over

More information

Charles Darwin and Evolution

Charles Darwin and Evolution Charles Darwin and Evolution from so simple a beginning, endless forms most beautiful and most wonderful have been, and are being, evolved. On the Origin of Species I. Darwin s Travels 1. In 1831, Charles

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

STUDY GUIDE SECTION 16-1 Genetic Equilibrium STUDY GUIDE SECTION 16-1 Genetic Equilibrium Name Period Date Multiple Choice-Write the correct letter in the blank. 1. The smallest unit in which evolution occurs is a. an individual organism. c. a species

More information

Family resemblance can be striking!

Family resemblance can be striking! Family resemblance can be striking! 1 Chapter 14. Mendel & Genetics 2 Gregor Mendel! Modern genetics began in mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas

More information

Evolution. Part 1: Historical Perspective on the Theory of Natural Selection

Evolution. Part 1: Historical Perspective on the Theory of Natural Selection Evolution Part 1: Historical Perspective on the Theory of Natural Selection 1. In the 1860 s, what types of evidence were available to indicate that evolution had occurred on Earth? 2. How did knowledge

More information

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc. Enduring Understanding: Change in the genetic makeup of a population over time is evolution. Objective: You will be able to identify the key concepts of evolution theory Do Now: Read the enduring understanding

More information

Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle.

Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle. Theory of Evolution Darwin s Voyage What did Darwin observe? Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle. On his journey, Darwin observed

More information

of EVOLUTION???????????? states that existing forms of life on earth have arisen from earlier forms over long periods of time.

of EVOLUTION???????????? states that existing forms of life on earth have arisen from earlier forms over long periods of time. Evolution The WHAT theory IS of EVOLUTION???????????? states that existing forms of life on earth have arisen from earlier forms over long periods of time. Some of the strongest evidence to support evolution

More information

Lab 13: Evolution and Natural Selection

Lab 13: Evolution and Natural Selection Lab 13: Evolution and Natural Selection The process of biological evolution can be accurately defined as descent with modification. This definition includes microevolution (changes in allele frequency

More information

LIFE SCIENCE CHAPTER 7 FLASHCARDS

LIFE SCIENCE CHAPTER 7 FLASHCARDS LIFE SCIENCE CHAPTER 7 FLASHCARDS What did Darwin NOT understand about the process of evolution? A. the slowness of the process B. the role of genetics C. the importance of separation D. the importance

More information

Chapter 16: Evolutionary Theory

Chapter 16: Evolutionary Theory Chapter 16: Evolutionary Theory Section 1: Developing a Theory Evolution: Artificial Selection: Evolution: I. A Theory to Explain Change Over Time B. Charles Darwin C. Theory: D. Modern evolutionary theory

More information

The Evidence for Evolution. Chapter 21

The Evidence for Evolution. Chapter 21 The Evidence for Evolution Chapter 21 1 Evidence of Natural Selection Darwin collected a closely related group of 14 finch species in the Galápagos Islands All were similar except for beak characteristics

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

CHAPTER 19. Descent With Modification

CHAPTER 19. Descent With Modification CHAPTER 19 Descent With Modification REALLY Looking at Organisms Differences from other organisms Features that show the relationship of an organism to where it lives, what it does Ex: marine iguanas to

More information

14. A small change in gene frequencies to a population overtime is called a. Macroevolution b. Speciation c. Microevolution d.

14. A small change in gene frequencies to a population overtime is called a. Macroevolution b. Speciation c. Microevolution d. Section: Evolution Review Questions Section Title: Evolution Review Questions Name: Review of Old Information: Match the people listed below with the influential ideas they proposed: 1. Carolus Linneus

More information

Evolution. Changes over Time

Evolution. Changes over Time Evolution Changes over Time TEKS Students will analyze and evaluate B. 7 C how natural selection produces change in populations, not individuals B. 7 E/F effects of genetic mechanisms and their relationship

More information

Section 11 1 The Work of Gregor Mendel

Section 11 1 The Work of Gregor Mendel Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) What is the principle of dominance? What happens during segregation? Gregor Mendel s Peas (pages 263 264) 1. The

More information

Evolution Unit: What is Evolution?

Evolution Unit: What is Evolution? Evolution Unit: What is Evolution? What is The Theory of Evolution? Evolution is, a change (in the genetic composition) of a population over time. on a larger scale, the entire biological history, from

More information

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele 3U Evolution Notes What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele Let s look back to what we know: From genetics we can say that a gene is

More information

EVOLUTION change in populations over time

EVOLUTION change in populations over time EVOLUTION change in populations over time HISTORY ideas that shaped the current theory James Hutton & Charles Lyell proposes that Earth is shaped by geological forces that took place over extremely long

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

Darwin s Theory of Evolution

Darwin s Theory of Evolution EVOLUTION Darwin s Theory of Evolution n Evolution, or change over time, is the process by which modern organisms have descended from ancient organisms. n A scientific theory is a well-supported testable

More information

Darwin s Theory of Evolution. The Puzzle of Life s Diversity

Darwin s Theory of Evolution. The Puzzle of Life s Diversity Darwin s Theory of Evolution The Puzzle of Life s Diversity Evolutionary Theory A scientific explanation that can illustrate the diversity of life on Earth Theory A well-supported, testable explanation

More information

1. What is genetics and who was Gregor Mendel? 2. How are traits passed from one generation to the next?

1. What is genetics and who was Gregor Mendel? 2. How are traits passed from one generation to the next? Chapter 11 Heredity The fruits, vegetables, and grains you eat are grown on farms all over the world. Tomato seeds produce tomatoes, which in turn produce more seeds to grow more tomatoes. Each new crop

More information