Quantification of Gaussian quantum steering. Gerardo Adesso

Size: px
Start display at page:

Download "Quantification of Gaussian quantum steering. Gerardo Adesso"

Transcription

1 Quantification of Gaussian quantum steering Gerardo Adesso

2 Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications

3 Steering timeline

4 EPR paradox (1935) 0 q As a consequence of two different measurements performed upon the first system, the second system may be left in states with two different [kinds of] wavefunctions COOL STORY, BRO The theory allows a system to be steered into one or the other type of state at the experimenter s mercy in spite of his having no access to it. [ ] Since I can predict either [q] or [p] without interfering with [the second] system, [it] must know both answers; which is an amazing knowledge.

5 Reid s criterion (1989) 0 q ρ AB Bob can measure q B or p B, obtaining respective outcomes Q B, P B Alice wants to guess those outcomes by measuring her system Alice measures q A with outcome Q A and infers Q est B Q A e.g. by linear inference, Q est B Q A = g q Q A The inferred variance on Bob s outcome given Alice s estimate is 2 Q B = Q B Q est B Q 2 A and it can be minimised by finding Δ inf the optimal g q Alice can equivalently estimate P B by measuring p A Criterion: If the Heisenberg-type condition Δ 2 inf Q B Δ 2 inf P B 1 is violated, then ρ AB is A B steerable

6 Wiseman et al. (2007) For a bipartite state ρ AB, given measurement operators a and b on Alice s and Bob s parties, with outcomes A and B, if for all pairs a and b the joint statistics of the measurement results cannot have arisen from correlations between a random local hidden variable for Alice and a random local hidden variable for Bob, p a, b A, B; ρ AB λ p a A, λ p b B, λ p λ ρ AB is Bell nonlocal have arisen from correlations between a random local hidden variable for Alice and a random pure state measured by Bob, p a, b A, B; ρ AB λ p a A, λ p b B; τ λ B p λ ρ AB is A B steerable have arisen from correlations between a random pure state measured by Alice and a random pure state measured by Bob, p a, b A, B; ρ AB λ p a A; σ A λ p b B; τ B λ p λ ρ AB is entangled

7 Hierarchy of correlations nonlocal steerable entangled discordant classical

8 Continuous variable systems Prototype: a quantised scalar field (e.g. the electromagnetic field), modelled as a collection of harmonic oscillators Each oscillator: a mode of the field, a k, a k = 1 Natural units: ħ = c = 1 a k = 1 2 q k + i p k, a k = 1 2 q k i p k q k = 1 2 a k + a k, p k = 1 i 2 a k a k

9 Continuous variable systems We introduce a vector of canonical operators: R = q 1, p 1, q 2, p 2,, q N, p N Canonical commutation relations: q j, p k = i δ jk q j, q k = 0, p j, p k = 0 Introducing the N-mode symplectic matrix Ω N = Ω N, with Ω = 0 1, then we can write the commutation relations 1 0 compactly: R j, R k = i Ω N jk

10 Phase space description Introduce vectors ξ, κ R 2N of phase-space coordinates Weyl displacement operator Characteristic function Wigner function Properties W is real ( ρ is Hermitian) W can be negative (it is a quasi-probability distribution) W is normalised: dξ R 2N W ρ ξ = 1 ( tr ρ = 1 ) State purity: μ = tr ρ 2 = 2π N dξ R 2N W ρ ξ 2

11 Gaussian states are states whose Wigner distribution is a Gaussian function in phase space W ρ ξ = exp ξ R T σ 1 (ξ R) π N det σ Completely specified by: A vector of means R (first moments): R = R ρ = q 1, p 1,, q N, p N [irrelevant: can be set to 0] A covariance matrix (second moments) σ of elements σ jk = R j R k + R k R j ρ 2 R j ρ R k ρ

12 Gaussian states Very natural: ground and thermal states of all physical systems in the harmonic approximation regime Relevant theoretical testbeds to study the structural properties of quantum correlations, thanks to the symplectic formalism Preferred resources for experimental unconditional implementations of continuous variable protocols Crucial role and remarkable control in quantum optics coherent states squeezed states thermal states

13 Gaussian toolbox Adesso et al, J. Phys. A: Math. Gen. 40, 7821 (2007); Open Syst. Inf. Dyn. 21, (2014)

14 Two-mode Gaussian states σ AB = α γ γ T β σ σ AB is the (4x4) covariance matrix of the two-mode state ρ AB α is the (2x2) reduced covariance matrix of mode A β is the (2x2) reduced covariance matrix γ is the (2x2) block encoding intermodal correlations By local unitary operations (symplectic on the covariance matrix) sf we can transform any σ AB into a standard form σ AB S A S B σ AB S A S B a 0 c 0 = σ AB = 0 a 0 d c 0 0 d b 0 0 b T

15 Example Two-mode squeezed state ( Twin Beam ) Beam Splitter 50:50 EPR correlations: ζ = 1 2 Δ2 q A q B + Δ 2 p A + p B = e 2r Approaches the EPR state for large squeezing r momentumsqueezed (r) positionsqueezed (r) σ AB r = cosh 2r 0 0 cosh (2r) sinh (2r) 0 0 sinh (2r) sinh (2r) 0 0 sinh (2r) cosh (2r) 0 0 cosh (2r)

16 Entanglement (pure states) Entropy of Entanglement : E ρ AB = S ρ A = S ρ B where ρ A(B) is the marginal state of mode A(B), obtained by partial trace over mode B(A) Von Neumann entropy of a Gaussian state: S ρ = N k=1 ν k +1 2 log ν k+1 2 For a two-mode squeezed state: ν k 1 2 log ν k 1 2 E ρ AB = cosh 2 r log cosh 2 r sinh 2 r log sinh 2 r α σ AB r = cosh 2r 0 0 cosh (2r) sinh (2r) 0 0 sinh (2r) sinh (2r) 0 0 sinh (2r) cosh (2r) 0 0 cosh (2r)

17 Entanglement (pure states) Renyi-2 Entropy of Entanglement : E 2 ρ AB = S 2 ρ A = S 2 ρ B where ρ A(B) is the marginal state of mode A(B), obtained by partial trace over mode B(A) Renyi-2 entropy of a Gaussian state: S 2 ρ = 1 log det σ = N log ν 2 k=1 k For a two-mode squeezed state: E 2 ρ AB = log cosh 2r α σ AB r = cosh 2r 0 0 cosh (2r) sinh (2r) 0 0 sinh (2r) sinh (2r) 0 0 sinh (2r) cosh (2r) 0 0 cosh (2r)

18 Entanglement (mixed states) Gaussian convex roof: E ρ AB = inf {p i, ψab i } p i E( ψ AB i ) i where the minimisation is restricted to decompositions into Gaussian states ψ AB (for any chosen E for pure states) i For two-mode Gaussian states with cov. matrix σ AB E σ AB = inf E(ς pure AB ) Examples: pure ς AB σab Gaussian entanglement of formation Gaussian Renyi-2 entanglement

19 Entanglement (mixed states) PPT criterion Transposition = time reversal (Simon 2000) Partial transposition (say w.r.t. B) = flipping the momentum operator in mode B For two-mode Gaussian states with cov. matrix σ AB PPT is necessary and sufficient for separability σ AB = a 0 0 a c 0 0 d c 0 0 d b 0 0 b partial T B σ AB = a 0 0 a c 0 0 d c 0 0 d b 0 0 b

20 Entanglement (mixed states) Bona fide vs PPT criterion Physical PPT Density matrix ρ AB 0 T ρ B AB 0 Covariance matrix Symplectic spectrum σ AB + i Ω A Ω B 0 σ AB + i Ω A Ω B 0 σ AB + i Ω A Ω B 0 σ AB + i Ω A ( Ω B ) 0 ν k 1 k Logarithmic negativity E N σ AB = 0, if ν k 1 k log ν k k: ν k <1 ν k 1 k

21 Gaussian steering Bona fide vs PPT vs steering Density matrix Covariance matrix Symplectic spectrum Physical PPT A B non-steerable ρ AB 0 σ AB + i Ω A Ω B 0 T ρ B AB 0 σ AB + i Ω A Ω B 0 ν k 1 k ν k 1 k??? no simple criterion σ AB + i 0 A Ω B 0 Violation of this condition is necessary and sufficient for steerability of all bipartite Gaussian states by Gaussian measurements (Wiseman et al 2007)

22 Then: Gaussian steering Recall: σ AB = σ AB + i 0 A Ω B 0 α γ γ T β α > 0 (always true) σ B + i Ω B 0 where we defined the Schur complement σ B = β γ T α 1 γ with symplectic spectrum ν k Criterion: the bipartite Gaussian state σ AB is A B steerable by Gaussian measurements if and only if the Schur covariance matrix σ B is not bona fide

23 Gaussian steering: measure Covariance matrix Symplectic spectrum Physical PPT A B non-steerable σ AB + i Ω A Ω B 0 ν k 1 k (k = 1,, n A + n B ) σ AB + i Ω A Ω B 0 ν k 1 k (k = 1,, n A + n B ) σ B + i Ω B 0 ν k 1 k (k = 1,, n B ) Gaussian steerability: 0, if ν k 1 k G A B σ AB = log ν k k: ν k <1

24 Gaussian steering: properties 0, if ν k 1 k G A B σ AB = log ν Computable Convex k: ν k <1 Additive on tensor product states Nonincreasing under local operations on A Equal to entanglement on pure states (measured by Renyi-2 entropy) Smaller than entanglement on mixed states (i.e. respects the hierarchy of correlations!)

25 Gaussian steering: 2 modes Gaussian steerability: σ AB = α γ γ T β G A B σ AB = max {0, log det σ B } = max 0, 1 det α log 2 det σ AB = max 0, S 2 α S 2 (σ AB ) The degree of steerability takes a form of Renyi-2 coherent information This formula is valid for more general (n+1)-mode Gaussian states

26 Classifying 2-mode states Local purities μ A, μ B ; global purity ratio η = μ Aμ B μ μ μ A μ B μ B 2004 μ A

27 Classifying 2-mode states Local purities μ A, μ B ; global purity ratio η = μ Aμ B μ μ A μ B μ μ B 2014 μ A

28 Steering vs entanglement

29 Wiseman vs Reid (2-modes) Wiseman s condition: det σ B 1 Necessary and sufficient for all Gaussian states Specific to Gaussian measurements Reid s criterion: Δ 2 inf Q B Δ 2 inf P B 1 Does not detect all Gaussian states Can be applied to arbitrary states and measurements

30 Wiseman vs Reid (2-modes) Wiseman s condition: det σ B 1 Reid s criterion: Δ 2 inf Q B Δ 2 inf P B 1 We have proven: min Δ 2 inf Q B Δ 2 inf P B = det σ B {rotated quadratures} Our measure thus also quantifies the degree of violation of an optimised Reid s criterion for the EPR paradox!

31 Applications: secure quantum cryptography One-sided device independent quantum key distribution Alice and Bob share a two-mode Gaussian state (with covariance matrix in standard form) They adopt a reverse reconciliation protocol Secure key rate K K max 0, G A B σ AB + log 2 1

32 Applications: Peres conjecture Peres: PPT states cannot be nonlocal (1999) Pusey: PPT states cannot even be steerable (2013) Both conjectures are now disproven (Vertesi & Brunner Nat. Commun. 2014) But they hold in the Gaussian domain! Physical PPT A B non-steerable Covariance matrix σ AB + i Ω A Ω B 0 σ AB + i Ω A Ω B 0 σ AB + i 0 A Ω B 0 NO-GO: Steering bound entangled Gaussian states by Gaussian measurements is impossible

33 Conclusions We discussed the concept of EPR steering, and how to deal with it in continuous variable systems We proposed the first measure of steering for Gaussian states It is computable, respects the hierarchy of correlations, and has notable properties and applications We proved Peres conjecture for Gaussian states and measurements

34 Future directions Multipartite steering and monogamy (He & Reid PRL 2013; Reid PRA 2013; Nature Phys. 2014) Steering in non-gaussian states (our Gaussian steerability gives a lower bound) Applications to subchannel discrimination in the Gaussian setting Role of steering in existing or novel quantum communication protocols

35 Thank you Quantification of Gaussian quantum steering Ioannis Kogias, Antony R. Lee, Sammy Ragy, and Gerardo Adesso arxiv: EPR-Steering measure for two-mode continuous variable states Ioannis Kogias and Gerardo Adesso arxiv:

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London Gerardo Adesso University of Nottingham Davide Girolami University of Nottingham Alessio Serafini University College London arxiv:1203.5116; Phys. Rev. Lett. (in press) A family of useful additive entropies

More information

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO IDENTIFYING AND EXPLORING THE QUANTUM-CLASSICAL BORDER Quantum Classical FOCUSING ON CORRELATIONS AMONG COMPOSITE SYSTEMS OUTLINE Quantum correlations

More information

Quantum Theory Group

Quantum Theory Group Quantum Theory Group Dipartimento di Fisica E.R. Caianiello Università di Salerno G. Adesso, F. Dell Anno, S. De Siena, A. Di Lisi, S. M. Giampaolo, F. Illuminati, G. Mazzarella former members: A. Albus

More information

Extremal entanglement and mixedness in continuous variable systems

Extremal entanglement and mixedness in continuous variable systems PHYSICAL REVIEW A 70, 0318 (004) Extremal entanglement and mixedness in continuous variable systems Gerardo Adesso, Alessio Serafini, and Fabrizio Illuminati Dipartimento di Fisica E. R. Caianiello, Università

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Seiji Armstrong 1, Meng Wang 2, Run Yan Teh 3, Qihuang Gong 2, Qiongyi He 2,3,, Jiri Janousek 1,

More information

Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario Huangjun Zhu (Joint work with Quan Quan, Heng Fan, and Wen-Li Yang) Institute for Theoretical Physics, University of

More information

Coherence, Discord, and Entanglement: Activating one resource into another and beyond

Coherence, Discord, and Entanglement: Activating one resource into another and beyond 586. WE-Heraeus-Seminar Quantum Correlations beyond Entanglement Coherence, Discord, and Entanglement: Activating one resource into another and beyond Gerardo School of Mathematical Sciences The University

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

arxiv:quant-ph/ v4 16 Dec 2003

arxiv:quant-ph/ v4 16 Dec 2003 Symplectic invariants, entropic measures and correlations of Gaussian states Alessio Serafini, Fabrizio Illuminati and Silvio De Siena Dipartimento di Fisica E. R. Caianiello, Università di Salerno, INFM

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

Quantum Entanglement- Fundamental Aspects

Quantum Entanglement- Fundamental Aspects Quantum Entanglement- Fundamental Aspects Debasis Sarkar Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009, India Abstract Entanglement is one of the most useful

More information

2.1 Definition and general properties

2.1 Definition and general properties Chapter 2 Gaussian states Gaussian states are at the heart of quantum information processing with continuous variables. The basic reason is that the vacuum state of quantum electrodynamics is itself a

More information

High rate quantum cryptography with untrusted relay: Theory and experiment

High rate quantum cryptography with untrusted relay: Theory and experiment High rate quantum cryptography with untrusted relay: Theory and experiment CARLO OTTAVIANI Department of Computer Science, The University of York (UK) 1st TWQI Conference Ann Arbor 27-3 July 2015 1 In

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

GENERATION OF QUANTUM STEERING IN GAUSSIAN OPEN SYSTEMS

GENERATION OF QUANTUM STEERING IN GAUSSIAN OPEN SYSTEMS v..1r0180507 *018.6.6#5bdf88e1 GENERATION OF QUANTUM STEERING IN GAUSSIAN OPEN SYSTEMS AURELIAN ISAR 1, 1 Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering,

More information

DYNAMICS OF ENTANGLEMENT OF THREE-MODE GAUSSIAN STATES IN THE THREE-RESERVOIR MODEL

DYNAMICS OF ENTANGLEMENT OF THREE-MODE GAUSSIAN STATES IN THE THREE-RESERVOIR MODEL DYNAMICS OF ENTANGLEMENT OF THREE-MODE GAUSSIAN STATES IN THE THREE-RESERVOIR MODEL HODA ALIJANZADEH BOURA 1,,a, AURELIAN ISAR,b, YAHYA AKBARI KOURBOLAGH 1,c 1 Department of Physics, Azarbaijan Shahid

More information

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2 31st Jerusalem Winter School in Theoretical Physics: Problem Set Contents Frank Verstraete: Quantum Information and Quantum Matter : 3 : Solution to Problem 9 7 Daniel Harlow: Black Holes and Quantum Information

More information

Quantum entanglement and symmetry

Quantum entanglement and symmetry Journal of Physics: Conference Series Quantum entanglement and symmetry To cite this article: D Chrucisi and A Kossaowsi 2007 J. Phys.: Conf. Ser. 87 012008 View the article online for updates and enhancements.

More information

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013).

Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, (2013). 1 / 24 Extremal properties of the variance and the quantum Fisher information; Phys. Rev. A 87, 032324 (2013). G. Tóth 1,2,3 and D. Petz 4,5 1 Theoretical Physics, University of the Basque Country UPV/EHU,

More information

Entanglement Criteria for. Continuous-Variable States

Entanglement Criteria for. Continuous-Variable States Imperial College London Entanglement Criteria for Continuous-Variable States Tanapat Deesuwan 24 September 2010 Submitted in partial fulfilment of the requirements for the degree of Master of Science of

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Compression and entanglement, entanglement transformations

Compression and entanglement, entanglement transformations PHYSICS 491: Symmetry and Quantum Information April 27, 2017 Compression and entanglement, entanglement transformations Lecture 8 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement 12/02/13 Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement Ryo Namiki Quantum optics group, Kyoto University 京大理 並木亮 求職中 arxiv:1109.0349 Quantum Entanglement

More information

Quantum theory without predefined causal structure

Quantum theory without predefined causal structure Quantum theory without predefined causal structure Ognyan Oreshkov Centre for Quantum Information and Communication, niversité Libre de Bruxelles Based on work with Caslav Brukner, Nicolas Cerf, Fabio

More information

Mutual Information in Conformal Field Theories in Higher Dimensions

Mutual Information in Conformal Field Theories in Higher Dimensions Mutual Information in Conformal Field Theories in Higher Dimensions John Cardy University of Oxford Conference on Mathematical Statistical Physics Kyoto 2013 arxiv:1304.7985; J. Phys. : Math. Theor. 46

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

Characterization of Bipartite Entanglement

Characterization of Bipartite Entanglement Characterization of Bipartite Entanglement Werner Vogel and Jan Sperling University of Rostock Germany Paraty, September 2009 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 1 Table of Contents

More information

Quantum Steerability for Entangled Coherent States

Quantum Steerability for Entangled Coherent States Proceedings of the First International Workshop on ECS and Its Application to QIS;T.M.Q.C., 35-40 2013) 35 Quantum Steerability for Entangled Coherent States Chang-Woo Lee, 1 Se-Wan Ji, 1 and Hyunchul

More information

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES acta physica slovaca vol. 50 No. 3, 351 358 June 2000 ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES S. Scheel 1, L. Knöll, T. Opatrný, D.-G.Welsch Theoretisch-Physikalisches

More information

Bell tests in physical systems

Bell tests in physical systems Bell tests in physical systems Seung-Woo Lee St. Hugh s College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of

More information

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v2 [quant-ph] 21 Oct 2013 Genuine hidden quantum nonlocality Flavien Hirsch, 1 Marco Túlio Quintino, 1 Joseph Bowles, 1 and Nicolas Brunner 1, 1 Département de Physique Théorique, Université de Genève, 111 Genève, Switzerland H.H.

More information

Steering, Entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox

Steering, Entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox Griffith Research Online https://research-repository.griffith.edu.au Steering, Entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox Author Wiseman, Howard, Jones, Steve, Doherty, A. Published

More information

Genuine three-partite entangled states with a hidden variable model

Genuine three-partite entangled states with a hidden variable model Genuine three-partite entangled states with a hidden variable model Géza Tóth 1,2 and Antonio Acín 3 1 Max-Planck Institute for Quantum Optics, Garching, Germany 2 Research Institute for Solid State Physics

More information

Channel Steering. Marco Piani 1, 2. University of Waterloo, N2L 3G1 Waterloo ON, Canada. compiled: December 23, 2014

Channel Steering. Marco Piani 1, 2. University of Waterloo, N2L 3G1 Waterloo ON, Canada. compiled: December 23, 2014 Channel Steering Marco Piani 1, 2 1 SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of

More information

Generalized Bell Inequality and Entanglement Witness

Generalized Bell Inequality and Entanglement Witness Nonlocal Seminar 2005 Bratislava, April 29th 2005 Reinhold A. Bertlmann Generalized Bell Inequality and Entanglement Witness Institute for Theoretical Physics University of Vienna Motivation Composite

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Maximal vectors in Hilbert space and quantum entanglement

Maximal vectors in Hilbert space and quantum entanglement Maximal vectors in Hilbert space and quantum entanglement William Arveson arveson@math.berkeley.edu UC Berkeley Summer 2008 arxiv:0712.4163 arxiv:0801.2531 arxiv:0804.1140 Overview Quantum Information

More information

Multimode Entanglement in. Continuous Variables

Multimode Entanglement in. Continuous Variables Multimode Entanglement in Continuous Variables Entanglement with continuous variables What are we measuring? How are we measuring it? Why are we using the Optical Parametric Oscillator? What do we learn?

More information

Shared Purity of Multipartite Quantum States

Shared Purity of Multipartite Quantum States Shared Purity of Multipartite Quantum States Anindya Biswas Harish-Chandra Research Institute December 3, 2013 Anindya Biswas (HRI) Shared Purity December 3, 2013 1 / 38 Outline of the talk 1 Motivation

More information

Detection of photonic Bell states

Detection of photonic Bell states LECTURE 3 Detection of photonic Bell states d a c Beam-splitter transformation: b ˆB ˆB EXERCISE 10: Derive these three relations V a H a ˆB Detection: or V b H b or Two photons detected in H a, H b, V

More information

Acceleration and Entanglement: a Deteriorating Relationship

Acceleration and Entanglement: a Deteriorating Relationship Acceleration and Entanglement: a Deteriorating Relationship R.B. Mann Phys. Rev. Lett. 95 120404 (2005) Phys. Rev. A74 032326 (2006) Phys. Rev. A79 042333 (2009) Phys. Rev. A80 02230 (2009) D. Ahn P. Alsing

More information

Unitary Process Discrimination with Error Margin

Unitary Process Discrimination with Error Margin Unitary Process Discrimination with Error Margin DEX-SMI Workshop on Quantum Statistical Inference March 2-4, 2009, National Institute of Informatics (NII), Tokyo A. Hayashi (Fukui) T. Hashimoto (Fukui),

More information

Spin chain model for correlated quantum channels

Spin chain model for correlated quantum channels Spin chain model for correlated quantum channels Davide Rossini Scuola Internazionale Superiore di Studi Avanzati SISSA Trieste, Italy in collaboration with: Vittorio Giovannetti (Pisa) Simone Montangero

More information

Distinguishing different classes of entanglement for three qubit pure states

Distinguishing different classes of entanglement for three qubit pure states Distinguishing different classes of entanglement for three qubit pure states Chandan Datta Institute of Physics, Bhubaneswar chandan@iopb.res.in YouQu-2017, HRI Chandan Datta (IOP) Tripartite Entanglement

More information

arxiv:quant-ph/ v3 17 Jul 2005

arxiv:quant-ph/ v3 17 Jul 2005 Quantitative measures of entanglement in pair coherent states arxiv:quant-ph/0501012v3 17 Jul 2005 G. S. Agarwal 1 and Asoka Biswas 2 1 Department of Physics, Oklahoma state University, Stillwater, OK

More information

Theory of Quantum Entanglement

Theory of Quantum Entanglement Theory of Quantum Entanglement Shao-Ming Fei Capital Normal University, Beijing Universität Bonn, Bonn Richard Feynman 1980 Certain quantum mechanical effects cannot be simulated efficiently on a classical

More information

Steering and Entropic Uncertainty Relations

Steering and Entropic Uncertainty Relations Steering and Entropic Uncertainty Relations Ana C. S. Costa, Roope Uola, Otfried Gühne Department of Physics, University of Siegen - Germany September 5, 2017 na C. S. Costa, Roope Uola, Otfried Gühne

More information

Device-Independent Quantum Information Processing (DIQIP)

Device-Independent Quantum Information Processing (DIQIP) Device-Independent Quantum Information Processing (DIQIP) Maciej Demianowicz ICFO-Institut de Ciencies Fotoniques, Barcelona (Spain) Coordinator of the project: Antonio Acín (ICFO, ICREA professor) meeting,

More information

Quantum Entanglement: Detection, Classification, and Quantification

Quantum Entanglement: Detection, Classification, and Quantification Quantum Entanglement: Detection, Classification, and Quantification Diplomarbeit zur Erlangung des akademischen Grades,,Magister der Naturwissenschaften an der Universität Wien eingereicht von Philipp

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

arxiv: v2 [quant-ph] 20 Jan 2017

arxiv: v2 [quant-ph] 20 Jan 2017 Einstein-Podolsky-Rosen Steering and Quantum Steering Ellipsoids: Optimal Two-Qubit States and Projective Measurements R. McCloskey, A. Ferraro, and M. Paternostro Centre for Theoretical Atomic, Molecular,

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:1.138/nature1366 I. SUPPLEMENTARY DISCUSSION A. Success criterion We shall derive a success criterion for quantum teleportation applicable to the imperfect, heralded dual-rail

More information

(Quantum?) Processes and Correlations with no definite causal order

(Quantum?) Processes and Correlations with no definite causal order (Quantum?) Processes and Correlations with no definite causal order Cyril Branciard Institut Néel - Grenoble, France!! Workshop on Quantum Nonlocality, Causal Structures and Device-Independent Quantum

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

0.5 atoms improve the clock signal of 10,000 atoms

0.5 atoms improve the clock signal of 10,000 atoms 0.5 atoms improve the clock signal of 10,000 atoms I. Kruse 1, J. Peise 1, K. Lange 1, B. Lücke 1, L. Pezzè 2, W. Ertmer 1, L. Santos 3, A. Smerzi 2, C. Klempt 1 1 Institut für Quantenoptik, Leibniz Universität

More information

Quântica Oscilador Paramétrico

Quântica Oscilador Paramétrico Luz e Átomos como ferramentas para Informação Quântica Oscilador Paramétrico Ótico Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Parametric Down Conversion Energy and

More information

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak Department of Theoretical Physics, University of Lodz Pomorska 149/153,

More information

Permutations and quantum entanglement

Permutations and quantum entanglement Journal of Physics: Conference Series Permutations and quantum entanglement To cite this article: D Chruciski and A Kossakowski 2008 J. Phys.: Conf. Ser. 104 012002 View the article online for updates

More information

Vacuum Entanglement. B. Reznik (Tel-Aviv Univ.)

Vacuum Entanglement. B. Reznik (Tel-Aviv Univ.) Vacuum Entanglement. Reznik (Tel-viv Univ.). otero (Los ndes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.). Retzker (Tel-viv Univ.) J. Silman (Tel-viv Univ.) Quantum Information Theory: Present

More information

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner i f INSTITUT FOURIER Quantum correlations and Geometry Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble Outlines Entangled and non-classical

More information

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

Quantum metrology from a quantum information science perspective

Quantum metrology from a quantum information science perspective 1 / 41 Quantum metrology from a quantum information science perspective Géza Tóth 1 Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science,

More information

arxiv: v1 [quant-ph] 9 Jan 2017

arxiv: v1 [quant-ph] 9 Jan 2017 Lectures on Quantum Information Chapter 1: The separability versus entanglement problem Sreetama Das 1,, Titas Chanda 1,, Maciej Lewenstein 3,4, Anna Sanpera 4,5, Aditi Sen(De) 1,, and Ujjwal Sen 1, 1

More information

Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences

Shunlong Luo. Academy of Mathematics and Systems Science Chinese Academy of Sciences Superadditivity of Fisher Information: Classical vs. Quantum Shunlong Luo Academy of Mathematics and Systems Science Chinese Academy of Sciences luosl@amt.ac.cn Information Geometry and its Applications

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Quantum Fisher information and entanglement

Quantum Fisher information and entanglement 1 / 70 Quantum Fisher information and entanglement G. Tóth 1,2,3 1 Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

More information

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, A qubit: a sphere of values, which is spanned in projective sense by two quantum

More information

Quantum Measurements: some technical background

Quantum Measurements: some technical background Quantum Measurements: some technical background [From the projection postulate to density matrices & (introduction to) von Neumann measurements] (AKA: the boring lecture) First: One more example I wanted

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 03/19/2018 Postulates of Quantum Mechanics The postulates (axioms) of quantum mechanics

More information

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006 Quantum Fisher Information Shunlong Luo luosl@amt.ac.cn Beijing, Aug. 10-12, 2006 Outline 1. Classical Fisher Information 2. Quantum Fisher Information, Logarithm 3. Quantum Fisher Information, Square

More information

Entanglement Manipulation

Entanglement Manipulation Entanglement Manipulation Steven T. Flammia 1 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the

More information

Quantum error correction for continuously detected errors

Quantum error correction for continuously detected errors Quantum error correction for continuously detected errors Charlene Ahn, Toyon Research Corporation Howard Wiseman, Griffith University Gerard Milburn, University of Queensland Quantum Information and Quantum

More information

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA Information-theoretic treatment of tripartite systems and quantum channels Patrick Coles Carnegie Mellon University Pittsburgh, PA USA ArXiv: 1006.4859 a c b Co-authors Li Yu Vlad Gheorghiu Robert Griffiths

More information

arxiv: v3 [quant-ph] 9 Jul 2018

arxiv: v3 [quant-ph] 9 Jul 2018 Operational nonclassicality of local multipartite correlations in the limited-dimensional simulation scenario arxiv:70.0363v3 [quant-ph] 9 Jul 08 C. Jebaratnam E-mail: jebarathinam@bose.res.in S. N. Bose

More information

Entanglement Entropy in Extended Quantum Systems

Entanglement Entropy in Extended Quantum Systems Entanglement Entropy in Extended Quantum Systems John Cardy University of Oxford STATPHYS 23 Genoa Outline A. Universal properties of entanglement entropy near quantum critical points B. Behaviour of entanglement

More information

Entropy in Classical and Quantum Information Theory

Entropy in Classical and Quantum Information Theory Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory,

More information

arxiv: v3 [quant-ph] 27 Feb 2009

arxiv: v3 [quant-ph] 27 Feb 2009 arxiv:0811.803v3 [quant-ph] 7 Feb 009 Entanglement detection Otfried Gühne Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 1A, A-600 Innsbruck,

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Coherence of Assistance and Regularized Coherence of Assistance by Ming-Jing Zhao, Teng Ma, and Shao-Ming Fei Preprint no.: 14 2018

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

arxiv: v4 [quant-ph] 28 Feb 2018

arxiv: v4 [quant-ph] 28 Feb 2018 Tripartite entanglement detection through tripartite quantum steering in one-sided and two-sided device-independent scenarios arxiv:70086v [quant-ph] 8 Feb 08 C Jebaratnam,, Debarshi Das,, Arup Roy, 3

More information

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Probabilistic exact cloning and probabilistic no-signalling. Abstract Probabilistic exact cloning and probabilistic no-signalling Arun Kumar Pati Quantum Optics and Information Group, SEECS, Dean Street, University of Wales, Bangor LL 57 IUT, UK (August 5, 999) Abstract

More information

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2 Quantum decoherence p. 1/2 Quantum decoherence Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, 2007 Quantum decoherence p. 2/2 Outline Quantum decoherence: 1. Basics of quantum

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Approximate reversal of quantum Gaussian dynamics

Approximate reversal of quantum Gaussian dynamics Approximate reversal of quantum Gaussian dynamics L. Lami, S. Das, and M.M. Wilde arxiv:1702.04737 or how to compute Petz maps associated with Gaussian states and channels. Motivation: data processing

More information

arxiv: v1 [quant-ph] 2 Nov 2018

arxiv: v1 [quant-ph] 2 Nov 2018 Entanglement and Measurement-induced quantum correlation in Heisenberg spin models arxiv:1811.733v1 [quant-ph] 2 Nov 218 Abstract Indrajith V S, R. Muthuganesan, R. Sankaranarayanan Department of Physics,

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 1 1D Schrödinger equation: Particle in an infinite box Consider a particle of mass m confined to an infinite one-dimensional well of width L. The potential is given by V (x) = V 0 x L/2, V (x) =

More information

The Principles of Quantum Mechanics: Pt. 1

The Principles of Quantum Mechanics: Pt. 1 The Principles of Quantum Mechanics: Pt. 1 PHYS 476Q - Southern Illinois University February 15, 2018 PHYS 476Q - Southern Illinois University The Principles of Quantum Mechanics: Pt. 1 February 15, 2018

More information

Entanglement and Correlation of Quantum Fields in an Expanding Universe

Entanglement and Correlation of Quantum Fields in an Expanding Universe Entanglement and Correlation of Quantum Fields in an Expanding Universe Yasusada Nambu (Nagoya University, Japan) International Workshop on Strings, Black Holes and Quantum Information @ Tohoku Univ 2015/9/9

More information

Estimating entanglement in a class of N-qudit states

Estimating entanglement in a class of N-qudit states Estimating entanglement in a class of N-qudit states Sumiyoshi Abe 1,2,3 1 Physics Division, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China 2 Department of Physical

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Port-based teleportation and its applications

Port-based teleportation and its applications 2 QUATUO Port-based teleportation and its applications Satoshi Ishizaka Graduate School of Integrated Arts and Sciences Hiroshima University Collaborator: Tohya Hiroshima (ERATO-SORST) Outline Port-based

More information

arxiv: v2 [quant-ph] 3 Mar 2017

arxiv: v2 [quant-ph] 3 Mar 2017 Intrinsic coherence in assisted sub-state discrimination Fu-Lin Zhang and Teng Wang Physics Department, School of Science, Tianjin University, Tianjin 300072, China (Dated: June 11, 2018) arxiv:1609.05134v2

More information

Bit-Commitment and Coin Flipping in a Device-Independent Setting

Bit-Commitment and Coin Flipping in a Device-Independent Setting Bit-Commitment and Coin Flipping in a Device-Independent Setting J. Silman Université Libre de Bruxelles Joint work with: A. Chailloux & I. Kerenidis (LIAFA), N. Aharon (TAU), S. Pironio & S. Massar (ULB).

More information

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states G. Tóth 1,2,3 Collaboration: Entanglement th.: G. Vitagliano 1, I. Apellaniz 1, I.L. Egusquiza

More information

Fundamental rate-loss tradeoff for optical quantum key distribution

Fundamental rate-loss tradeoff for optical quantum key distribution Fundamental rate-loss tradeoff for optical quantum key distribution Masahiro Takeoka (NICT) Saikat Guha (BBN) Mark M. Wilde (LSU) Quantum Krispy Kreme Seminar @LSU January 30, 2015 Outline Motivation Main

More information

Quantum state discrimination with post-measurement information!

Quantum state discrimination with post-measurement information! Quantum state discrimination with post-measurement information! DEEPTHI GOPAL, CALTECH! STEPHANIE WEHNER, NATIONAL UNIVERSITY OF SINGAPORE! Quantum states! A state is a mathematical object describing the

More information