ESM, Figure 1. Correlation between microsatellite-based heterozygosity indices, IR and MLH

Size: px
Start display at page:

Download "ESM, Figure 1. Correlation between microsatellite-based heterozygosity indices, IR and MLH"

Transcription

1 ESM, Figure 1. Correlation between microsatellite-based heterozygosity indices, IR and MLH (β = -1.2 ± 0.01; t(373) = ; p < 0.001). ESM, Figure 2. Correlation between nestling body condition index and IR (β ± SE = ± 9.1; t(373) = -4.3, p < ; r 2 = 0.05). ), using the complete dataset (n = 375 offspring), including offspring measured from day 1-33 after hatching. ESM, Table 1. Parameters estimates from a linear mixed model with nestling body condition as the response, using the complete dataset (n = 375 offspring), including offspring measured from day 1-33 after hatching.. Model results shown separately for each heterozygosity index (MLH and IR). ESM, Figure 3. Correlation between nestling body condition index with (a) IR (β ± SE = ± 9.4; t(337) = -4.3, p < ; r 2 = 0.05) and (b) MLH (β ± SE = ± 11.19; t(337) = 4.5, p < ; r 2 = 0.05). Sample limited to 339 offspring measured between days after hatching. ESM, Table 2. Parameters estimates from a linear mixed model with nestling body condition as the response. Sample limited to 339 offspring measured between days after hatching. Model results shown separately for each heterozygosity index (MLH and IR).

2 ESM, Table 3. Parameter estimates from a generalized linear model with the probability of dying with signs of disease as the response (1 = diseased; 0 = other fates). ESM, Figure 4. Boxplots showing the relationship between individual fates and nestling body condition index. Fates were defined as birds that died with signs of disease (n = 21) and birds with other fates (n = 270). The horizontal line indicates the median, the bottom and top of the box indicate the 25 th and 75 th percentiles, respectively, and the whiskers indicate the smaller of the maximum value or 1.5 times the interquartile range. Non-overlapping notches in boxes suggest significant differences between medians. ESM, Figure 5. Correlation between IR and bactericidal activity against E. coli 8739 by diluted whole blood of crow nestlings (r 2 = 0.14; β ± SE = ± 0.13; t(50) = -2.86, p = 0.006). ESM, Table 4. Parameters of generalized linear models with hemolysis score as the response. Model results shown separately for each heterozygosity index (MLH and IR). ESM, Table 5. Parameter estimates from linear mixed models a with size as the response. Models presented with (a) bactericidal killing score (% colonies killed; n = 52 offspring), or (b) hemolysis score (n = 112 offspring) as predictors.

3 ESM, Figure 1. Correlation between microsatellite-based heterozygosity indices, IR and MLH (β = -1.2 ± 0.01; t(373) = ; p < 0.001).

4 ESM, Figure 2. Correlation between nestling body condition index and IR (β ± SE = ± 9.1; t(373) = -4.3, p < ; r 2 = 0.05). ), using the complete dataset (n = 375 offspring), including offspring measured from day 1-33 after hatching.

5 ESM, Table 1. Parameters estimates from a linear mixed model a with nestling body condition as the response, using the complete dataset (n = 375 offspring), including offspring measured from day 1-33 after hatching. Model results shown separately for each heterozygosity index (MLH and IR). β ± SE t(328) P MLH ± Year 3.29 ± Sex ( ) 8.57 ± IR ± Year 3.26 ± Sex ( ) 8.60 ± a Family group specified as a random effect

6 ESM, Figure 3. Correlation between nestling body condition index with (a) IR (β ± SE = ± 9.4; t(337) = -4.3, p < ; r 2 = 0.05) and (b) MLH (β ± SE = ± 11.19; t(337) = 4.5, p < ; r 2 = 0.05). Sample limited to 339 offspring measured between days after hatching.

7 ESM, Table 2. Parameters estimates from a linear mixed model a with nestling body condition as the response. Sample limited to 339 offspring measured between days after hatching. Model results shown separately for each heterozygosity index (MLH and IR). β ± SE t(295) P MLH ± Year 3.29 ± Sex ( ) 7.72 ± IR ± Year 3.27 ± Sex ( ) 7.74 ± a Family group specified as a random effect

8 ESM, Table 3. Parameter estimates from a generalized linear model with the probability of dying with signs of disease as the response (1 = diseased; 0 = other fates). β ± SE a Z(288) P Nestling body condition index ± IR b 4.38 ± a Parameter estimates given on the logit scale b IR = Internal Relatedness.

9 ESM, Figure 4. Boxplots showing the relationship between individual fates and nestling body condition index. Fates were defined as birds that died with signs of disease (n = 21) and birds with other fates (n = 270). The horizontal line indicates the median, the bottom and top of the box indicate the 25 th and 75 th percentiles, respectively, and the whiskers indicate the smaller of the maximum value or 1.5 times the interquartile range. Non-overlapping notches in boxes suggest significant differences between medians.

10 ESM, Figure 5. Correlation between IR and bactericidal activity against E. coli 8739 by diluted whole blood of crow nestlings (β ± SE = ± 0.13; t(50) = -2.86, p = 0.006; r 2 = 0.14).

11 ESM, Table 4. Parameter estimates from generalized linear models with hemolysis score as the response. Model results shown separately for MLH and IR. β ± SE a t (108) p MLH ± Year (2007 vs. 2005) 6.10 ± <0.001 Age (days) 6.28 ± IR 3.11 ± Year (2007 vs. 2005) 6.20 ± <0.001 Age (days) 6.51 ± a Parameter estimates given on the log scale

12 ESM, Table 5. Parameter estimates from linear mixed models a with size as the response. Models presented with a) bactericidal killing score (% colonies killed; n = 52 offspring), or b) hemolysis score ( n = 112 offspring) as predictors. (a) β ± SE a t (32) P % killed ± Sex (male vs. female) 2.34 ± Age (days) 1.57 ± < (b) β ± SE t (86) P Hemolysis score 0.38 ± Sex (M vs. F) 2.48 ± < Age (days) 0.92 ± < a Family group specified as a random effect

Section 3. Measures of Variation

Section 3. Measures of Variation Section 3 Measures of Variation Range Range = (maximum value) (minimum value) It is very sensitive to extreme values; therefore not as useful as other measures of variation. Sample Standard Deviation The

More information

Measures of Location. Measures of position are used to describe the relative location of an observation

Measures of Location. Measures of position are used to describe the relative location of an observation Measures of Location Measures of position are used to describe the relative location of an observation 1 Measures of Position Quartiles and percentiles are two of the most popular measures of position

More information

Z score indicates how far a raw score deviates from the sample mean in SD units. score Mean % Lower Bound

Z score indicates how far a raw score deviates from the sample mean in SD units. score Mean % Lower Bound 1 EDUR 8131 Chat 3 Notes 2 Normal Distribution and Standard Scores Questions Standard Scores: Z score Z = (X M) / SD Z = deviation score divided by standard deviation Z score indicates how far a raw score

More information

Units. Exploratory Data Analysis. Variables. Student Data

Units. Exploratory Data Analysis. Variables. Student Data Units Exploratory Data Analysis Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison Statistics 371 13th September 2005 A unit is an object that can be measured, such as

More information

IB Questionbank Mathematical Studies 3rd edition. Grouped discrete. 184 min 183 marks

IB Questionbank Mathematical Studies 3rd edition. Grouped discrete. 184 min 183 marks IB Questionbank Mathematical Studies 3rd edition Grouped discrete 184 min 183 marks 1. The weights in kg, of 80 adult males, were collected and are summarized in the box and whisker plot shown below. Write

More information

Descriptive Statistics Class Practice [133 marks]

Descriptive Statistics Class Practice [133 marks] Descriptive Statistics Class Practice [133 marks] The weekly wages (in dollars) of 80 employees are displayed in the cumulative frequency curve below. 1a. (i) (ii) Write down the median weekly wage. Find

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 3.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 3.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola 3.1-1 Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 1- part 1: Describing variation, and graphical presentation Outline Sources of variation Types of variables Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease

More information

Unit 2. Describing Data: Numerical

Unit 2. Describing Data: Numerical Unit 2 Describing Data: Numerical Describing Data Numerically Describing Data Numerically Central Tendency Arithmetic Mean Median Mode Variation Range Interquartile Range Variance Standard Deviation Coefficient

More information

Chapter 1. Looking at Data

Chapter 1. Looking at Data Chapter 1 Looking at Data Types of variables Looking at Data Be sure that each variable really does measure what you want it to. A poor choice of variables can lead to misleading conclusions!! For example,

More information

1.3: Describing Quantitative Data with Numbers

1.3: Describing Quantitative Data with Numbers 1.3: Describing Quantitative Data with Numbers Section 1.3 Describing Quantitative Data with Numbers After this section, you should be able to MEASURE center with the mean and median MEASURE spread with

More information

QUANTITATIVE DATA. UNIVARIATE DATA data for one variable

QUANTITATIVE DATA. UNIVARIATE DATA data for one variable QUANTITATIVE DATA Recall that quantitative (numeric) data values are numbers where data take numerical values for which it is sensible to find averages, such as height, hourly pay, and pulse rates. UNIVARIATE

More information

What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty.

What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty. What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty. Statistics is a field of study concerned with the data collection,

More information

1. The following two-way frequency table shows information from a survey that asked the gender and the language class taken of a group of students.

1. The following two-way frequency table shows information from a survey that asked the gender and the language class taken of a group of students. Name Algebra Unit 13 Practice Test 1. The following two-way frequency table shows information from a survey that asked the gender and the language class taken of a group of students. Spanish French other

More information

2.1 Measures of Location (P.9-11)

2.1 Measures of Location (P.9-11) MATH1015 Biostatistics Week.1 Measures of Location (P.9-11).1.1 Summation Notation Suppose that we observe n values from an experiment. This collection (or set) of n values is called a sample. Let x 1

More information

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke BIOL 51A - Biostatistics 1 1 Lecture 1: Intro to Biostatistics Smoking: hazardous? FEV (l) 1 2 3 4 5 No Yes Smoke BIOL 51A - Biostatistics 1 2 Box Plot a.k.a box-and-whisker diagram or candlestick chart

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Overview 3-2 Measures

More information

Descriptive Statistics and Probability Test Review Test on May 4/5

Descriptive Statistics and Probability Test Review Test on May 4/5 Descriptive Statistics and Probability Test Review Test on May 4/5 1. The following frequency distribution of marks has mean 4.5. Mark 1 2 3 4 5 6 7 Frequency 2 4 6 9 x 9 4 Find the value of x. Write down

More information

Lecture 3: Chapter 3

Lecture 3: Chapter 3 Lecture 3: Chapter 3 C C Moxley UAB Mathematics 26 January 16 3.2 Measurements of Center Statistics involves describing data sets and inferring things about them. The first step in understanding a set

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 2 Methods for Describing Sets of Data Summary of Central Tendency Measures Measure Formula Description Mean x i / n Balance Point Median ( n +1) Middle Value

More information

Topic 2 Part 3 [189 marks]

Topic 2 Part 3 [189 marks] Topic 2 Part 3 [189 marks] The grades obtained by a group of 13 students are listed below. 5 3 6 5 7 3 2 6 4 6 6 6 4 1a. Write down the modal grade. Find the mean grade. 1b. Write down the standard deviation.

More information

Lecture 6: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries)

Lecture 6: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Lecture 6: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Summarize with Shape, Center, Spread Displays: Stemplots, Histograms Five Number Summary, Outliers, Boxplots Cengage Learning

More information

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Chapter 2: Summarising numerical data Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Extract from Study Design Key knowledge Types of data: categorical (nominal and ordinal)

More information

Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations

Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations DAY 4 16 Jan 2014 Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations Two Important Three-Standard-Deviation Rules 1. Chebychev s Rule : Implies that at least 89% of the observations

More information

UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004

UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004 UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 50W - Introduction to Biostatistics Fall 00 Exercises with Solutions Topic Summarizing Data Due: Monday September 7, 00 READINGS.

More information

Measures of center. The mean The mean of a distribution is the arithmetic average of the observations:

Measures of center. The mean The mean of a distribution is the arithmetic average of the observations: Measures of center The mean The mean of a distribution is the arithmetic average of the observations: x = x 1 + + x n n n = 1 x i n i=1 The median The median is the midpoint of a distribution: the number

More information

3.3. Section. Measures of Central Tendency and Dispersion from Grouped Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc.

3.3. Section. Measures of Central Tendency and Dispersion from Grouped Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc. Section 3.3 Measures of Central Tendency and Dispersion from Grouped Data Objectives 1. Approximate the mean of a variable from grouped data 2. Compute the weighted mean 3. Approximate the standard deviation

More information

Review: Central Measures

Review: Central Measures Review: Central Measures Mean, Median and Mode When do we use mean or median? If there is (are) outliers, use Median If there is no outlier, use Mean. Example: For a data 1, 1.2, 1.5, 1.7, 1.8, 1.9, 2.3,

More information

1. Exploratory Data Analysis

1. Exploratory Data Analysis 1. Exploratory Data Analysis 1.1 Methods of Displaying Data A visual display aids understanding and can highlight features which may be worth exploring more formally. Displays should have impact and be

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Q: What is data? Q: What does the data look like? Q: What conclusions can we draw from the data? Q: Where is the middle of the data? Q: Why is the spread of the data important? Q:

More information

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode.

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. Chapter 3 Numerically Summarizing Data Chapter 3.1 Measures of Central Tendency Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. A1. Mean The

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Statistics I Chapter 2: Univariate data analysis

Statistics I Chapter 2: Univariate data analysis Statistics I Chapter 2: Univariate data analysis Chapter 2: Univariate data analysis Contents Graphical displays for categorical data (barchart, piechart) Graphical displays for numerical data data (histogram,

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH1725 (May-June 2009) INTRODUCTION TO STATISTICS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH1725 (May-June 2009) INTRODUCTION TO STATISTICS. Time allowed: 2 hours 01 This question paper consists of 11 printed pages, each of which is identified by the reference. Only approved basic scientific calculators may be used. Statistical tables are provided at the end of

More information

Chapter 1 - Lecture 3 Measures of Location

Chapter 1 - Lecture 3 Measures of Location Chapter 1 - Lecture 3 of Location August 31st, 2009 Chapter 1 - Lecture 3 of Location General Types of measures Median Skewness Chapter 1 - Lecture 3 of Location Outline General Types of measures What

More information

Cooperation. Main points for today. How can altruism evolve? Group living vs. cooperation. Sociality-nocooperation. and cooperationno-sociality

Cooperation. Main points for today. How can altruism evolve? Group living vs. cooperation. Sociality-nocooperation. and cooperationno-sociality Cooperation Why is it surprising and how does it evolve Cooperation Main points for today Sociality, cooperation, mutualism, altruism - definitions Kin selection Hamilton s rule, how to calculate r Group

More information

CIVL 7012/8012. Collection and Analysis of Information

CIVL 7012/8012. Collection and Analysis of Information CIVL 7012/8012 Collection and Analysis of Information Uncertainty in Engineering Statistics deals with the collection and analysis of data to solve real-world problems. Uncertainty is inherent in all real

More information

Determining the Spread of a Distribution Variance & Standard Deviation

Determining the Spread of a Distribution Variance & Standard Deviation Determining the Spread of a Distribution Variance & Standard Deviation 1.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3 Lecture 3 1 / 32 Outline 1 Describing

More information

Statistics I Chapter 2: Univariate data analysis

Statistics I Chapter 2: Univariate data analysis Statistics I Chapter 2: Univariate data analysis Chapter 2: Univariate data analysis Contents Graphical displays for categorical data (barchart, piechart) Graphical displays for numerical data data (histogram,

More information

Record your answers to Part A and Part B 1 on this answer sheet. Part A. Part A Score

Record your answers to Part A and Part B 1 on this answer sheet. Part A. Part A Score Tear Here The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT Wednesday, June 20, 2007 9:15 a.m. to 12:15 p.m., only ANSWER SHEET Female Student........................................

More information

Guidelines for comparing boxplots

Guidelines for comparing boxplots Comparing Data Sets Project IMP I Name When using boxplots to compare two or more batches of data, it is usually best to compare individual features in a methodical way. You may find the following guidelines

More information

Univariate Descriptive Statistics for One Sample

Univariate Descriptive Statistics for One Sample Department of Psychology and Human Development Vanderbilt University 1 Introduction 2 3 4 5 6 7 8 Introduction Our first step in descriptive statistics is to characterize the data in a single group of

More information

Tastitsticsss? What s that? Principles of Biostatistics and Informatics. Variables, outcomes. Tastitsticsss? What s that?

Tastitsticsss? What s that? Principles of Biostatistics and Informatics. Variables, outcomes. Tastitsticsss? What s that? Tastitsticsss? What s that? Statistics describes random mass phanomenons. Principles of Biostatistics and Informatics nd Lecture: Descriptive Statistics 3 th September Dániel VERES Data Collecting (Sampling)

More information

Lecture 3. Measures of Relative Standing and. Exploratory Data Analysis (EDA)

Lecture 3. Measures of Relative Standing and. Exploratory Data Analysis (EDA) Lecture 3. Measures of Relative Standing and Exploratory Data Analysis (EDA) Problem: The average weekly sales of a small company are $10,000 with a standard deviation of $450. This week their sales were

More information

Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries)

Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Summarize with Shape, Center, Spread Displays: Stemplots, Histograms Five Number Summary, Outliers, Boxplots Mean vs.

More information

BNG 495 Capstone Design. Descriptive Statistics

BNG 495 Capstone Design. Descriptive Statistics BNG 495 Capstone Design Descriptive Statistics Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential statistical methods, with a focus

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- #

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- # Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview 3-2 Measures

More information

GRACEY/STATISTICS CH. 3. CHAPTER PROBLEM Do women really talk more than men? Science, Vol. 317, No. 5834). The study

GRACEY/STATISTICS CH. 3. CHAPTER PROBLEM Do women really talk more than men? Science, Vol. 317, No. 5834). The study CHAPTER PROBLEM Do women really talk more than men? A common belief is that women talk more than men. Is that belief founded in fact, or is it a myth? Do men actually talk more than women? Or do men and

More information

An introduction to everyday statistics 2

An introduction to everyday statistics 2 274 J Accid Emerg Med 2;17:274 281 AN INTRODUCTION TO STATISTICS Accident and Emergency Department, Hope Hospital, Salford M6 8HD Correspondence to: Mr Driscoll, Consultant in A&E Medicine (pdriscoll@

More information

Math 1040 Sample Final Examination. Problem Points Score Total 200

Math 1040 Sample Final Examination. Problem Points Score Total 200 Name: Math 1040 Sample Final Examination Relax and good luck! Problem Points Score 1 25 2 25 3 25 4 25 5 25 6 25 7 25 8 25 Total 200 1. (25 points) The systolic blood pressures of 20 elderly patients in

More information

Section 2.4. Measuring Spread. How Can We Describe the Spread of Quantitative Data? Review: Central Measures

Section 2.4. Measuring Spread. How Can We Describe the Spread of Quantitative Data? Review: Central Measures mean median mode Review: entral Measures Mean, Median and Mode When do we use mean or median? If there is (are) outliers, use Median If there is no outlier, use Mean. Example: For a data 1, 1., 1.5, 1.7,

More information

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data Review for Exam #1 1 Chapter 1 Population the complete collection of elements (scores, people, measurements, etc.) to be studied Sample a subcollection of elements drawn from a population 11 The Nature

More information

Lecture 2 and Lecture 3

Lecture 2 and Lecture 3 Lecture 2 and Lecture 3 1 Lecture 2 and Lecture 3 We can describe distributions using 3 characteristics: shape, center and spread. These characteristics have been discussed since the foundation of statistics.

More information

Chapter 3 Examining Data

Chapter 3 Examining Data Chapter 3 Examining Data This chapter discusses methods of displaying quantitative data with the objective of understanding the distribution of the data. Example During childhood and adolescence, bone

More information

MATH 1150 Chapter 2 Notation and Terminology

MATH 1150 Chapter 2 Notation and Terminology MATH 1150 Chapter 2 Notation and Terminology Categorical Data The following is a dataset for 30 randomly selected adults in the U.S., showing the values of two categorical variables: whether or not the

More information

PubHlth 540 Fall Summarizing Data Page 1 of 18. Unit 1 - Summarizing Data Practice Problems. Solutions

PubHlth 540 Fall Summarizing Data Page 1 of 18. Unit 1 - Summarizing Data Practice Problems. Solutions PubHlth 50 Fall 0. Summarizing Data Page of 8 Unit - Summarizing Data Practice Problems Solutions #. a. Qualitative - ordinal b. Qualitative - nominal c. Quantitative continuous, ratio d. Qualitative -

More information

Measures of disease spread

Measures of disease spread Measures of disease spread Marco De Nardi Milk Safety Project 1 Objectives 1. Describe the following measures of spread: range, interquartile range, variance, and standard deviation 2. Discuss examples

More information

Exploring, summarizing and presenting data. Berghold, IMI, MUG

Exploring, summarizing and presenting data. Berghold, IMI, MUG Exploring, summarizing and presenting data Example Patient Nr Gender Age Weight Height PAVK-Grade W alking Distance Physical Functioning Scale Total Cholesterol Triglycerides 01 m 65 90 185 II b 200 70

More information

Worksheet 2 - Basic statistics

Worksheet 2 - Basic statistics Worksheet 2 - Basic statistics Basic statistics references Fowler et al. (1998) -Chpts 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, & 16 (16.1, 16.2, 16.3, 16.9,16.11-16.14) Holmes et al. (2006) - Chpt 4 & Sections

More information

(a) Find the value of x. (4) Write down the standard deviation. (2) (Total 6 marks)

(a) Find the value of x. (4) Write down the standard deviation. (2) (Total 6 marks) 1. The following frequency distribution of marks has mean 4.5. Mark 1 2 3 4 5 6 7 Frequency 2 4 6 9 x 9 4 Find the value of x. (4) Write down the standard deviation. (Total 6 marks) 2. The following table

More information

Section 2.3: One Quantitative Variable: Measures of Spread

Section 2.3: One Quantitative Variable: Measures of Spread Section 2.3: One Quantitative Variable: Measures of Spread Objectives: 1) Measures of spread, variability a. Range b. Standard deviation i. Formula ii. Notation for samples and population 2) The 95% rule

More information

MEASURING THE SPREAD OF DATA: 6F

MEASURING THE SPREAD OF DATA: 6F CONTINUING WITH DESCRIPTIVE STATS 6E,6F,6G,6H,6I MEASURING THE SPREAD OF DATA: 6F othink about this example: Suppose you are at a high school football game and you sample 40 people from the student section

More information

Descriptive Statistics and Visualizing Data in STATA

Descriptive Statistics and Visualizing Data in STATA Descriptive Statistics and Visualizing Data in STATA BIOS 514/517 R. Y. Coley Week of October 7, 2013 Log Files, Getting Data in STATA Log files save your commands cd /home/students/rycoley/bios514-517

More information

EQ: What is a normal distribution?

EQ: What is a normal distribution? Unit 5 - Statistics What is the purpose EQ: What tools do we have to assess data? this unit? What vocab will I need? Vocabulary: normal distribution, standard, nonstandard, interquartile range, population

More information

PubHlth Introductory Biostatistics Practice Test I (without Unit 3 Questions) SOLUTIONS

PubHlth Introductory Biostatistics Practice Test I (without Unit 3 Questions) SOLUTIONS 1 PubHlth 540 - Introductory Biostatistics Practice Test I (without Unit 3 Questions) SOLUTIONS 1. (10 points) a. (2 points). What is the scale of measurement for systolic blood pressure? Continuous, ratio

More information

Number of fillings Frequency q 4 1. (a) Find the value of q. (2)

Number of fillings Frequency q 4 1. (a) Find the value of q. (2) 1. The table below shows the frequency distribution of the number of dental fillings for a group of 25 children. Number of fillings 0 1 2 3 4 5 Frequency 4 3 8 q 4 1 Find the value of q. Use your graphic

More information

STATISTICS REVIEW. D. Parameter: a constant for the case or population under consideration.

STATISTICS REVIEW. D. Parameter: a constant for the case or population under consideration. STATISTICS REVIEW I. Why do we need statistics? A. As human beings, we consciously and unconsciously evaluate whether variables affect phenomena of interest, but sometimes our common sense reasoning is

More information

Remember your SOCS! S: O: C: S:

Remember your SOCS! S: O: C: S: Remember your SOCS! S: O: C: S: 1.1: Displaying Distributions with Graphs Dotplot: Age of your fathers Low scale: 45 High scale: 75 Doesn t have to start at zero, just cover the range of the data Label

More information

Chapters 1 & 2 Exam Review

Chapters 1 & 2 Exam Review Problems 1-3 refer to the following five boxplots. 1.) To which of the above boxplots does the following histogram correspond? (A) A (B) B (C) C (D) D (E) E 2.) To which of the above boxplots does the

More information

Continuous Probability Distributions

Continuous Probability Distributions Continuous Probability Distributions Called a Probability density function. The probability is interpreted as "area under the curve." 1) The random variable takes on an infinite # of values within a given

More information

Duration of Unemployment - Analysis of Deviance Table for Nested Models

Duration of Unemployment - Analysis of Deviance Table for Nested Models Duration of Unemployment - Analysis of Deviance Table for Nested Models February 8, 2012 The data unemployment is included as a contingency table. The response is the duration of unemployment, gender and

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Clinical Research Module: Biostatistics

Clinical Research Module: Biostatistics Clinical Research Module: Biostatistics Lecture 1 Alberto Nettel-Aguirre, PhD, PStat These lecture notes based on others developed by Drs. Peter Faris, Sarah Rose Luz Palacios-Derflingher and myself Who

More information

P8130: Biostatistical Methods I

P8130: Biostatistical Methods I P8130: Biostatistical Methods I Lecture 2: Descriptive Statistics Cody Chiuzan, PhD Department of Biostatistics Mailman School of Public Health (MSPH) Lecture 1: Recap Intro to Biostatistics Types of Data

More information

Practice problems from chapters 2 and 3

Practice problems from chapters 2 and 3 Practice problems from chapters and 3 Question-1. For each of the following variables, indicate whether it is quantitative or qualitative and specify which of the four levels of measurement (nominal, ordinal,

More information

Last Lecture. Distinguish Populations from Samples. Knowing different Sampling Techniques. Distinguish Parameters from Statistics

Last Lecture. Distinguish Populations from Samples. Knowing different Sampling Techniques. Distinguish Parameters from Statistics Last Lecture Distinguish Populations from Samples Importance of identifying a population and well chosen sample Knowing different Sampling Techniques Distinguish Parameters from Statistics Knowing different

More information

Unit 1: Statistics. Mrs. Valentine Math III

Unit 1: Statistics. Mrs. Valentine Math III Unit 1: Statistics Mrs. Valentine Math III 1.1 Analyzing Data Statistics Study, analysis, and interpretation of data Find measure of central tendency Mean average of the data Median Odd # data pts: middle

More information

Review Questions. Econ 103 Spring 2018

Review Questions. Econ 103 Spring 2018 Review Questions Econ 103 Spring 2018 About This Document These questions are the bread and butter of Econ 103: they cover the basic knowledge that you will need to acquire this semester to pass the course.

More information

Topic 2 Part 1 [195 marks]

Topic 2 Part 1 [195 marks] Topic 2 Part 1 [195 marks] The distribution of rainfall in a town over 80 days is displayed on the following box-and-whisker diagram. 1a. Write down the median rainfall. 1b. Write down the minimum rainfall.

More information

Bioeng 3070/5070. App Math/Stats for Bioengineer Lecture 3

Bioeng 3070/5070. App Math/Stats for Bioengineer Lecture 3 Bioeng 3070/5070 App Math/Stats for Bioengineer Lecture 3 Five number summary Five-number summary of a data set consists of: the minimum (smallest observation) the first quartile (which cuts off the lowest

More information

Chapter 5. Understanding and Comparing. Distributions

Chapter 5. Understanding and Comparing. Distributions STAT 141 Introduction to Statistics Chapter 5 Understanding and Comparing Distributions Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 27 Boxplots How to create a boxplot? Assume

More information

Resistant Measure - A statistic that is not affected very much by extreme observations.

Resistant Measure - A statistic that is not affected very much by extreme observations. Chapter 1.3 Lecture Notes & Examples Section 1.3 Describing Quantitative Data with Numbers (pp. 50-74) 1.3.1 Measuring Center: The Mean Mean - The arithmetic average. To find the mean (pronounced x bar)

More information

Chapter 2 Solutions Page 15 of 28

Chapter 2 Solutions Page 15 of 28 Chapter Solutions Page 15 of 8.50 a. The median is 55. The mean is about 105. b. The median is a more representative average" than the median here. Notice in the stem-and-leaf plot on p.3 of the text that

More information

Measures of the Location of the Data

Measures of the Location of the Data Measures of the Location of the Data 1. 5. Mark has 51 films in his collection. Each movie comes with a rating on a scale from 0.0 to 10.0. The following table displays the ratings of the aforementioned

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics January 24, 2018 CS 361: Probability & Statistics Relationships in data Standard coordinates If we have two quantities of interest in a dataset, we might like to plot their histograms and compare the two

More information

3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability

3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability 3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability 3.1 Week 1 Review Creativity is more than just being different. Anybody can plan weird; that s easy. What s hard is to be

More information

Topic 5: Statistics 5.3 Cumulative Frequency Paper 1

Topic 5: Statistics 5.3 Cumulative Frequency Paper 1 Topic 5: Statistics 5.3 Cumulative Frequency Paper 1 1. The following is a cumulative frequency diagram for the time t, in minutes, taken by students to complete a task. Standard Level Write down the median.

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

Vocabulary: Samples and Populations

Vocabulary: Samples and Populations Vocabulary: Samples and Populations Concept Different types of data Categorical data results when the question asked in a survey or sample can be answered with a nonnumerical answer. For example if we

More information

Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size. Arrange the values from smallest to largest:

Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size. Arrange the values from smallest to largest: 1 Chapter 3 - Descriptive stats: Numerical measures 3.1 Measures of Location Mean Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size Example: The number

More information

Exploratory data analysis: numerical summaries

Exploratory data analysis: numerical summaries 16 Exploratory data analysis: numerical summaries The classical way to describe important features of a dataset is to give several numerical summaries We discuss numerical summaries for the center of a

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

Statistics 528: Homework 2 Solutions

Statistics 528: Homework 2 Solutions Statistics 28: Homework 2 Solutions.4 There are several gaps in the data, as can be seen from the histogram. Minitab Result: Min Q Med Q3 Max 8 3278 22 2368 2624 Manual Result: Min Q Med Q3 Max 8 338 22.

More information

a. Explain whether George s line of fit is reasonable.

a. Explain whether George s line of fit is reasonable. 1 Algebra I Chapter 11 Test Review Standards/Goals: A.REI.10.: I can identify patterns that describe linear functions. o I can distinguish between dependent and independent variables. F.IF.3.: I can recognize

More information

equal to the of the. Sample variance: Population variance: **The sample variance is an unbiased estimator of the

equal to the of the. Sample variance: Population variance: **The sample variance is an unbiased estimator of the DEFINITION The variance (aka dispersion aka spread) of a set of values is a measure of equal to the of the. Sample variance: s Population variance: **The sample variance is an unbiased estimator of the

More information

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key Statistical Methods III Statistics 212 Problem Set 2 - Answer Key 1. (Analysis to be turned in and discussed on Tuesday, April 24th) The data for this problem are taken from long-term followup of 1423

More information

AP Statistics Bivariate Data Analysis Test Review. Multiple-Choice

AP Statistics Bivariate Data Analysis Test Review. Multiple-Choice Name Period AP Statistics Bivariate Data Analysis Test Review Multiple-Choice 1. The correlation coefficient measures: (a) Whether there is a relationship between two variables (b) The strength of the

More information

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES INTRODUCTION TO APPLIED STATISTICS NOTES PART - DATA CHAPTER LOOKING AT DATA - DISTRIBUTIONS Individuals objects described by a set of data (people, animals, things) - all the data for one individual make

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. Week 1 Chapter 1 Introduction What is Statistics? Why do you need to know Statistics? Technical lingo and concepts:

More information

Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total

Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total rainfall and (b) total rainfall trend from 1979-2014. Total

More information