Characterization of Bipartite Entanglement

Similar documents
Bipartite Continuous-Variable Entanglement. Werner Vogel Universität Rostock, Germany

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU)

arxiv: v2 [quant-ph] 23 Jun 2015

Entanglement Measures and Monotones

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Quantification of Gaussian quantum steering. Gerardo Adesso

The Principles of Quantum Mechanics: Pt. 1

On PPT States in C K C M C N Composite Quantum Systems

Nonclassical Harmonic Oscillator. Werner Vogel Universität Rostock, Germany

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES

Quantum Correlations as Necessary Precondition for Secure Communication

Quantum Entanglement: Detection, Classification, and Quantification

Asymptotic Pure State Transformations

Theory of Quantum Entanglement

Generalized Bell Inequality and Entanglement Witness

Estimation of Optimal Singlet Fraction (OSF) and Entanglement Negativity (EN)

Boundary of the Set of Separable States

Geometry of Entanglement

Characterization of Multipartite Entanglement

CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/2 PARTICLES

Detection of photonic Bell states

Permutations and quantum entanglement

arxiv:quant-ph/ v1 27 Jul 2005

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

Bound entangled states with secret key and their classical counterpart

Entanglement Measures and Monotones Pt. 2

Entanglement: Definition, Purification and measures

A coarse-grained Schrödinger cat

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

Entanglement and non-locality of pure quantum states

Entanglement witnesses

Converse bounds for private communication over quantum channels

4.3 Lecture 18: Quantum Mechanics

arxiv:quant-ph/ v3 17 Jul 2005

Qudit Entanglement. University of New Mexico, Albuquerque, NM USA. The University of Queensland, QLD 4072 Australia.

Quantum Entanglement- Fundamental Aspects

Minimum Uncertainty for Entangled States

Entanglement or Separability an introduction

Quantum correlations and decoherence in systems of interest for the quantum information processing

Ensembles and incomplete information

Distinguishing different classes of entanglement for three qubit pure states

Introduction to Quantum Information Hermann Kampermann

Single-Particle Interference Can Witness Bipartite Entanglement

Quantum Computing with Para-hydrogen

MP 472 Quantum Information and Computation

THE NUMBER OF ORTHOGONAL CONJUGATIONS

Trivariate analysis of two qubit symmetric separable state

Bell tests in physical systems

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

GLOBAL ENTANGLEMENT IN MULTIPARTICLE SYSTEMS

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Is the world more classical or more quantum?

arxiv: v3 [quant-ph] 16 Mar 2008

arxiv: v1 [quant-ph] 5 Mar 2010

Language of Quantum Mechanics

Entanglement Criteria for. Continuous-Variable States

Entanglement in Spintronic Quantum Transport

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Shared Purity of Multipartite Quantum States

Estimating entanglement in a class of N-qudit states

arxiv: v3 [quant-ph] 27 Feb 2009

Quantum entanglement and symmetry

MP463 QUANTUM MECHANICS

Quantum Teleportation Pt. 3

PHY305: Notes on Entanglement and the Density Matrix

arxiv: v3 [quant-ph] 5 Jun 2015

Squashed entanglement

ENTANGLEMENT VERSUS QUANTUM DEGREE OF POLARIZATION

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

Quantum nonlocality in two three-level systems

Simulation of n-qubit quantum systems. II. Separability and entanglement

Introduction to Quantum Key Distribution

2 The Density Operator

arxiv: v2 [quant-ph] 16 Nov 2018

Quantum theory without predefined causal structure

Quantum Theory Group

arxiv: v1 [quant-ph] 24 May 2011

arxiv:quant-ph/ v1 12 Nov 1999

arxiv:quant-ph/ v2 17 Jun 1996

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Maximal Entanglement A New Measure of Entanglement

Upper bound on singlet fraction of mixed entangled two qubitstates

Quantum Entanglement and Geometry

Principles of Quantum Mechanics Pt. 2

arxiv:quant-ph/ v1 9 Apr 1998

Quantum Entanglement and Measurement

Entanglement: concept, measures and open problems

Valerio Cappellini. References

arxiv:quant-ph/ v1 22 Jul 2002

Introduction to Quantum Mechanics Physics Thursday February 21, Problem # 1 (10pts) We are given the operator U(m, n) defined by

Volume of the set of separable states

arxiv: v1 [quant-ph] 23 Nov 2016

Quantum interference and evolution of entanglement in a system of three-level atoms

Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v4 [quant-ph] 22 Feb 2012

arxiv:quant-ph/ v2 15 Jul 2003

Port-based teleportation and its applications

1 More on the Bloch Sphere (10 points)

Transcription:

Characterization of Bipartite Entanglement Werner Vogel and Jan Sperling University of Rostock Germany Paraty, September 2009 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 1

Table of Contents Introduction Partial Transposition Continuous Variable Entanglement Entanglement Witnesses Quasidistributions for Entanglement Entanglement Measures Summary and Conclusions Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 2

Introduction and Definition Early investigations of entanglement EPR paradox [Einstein, Podolsky, Rosen, Phys. Rev. 44, 777 (1935)] Schrödinger s cat [Schrödinger, Naturwiss. 23, 807 (1935)] Today, key resource for new research fields: Quantum-information, -computation, and -technology Definition. [R. F. Werner, PRA 40, 4277 (1989)] A bipartite state ˆϱ is called entangled, if: ˆϱ ˆσ : ˆσ n=0 p n ˆϱ (n) 1 ˆϱ (n) 2, with p n 0, and n p n = 1 Mean values with ˆσ: analogy to classical correlations Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 3

Partial Transposition (PT) Peres condition for partial transposition [A. Peres, Phys. Rev. Lett. 77, 1413 (1996)] ˆσ PT = n p n ˆϱ (n) 1 ˆϱ (n)t 2 0 Violation of Peres condition: sufficient for entanglement Necessary and sufficient: for quantum systems 2 2 or 2 3 and bipartite Gaussian states General approach for bipartite oscillator system: [E. Shchukin and W. Vogel, Phys. Rev. Lett. 95, 230502 (2005)] ˆρ with ˆρ PT 0 Ŵ = (ˆf ˆf ) PT : tr(ˆϱŵ ) = ˆf ˆf PT < 0 General operator expansion: ˆf = n,m,k,l c nmklâ n k l âmˆb ˆb Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 4

Partial Transposition (PT) Quadratic form: ˆf ˆf PT = n,m,k,l p,q,r,s c pqrsc nmkl â q â p â n â mˆb l ˆbk ˆb r ˆbs }{{} D N Delivers matrix of moments D N For states with negative PT (at least one) negative principal minor: det D N < 0 Continuous variable entanglement criterion Characterization of non-gaussian states Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 5

Continuous Variable Entanglement In general, quantum systems given by continuous variables (CV) CV-entanglement completely characterized in finite dimensional Hilbert spaces [J. Sperling and W. Vogel, Phys. Rev. A 79, 052313 (2009)] Theory of Hilbert spaces delivers: ˆρ has a spectral decomposition with a countable number of eigenvectors ψ i ψ i has a countable Schmidt decomposition Existence of finite supspaces V 1, V 2, with a projected entangled state [ˆPV1 ˆP ] V2 ˆρ [ˆPV1 ˆP ] V2 Theorem for CV-entanglement. A quantum state ˆρ is entangled, if and only if it is entangled in a finite space. Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 6

Optimized general entanglement conditions Necessary and sufficient condition by entanglement witnesses: [M. Horodecki, P. Horodecki and R. Horodecki, Phys. Lett. A 223, 1 (1996)] Ŵ is a bounded Hermitian operator tr(ˆσŵ ) 0 ˆσ separable, ˆϱ with tr(ˆϱŵ ) < 0 Generalized and optimized entanglement conditions [J. Sperling and W. Vogel, Phys. Rev. A 79, 022318 (2009)] Maximal expectation value of an arbitrary observable  for all separable states: f AB (Â) = sup{tr(ˆσâ)} Theorem. ˆϱ is entangled Â: fab(â) < tr(ˆϱâ). Optimal entanglement conditions! General, optimal witnesses: Ŵ = f AB (Â)ˆ1 Â, no longer needed! Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 7

Separability Eigenvalue Problem For general entanglement condition: need to find f AB (Â) Optimization problem: g(a, b) = a, b  a, b max. Normalization condition h(a, b) = a, b a, b 1 0 Method of Lagrangian multipliers delivers algebraic expression Definition of separability eigenvalue equations.  b a = g a and  a b = g b With Âa = tr A [ ( a a ˆ1 ) ) B ] and Âb = tr B [ (ˆ1A b b ], reduced observables Result: f AB (Â) = sup {g} Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 8

Optimized general entanglement conditions Implementation of entanglement condition f AB (Â) < tr(ˆϱâ) Spherical grid of operators {Âi} i=1...n,: Âi = 1,  (with  = 1) i : Âi  < ɛ. Error ɛ of test: related to experimental precision! Figure: Grid of operators, with Ŵ i = f AB (Âi)ˆ1 Âi. Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 9

Identifying PPT bound entanglement SE g and SE vector a, b transform under PT to g and a, b State ˆϱ BE is PPT bound entangled (1) Ĉ = ˆf ˆf : 0 tr(ˆϱbe Ĉ PT ) (2) ˆf : inf{ a, b Ĉ a, b } > tr(ˆϱ BEĈPT ) Figure: BE states Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 10

Entanglement by Quasi-Probabilities Characterizing entanglement by quasi-probabilities: Representation of entangled states by separable ones [Sanpera, Tarrach, Vidal, PRA 58, 826 (1998); Vidal, Tarrach, PRA 59, 141 (1999)] ˆρ = (1 + µ)ˆσ µˆσ, µ 0 Representation of any state ˆρ: ˆρ = k p k a k, b k a k, b k, P Ent = (p k ) k In general P Ent 0: quasi-probability distribution Problem: P Ent ambiguous Optimization: determining P Ent with minimal negativity. Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 11

Ambiguity of quasi-probabilities Unambiguous characterization of entanglement [J. Sperling and W. Vogel, Phys. Rev. A 79, 042337 (2009)] ˆρ in terms of factorized states: ˆρ = dp Ent (a, b) a, b a, b Signed measures f generating the ˆ0 operator: ˆ0 = df (a, b) a, b a, b New quasi-probabilities, P Ent P Ent + f, for the given state ˆρ ˆρ + ˆ0 Minimal negativity d P Ent (a, b) + f (a, b) 2 min Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 12

Entanglement quasi-probabilities Leads to SE equations for the quantum state ρ itself Solution of SE equations: linear system of equations Solution yields p P ent = p i δ ai,b i i unambiguous representation of any quantum state ˆρ with optimized quasi-probability P Ent State ˆρ is entangled a, b : P Ent (a, b) < 0 State ˆρ is separable a, b : P Ent (a, b) 0 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 13

Entanglement Measures Quantification of entanglement [C. H. Bennett et al., Phys. Rev. A 54, 3824 (1996); V. Vedral et al., PRL 78, 2275 (1997); G. Vidal, J. Mod. Opt. 47, 355 (2000).] Entanglement amount of separable states vanishes LOCC paradigm: Entanglement cannot increase under certain operations. Definition entanglement measure. (i) ˆσ separable E(ˆσ) = 0 ( ) Λ(ˆρ) (ii) E(ˆρ) E trλ( ˆρ) Arising questions: maximally entangled states?; existence of superior measure?; useful amount of entanglement? Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 14

Local operation and classical communication Definition of measure requires fundamental understanding of LOCCs Operations which only can make a state separable Λ via separable operations i Λ(ˆρ) = (Âi ˆB i )ˆρ(Âi ˆB i ) i tr(âi ˆB i )ˆρ(Âi ˆB i ) LOCC subset of all such operations Used devices or protocolls can perform operation Λ X All configurations of such operations, Λ 1 (Λ 2 (... Λ n (ˆρ))), define LOCCs C X Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 15

Maximally entangled states Maximal amount of entanglement for ˆρ max : E(ˆρ max ) E(ˆρ) Consider maximally entangled state ˆρ max = φ φ, with a Schmidt decomposition φ = k 1 r e k, f k Consider Λ(ˆρ) = (ˆ1 A ˆT )ˆρ(ˆ1 A ˆT ), with local invertable ˆT f k = rλ k f k Transformation to ˆ1 A ˆT φ = k λ k e k, f k ˆρ = (ˆ1 A ˆT ) φ φ (ˆ1 A ˆT ) maximally entangled for the measure E, ( ) E (ˆρ) def. = E (ˆ1 A ˆT 1 )ˆρ(ˆ1 A ˆT 1 ) tr(ˆ1 A ˆT 1 )ˆρ(ˆ1 A ˆT 1 ) Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 16

Maximally entangled states Observation. For any choice of Schmidt coefficients of ψ we can define measure E by local invertable operations, such that ψ is maximally entangled. Note: implementation of local invertable operation in noise-free amplification [G. Y. Xiang, T. C. Ralph, et al., arxiv:0907.3638] Which rule play Schmidt coefficients for the amount of entanglement? No importance for universal entanglement measures Definition. A measure, which is invariant under local invertable operations, is called universal. [J. Sperling and W. Vogel, arxiv:0908.3974] Example: the Schmidt number r S ; generalization of the Schmidt rank to mixed quantum states Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 17

Schmidt number monotones Local projections ˆP can decrease the Schmidt number, ˆP = r 1 k=1 e k e k ˆP ˆ1 B ψ r = r 1 k=1 λ k e k, f k = ψ r 1 Observation: Schmidt number monotones. Entanglement measures have a monotonic behavior with respect to the Schmidt number, E( ψ r ψ r ) E( ψ r 1 ψ r 1 ). Boundaries for the amount of entanglement of ρ can be given by the Schmidt number: r S (ˆρ 1 ) < r S (ˆρ) < r S (ˆρ 2 ) E(ˆρ 1 ) E(ˆρ) E(ˆρ 2 ) Schmidt coefficients are of minor, and Schmidt number of major importance for the quantification of entanglement Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 18

Operational entanglement measures Usable entanglement for experiment with given pseudo-measure Definition: operational entanglement. ( tr Λ(ˆρ) ˆM ) tr Λ(ˆρ) f 12 ( ˆM) E ˆM(ˆρ) = sup Λ C X f ( ˆM) f 12 ( ˆM) E ˆM(ˆρ): one (perfect entanglement for a given experiment) zero (no usable entanglement), f ( ˆM): maximal eigenvalue of ˆM For quantum teleportation and quantum computation other types of entanglement are needed [D. Gross, S. Flammia, J. Eisert, Phys. Rev. Lett. 102, 190501 (2009)] Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 19

Summary Identification of PT entanglement Reduction of CV entanglement to finite spaces Optimized, necessary and sufficient conditions in terms of arbitrary Hermitian operators Separability eigenvalue equations Optimized quasi-distributions Universal entanglement measure: Schmidt number Operational entanglement measures Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 20