Nonclassical Harmonic Oscillator. Werner Vogel Universität Rostock, Germany

Size: px
Start display at page:

Download "Nonclassical Harmonic Oscillator. Werner Vogel Universität Rostock, Germany"

Transcription

1 Nonclassical Harmonic Oscillator Werner Vogel Universität Rostock, Germany

2 Contents Introduction Nonclassical phase-space functions Nonclassical characteristic functions Nonclassical moments Recent experiments Reconstruction of a nonclassical P function Characteristic functions and moments Nonclassical correlation properties Quantifying nonclassicality

3 Introduction Squeezing: ( ˆx ϕ ) 2 < ( ˆx ϕ ) 2 gr, ˆx ϕ = âe iϕ + â e iϕ nonclassical? Subtracting ground-state (vacuum) noise: : ( ˆx ϕ ) 2 : < 0 ( x ϕ ) 2 cl 0 observable (sufficient) condition for nonclassicality!

4 Nonclassical phase-space functions P-representation of the density operator: 1 ˆρ = d 2 α P (α) α α resembles classical mixture! Expectation values: : ˆF (â, â) : = d 2 αp (α)f (α, α) Correspondence to classical mean values: (1) subtracting ground-state noise via ˆF : ˆF : (2) P corresponds to classical probability: 2 P (α) P cl (α) 1 E. C. G. Sudarshan, Phys. Rev. Lett. 10, 227 (1963); R. J. Glauber, Phys. Rev. 131, 2766 (1963) 2 U.M. Titulaer and R.J. Glauber, Phys. Rev. 140, B676 (1965)

5 Nonclassical phase-space functions A state is nonclassical, if: 3 (a) ground-state noise is substantial, cf. nonclassicality in weak measurements 4 alternatively: 5 small photon numbers (b) P fails to be a classical probability: examples: P (α) P cl (α) Squeezing: : ( ˆx ϕ ) 2 : < 0 sub-poissonian statistics: : ( ˆn) 2 : < 0 Sought: observable conditions for P (α) P cl (α) Problem: P (α) may be strongly singular! 3 W. Vogel, Phys. Rev. Lett. 84, 1849 (2000) 4 L.M. Johansen, Phys. Lett. A 329, 184 (2004) 5 L. Mandel, Phys. Scr. T 12, 34 (1986)

6 Nonclassical characteristic functions Characteristic function of P (α): Φ(β) = d 2 α P (α) exp[(αβ α β)] Theorem (Bochner 1933): 6 P (α) is a probability distribution iff for any smooth function f(α) with compact support the following expression is nonnegative: d 2 α d 2 β Φ(α β) f (α)f(β) 0 corresponding discrete version: n Φ(β i β j ) ξi ξ j 0, i,j=1 for any integer n and all complex β i, ξ k (i, k = 1... n). 6 T. Kawata, Fourier Analysis in Probability Theory, Academic Press, N.Y. 1972

7 Nonclassical characteristic functions Define matrix: Φ ij = Φ(β i β j ) Theorem: A continuous function Φ(β) with Φ(0) = 1 and Φ (β) = Φ( β) is a classical characteristic function, iff 1 Φ 12 Φ 1k Φ D k D k (β 1,... β k ) = 12 1 Φ 2k Φ 1k Φ 2k 1 for any order k = 1,..., +. Nonclassicality: 7 P (α) is not a probability iff there exist values of k and β k (k = 2... ) with D k (β 1,... β k ) < 0 7 T. Richter and W. Vogel, Phys. Rev. Lett. 89, (2002)

8 Nonclassical characteristic functions Observable characteristic functions of quadratures: G(k, ϕ) = G gr (k) Φ(ike iϕ ) FT[p(x, ϕ)], in the ground state: Φ gr = 1 G gr (k) = exp ( k2 2 ) First-order nonclassicality: 8 D 2 < 0 G(k, ϕ) > G gr (k) applies to many nonclassical states: Squeezed, Fock, superpositions of coherent states,... Slow decay of G(k, ϕ) narrow structures in p(x, ϕ) 8 W. Vogel, Phys. Rev. Lett. 84, 1849 (2000)

9 Nonclassical characteristic functions Typical examples: 9 Ground (vacuum) state (dotted) Fock state n = 4 (full lines) Even coherent state: α + ( α + α ) (dashed) 9 W. Vogel and D-G. Welsch, Quantum Optics (Wiley-VCH, Berlin, 2006), 3 rd edition.

10 Nonclassical characteristic functions Sub-Planck structures in phase space: W.H. Zurek, Nature 412, 712 (2001)

11 Nonclassical characteristic functions Experiment: 11 ˆρ = η (1 η) A.I. Lvovsky and J.H. Shapiro, Phys. Rev. A 65, (2002)

12 Nonclassical characteristic functions Photon-added thermal state: 12 ˆρ = N â ˆρ th â First- (a) and second-order (b) nonclassicality 12 Zavatta, Parigi and Bellini, Phys. Rev. A 75, (2007)

13 Nonclassical characteristic functions Direct observation via fluorescence 13 resonance fluorescence Hamiltonian: ( ) Ĥ int = 1 2 ΩÂ12 + Ω Â 21 ˆx ϕ experimental realization for motion of trapped ion S. Wallentowitz and W. Vogel, Phys. Rev. Lett. 75, 2932 (1995) 14 P. Haljan, K. Brickman, L. Deslauriers, P. Lee, C. Monroe, Phys. Rev. Lett. 94, (2005)

14 Nonclassical moments Nonclassicality: P -function is not a probability distribution Equivalent condition: ˆf : : ˆf ˆf : < 0 chosing ˆf = d 2 α f(α) : ˆD( α): Bochner condition! Normally-ordered expansions (exists and converges): using quadratures: 15 ˆf = f nm : ˆx n ϕ ˆp m ϕ : n,m using â, â: 16 ˆf = c nm â n â m n,m 15 E. Shchukin, Th. Richter, and W. Vogel, PR A 71, (R) (2005) 16 E. Shchukin and W. Vogel, Phys. Rev. A, 72, (2005)

15 Nonclassical moments Quadrature expansion: 17 ˆf = f(ˆx ϕ, ˆp ϕ ) = n,m f nm : ˆx n ϕ ˆp m ϕ : nonclassicality condition : ˆf ˆf : where special case: 18 n,m,k,l M nm,kl (ϕ) = : ˆx n+k ϕ f nm f klm nm,kl (ϕ) < 0 ˆp m+l ϕ : ˆf = f(ˆxϕ) = f n : ˆx n ϕ : Conditions: negative minors with quadrature moments n 17 E. Shchukin, Th. Richter, and W. Vogel, Phys. Rev. A 71, (R) (2005) 18 G.S. Agarwal, Opt. Comm. 95, 109 (1993)

16 Nonclassical moments Annihilation/creation operators: 19 Quadratic form: : ˆf ˆf : = n,m,k,l c nmc kl â m+k â n+l Leading principal minors: 1 â â â 2 â â â 2... â â â â 2 â â 2 â 2 â â 3... â â d N = 2 â â â 3 â â 2 â 2 â... â 2 â 2 â â 3 â 2 â 2 â 3 â â 4... â â â â 2 â 2 â â â 3 â 2 â 2 â 3 â... â 2 â 3 â â 2 â 4 â â 3 â 2 â 2... Principal minors with rows and columns k 1 < < k n : d k, k = (k 1,..., k n ) Nonclassicality criterion: k : d k < 0 19 E. Shchukin and W. Vogel, Phys. Rev. A, 72, (2005)

17 Nonclassical moments Lowest-order nonclassicality condition: 1 â â d 3 = â â â â 2 â â 2 â â < 0 Factorization: d 3 = 1 4 min ϕ where ˆx ϕ = âe iϕ + â e iϕ. : ( ˆx ϕ ) 2 : max ϕ : ( ˆx ϕ ) 2 :, The condition d 3 < 0 is equivalent to ordinary squeezing: ϕ : : ( ) 2 ˆx ϕ : < 0 d 3 < 0 is optimized with respect to the phase ϕ.

18 Nonclassical moments Higher-order squeezing: k-th power amplitude squeezing 20 Factorization: k = k = 1 4 min ϕ 1 â k â k â k â k â k â 2k â k â 2k â k â k : ( ) (k) 2 ˆF ϕ : max ϕ : ( < 0 ) (k) 2 ˆF ϕ :, where ˆF (k) ϕ = â k e iϕ + â k e iϕ. Amplitude-squared squeezing: 21 1 â 2 â 2 2 = â 2 â 2 â 2 â 4 â 2 â 4 â 2 â 2 < 0 20 E. Shchukin and W. Vogel, J. Phys: Conference Series 36, 183 (2006) 21 M. Hillery, Phys. Rev. A 72, 3796 (1987)

19 Nonclassical moments Higher order squeezing: Q-function of states with third (left) and fourth (right) order amplitude squeezing.

20 Recent experiments Reconstruction of a nonclassical P function Single photon: P (α) = ( 1 + α α ) δ(α) Photon on a thermal background: 22 Single-photon added thermal state (SPATS): ˆρ = N â ˆρ th â 22 Zavatta, Parigi, Bellini, Phys. Rev. A 75, (2007)

21 Nonclassical P functions Easy to measure: quadrature characteristic function G(k, ϕ) = e ikˆx ϕ = dx p(x, ϕ)e ikx G = 1 N N j=1 e ikx ϕ(j) Characteristic function of P (α) : Φ(ike iϕ ) = e ikˆx ϕ e k2 /2

22 Nonclassical P functions Resulting characteristic function Φ: Φ(β) (a) (b) β (a) SPATS, for n th 1.1 and η = 0.6 (b) Mixture of SPATS with 19% thermal state, n th 3.71

23 Nonclassical P functions P function of phase-independent states: Hankel transform P (α) = 2 π Result, for n th 1.1: 23 β c 0 bj 0 (2b α )Φ(b)db 23 Kiesel, Vogel, Zavatta, Parigi, Bellini, Phys. Rev. A 78, (R) (2008)

24 Noise effects: Nonclassical P functions P(α) P(α) (a) (b) α (a) clear statistical significance, for n th 1.1 (b) at the limits: SPATS mixed with 19% thermal noise, for n th 3.71

25 Characteristic function and moments Phase-diffused squeezed vacuum state Wigner function: W (α) = f(ϕ) 1 2π V x V p exp uncertainty relation: V x V p 1 { } Re2 (αe iϕ ) 2V x Im2 (αe iϕ ) 2V p Gaussian distribution f(ϕ) with variance σ 2 experiment with V x = 0.36, V p = quadrature values (balanced homodyne detection) state is squeezed for σ < 22.2 Does nonclassicality remain for larger σ? Which criteria display nonclassicality under such conditions? dϕ 24 Kiesel, Vogel, Hage, DiGuglielmo, Samblowski, Schnabel, Phys. Rev. A 79, (2009)

26 Characteristic function and moments Quadrature moments Hong-Mandel higher-order squeezing 25 ( ˆx) 2n q 2n = (2n 1)!! 1 a state is nonclassical if n : q 2n < 0 σ/ q 2 q 4 q 6 q (1 ± 0.3%) (1 ± 0.16%) (1 ± 0.12%) (1 ± 0.09%) (1 ± 0.04%) (1 ± 0.03%) (1 ± 0.03%) (1 ± 0.04%) (1 ± 0.08%) (1 ± 0.15%) (1 ± 0.60%) (1 ± 4.2%) (1 ± 3.2%) (1 ± 0.53%) 2.982(1 ± 0.84%) 10.61(1 ± 1.7%) 1.908(1 ± 0.09%) 10.68(1 ± 0.16%) 51.72(1 ± 0.32%) 249.6(1 ± 0.65%) Higher-order squeezing does not reveal nonclassicality beyond ordinary squeezing 25 Hong, Mandel, Phys. Rev. Lett. 54, 323 (1985)

27 Characteristic function and moments Normally ordered quadrature moments a state is nonclassical if 1 : ˆx :... M (l) : ˆx : : ˆx 2 :... =..... : ˆx l 1 : : ˆx l :... : ˆx l 1 : : ˆx l :. : ˆx 2l 2 : is not positive semidefinite 26 check sign of minimum eigenvalue σ/ 2 2 Matrix 4 4 Matrix 6 6 Matrix 8 8 Matrix (1 ± 0.25%) 4.294(1 ± 0.86%) 104.0(1 ± 2.5%) 6201(1 ± 6.1%) (1 ± 0.03%) 3.337(1 ± 0.11%) 69.93(1 ± 0.35%) 3593(1 ± 0.98%) (1 ± 0.08%) 2.040(1 ± 1.1%) 6.728(1 ± 53%) 107.4(1 ± 110%) (1 ± 3.0%) (1 ± 1.1%) (1 ± 4.1%) 2.299(1 ± 71%) (1 ± 0%) (1 ± 1.2%) (1 ± 12%) 10.85(1 ± 13%) Extended range of detection of nonclassicality 26 Agarwal, Opt. Commun. 95, 109 (1993)

28 Characteristic function and moments Nonclassicality in the characteristic function A state is nonclassical if 27 β with Φ(β) > 1 Lowest order of a hierarchy of conditons Φ(β) σ = 0.0 σ = 6.3 σ = 12.6 σ = 22.2 σ = β Nonclassical for all parameters 27 W. Vogel, Phys. Rev. Lett. 84, 1849 (2000) 28 Richter, Vogel, Phys. Rev. Lett. 89, (2002)

29 Characteristic function and moments Some conclusions from the experiments: All phase-randomized squeezed states are nonclassical High significance of nonclassical effects in the characteristic function Φ(β) Fourier transform of Φ(β) does not exist P function is highly singular When Φ(β) 1 FT may exist P function becomes regular (example: SPATS)

30 Nonclassical Correlation Properties First demonstration of nonclassical light Photon Antibunching: 29 Normally- and time-ordered intensity correlations: Î(0)Î(τ) > : [Î(0)]2 : Violation of Schwarz inequality! C 29 Kimble, Dagenais, and Mandel, Phys. Rev. Lett. 39, 691 (1977)

31 Nonclassical Correlation Properties Radiation source: resonance fluorescence atomic beam of low density single atom emits separated photons!

32 Nonclassical Correlation Properties Experimental results: [Kimble, Dagenais, and Mandel (1977)]

33 Nonclassical Correlation Properties Generalization: 30 P function P functional P [{E (+) (i)}] = k ˆδ(Ê(+) (i) E (+) (i)) i=1 normally and time-ordered Classical Correlations: P [{E (+) (i)}] is a joint probability density non-negative General quadratic form: ˆf : ˆf ˆf 0 ˆf ˆf = {p i,q i,n i,m i } [Ê( ) (1)] n 1+q 1... [Ê( ) (k)] n k+q k [Ê(+) (k)] m k+p k... [Ê(+) (1)] m 1+p 1 c {p i,q i } c {n i,m i } Quantum Correlations ˆf : ˆf ˆf < 0 There exists (at least one) negative principal minor 30 W. Vogel, Phys. Rev. Lett. 100, (2008)

34 General Quantum Correlations Lowest-order conditions (minors of second order): [Ê( ) (1)] n 1+q 1... [Ê( ) (k)] n k+q k [Ê(+) (1)] m 1+p 1... [Ê(+) (k)] m k+p k 2 > [Î(1)]n 1+m 1... [Î(k)]n k+m k [Î(1)]p 1+q 1... [Î(k)]p k+q k Special cases: Photon antibunching (nonstationary): Î(1)Î(2) > : [Î(1)]2 : : [Î(2)]2 : Intensity-fieldstrength correlations: Ê( ) (1)Î(2) > Î(1) : [Î(2)]2 :, Ê(1)Î(2) > : [Ê(1)]2 : : [Î(2)]2 : Recent experiment with trapped ions Gerber, Rotter, Slodicka, Eschner, Carmichael, Blatt, Phys. Rev. Lett. 102, (2009)

35 Quantifying nonclassicality General nonclassicality condition: : ˆf ˆf : < 0 Example: quadrature squeezing ˆf ˆx ϕ = ˆx ϕ ˆx ϕ : ( ˆx ϕ ) 2 : < 0 Limit for negativity: 32 = : ˆf ˆf : ˆf ˆf : ˆf ˆf : < 0 Operational relative nonclassicality: R : ˆf ˆf : = : ˆf ˆf : : ˆf ˆf : ˆf ˆf Perfect situation: = : ˆf ˆf : ˆf ˆf = 0 Realized for: ˆf ψ = 0 32 C. Gehrke and W. Vogel, arxiv: [quant-ph]

36 Quantifying nonclassicality Example: squeezed vacuum state: (µâ + νâ ) 0; ν = 0, µ 2 ν 2 = 1 Needed: measurement of ˆf ˆf with ˆf µâ + νâ Realization for trapped ion: p 2 (t) = 1 2 Ĥ int = 2 Ω ˆfÂ21 + H.c., ν = Ω b Ω ei ϕ Electronic-state dynamics: { 1 + Tr [ ˆρ(0) cos ( )]} Ω t ˆf ˆf + 1 For ˆρ (0) = 0; ν 0; ν p 2 (t) = 1 2 [1 + cos ( Ω t)] Quantum-noise free measurement: moderate squeezing!

37 Quantifying nonclassicality Experimental realization:

38 Summary Reconstruction of nonclassical P functions Nonclassical characteristic functions General conditions for nonclassical moments Experimental realizations General nonclassical correlation properties Operational quantification of nonclassicality Quantum noise free measurements requires only moderate squeezing!

arxiv: v2 [quant-ph] 7 Jun 2012

arxiv: v2 [quant-ph] 7 Jun 2012 Universal nonclassicality itnesses for harmonic oscillators T. Kiesel and W. Vogel Arbeitsgruppe Quantenoptik, Institut für Physik, Universität Rostock, D-18051 Rostock, Germany It is shon that a nonclassicality

More information

arxiv: v2 [quant-ph] 20 Apr 2016

arxiv: v2 [quant-ph] 20 Apr 2016 Unbalanced Homodyne Correlation Measurements B. Kühn and W. Vogel Arbeitsgruppe Quantenoptik, Institut für Physik, Universität Rostock, D-1851 Rostock, Germany (Dated: April 5, 18) arxiv:1511.173v [quant-ph]

More information

Statistical analysis of sampling methods in quantum tomography

Statistical analysis of sampling methods in quantum tomography Statistical analysis of sampling methods in quantum tomography Thomas Kiesel Arbeitsgruppe Quantenoptik, Institut für Physik, Universität Rostock, D-85 Rostock, Germany where A is an eigenvector of  with

More information

Bipartite Continuous-Variable Entanglement. Werner Vogel Universität Rostock, Germany

Bipartite Continuous-Variable Entanglement. Werner Vogel Universität Rostock, Germany Bipartite Continuous-Variable Entanglement Werner Vogel Universität Rostock, Germany Contents Introduction NPT criterion for CV entanglement Negativity of partial transposition Criteria based on moments

More information

arxiv: v1 [quant-ph] 20 Jan 2011

arxiv: v1 [quant-ph] 20 Jan 2011 arxiv:1101.3855v1 [quant-ph] 20 Jan 2011 Photon-added Coherent States in Parametric Down-conversion S. Sivakumar Materials Physics Division Indira Gandhi Centre for Atomic Research Kalpakkam 603 102 INDIA

More information

Nonclassicality of a photon-subtracted Gaussian field

Nonclassicality of a photon-subtracted Gaussian field PHYSICAL REVIEW A 7, 043805 005 Nonclassicality of a photon-subtracted Gaussian field M. S. Kim, E. Park, P. L. Knight, and H. Jeong 3 School of Mathematics and Physics, The Queen s University, Belfast,

More information

Characterization of Bipartite Entanglement

Characterization of Bipartite Entanglement Characterization of Bipartite Entanglement Werner Vogel and Jan Sperling University of Rostock Germany Paraty, September 2009 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 1 Table of Contents

More information

arxiv: v1 [quant-ph] 5 Jun 2007

arxiv: v1 [quant-ph] 5 Jun 2007 Higher order antibunching in intermediate states Amit Verma 1, Navneet K Sharma and Anirban Pathak 3 Department of Physics, JIIT University, A-10, Sectror-6, Noida, UP-01307, India. arxiv:0706.0697v1 [quant-ph]

More information

Coherent states, beam splitters and photons

Coherent states, beam splitters and photons Coherent states, beam splitters and photons S.J. van Enk 1. Each mode of the electromagnetic (radiation) field with frequency ω is described mathematically by a 1D harmonic oscillator with frequency ω.

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

(ˆn + 1)t e e + exp. i g2. The interaction part is, for small times t, given by. (ˆn + 1)t +... ˆσ ee +

(ˆn + 1)t e e + exp. i g2. The interaction part is, for small times t, given by. (ˆn + 1)t +... ˆσ ee + Lecture 3: Effective interaction Hamiltonians Effective interaction Hamiltonians Effective squeezing operator, parametric down-conversion Effective interaction Hamiltonians: We will go back to the question

More information

Mixed states having Poissonian statistics: how to distinguish them from coherent states?

Mixed states having Poissonian statistics: how to distinguish them from coherent states? Physica A 285 (2000) 397 412 www.elsevier.com/locate/physa Mixed states having Poissonian statistics: how to distinguish them from coherent states? J.M.C. Malbouisson a;, S.B. Duarte b, B. Baseia c a Instituto

More information

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz Luz e Átomos como ferramentas para Informação Quântica Ótica Quântica Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Question: Dividing the incident beam in two equal parts,

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Proceedings of Institute of Mathematics of NAS of Ukraine 004, Vol. 50, Part, 569 57 Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Benedetto MILITELLO, Anatoly NIKITIN and Antonino MESSINA

More information

arxiv: v1 [quant-ph] 1 May 2017

arxiv: v1 [quant-ph] 1 May 2017 Comparison of lower order and higher order nonclassicality in photon added and photon subtracted squeezed coherent states Kishore Thapliyal, Nigam Lahiri Samantray,1, J. Banerji, Anirban Pathak, Jaypee

More information

arxiv:quant-ph/ v3 17 Jul 2005

arxiv:quant-ph/ v3 17 Jul 2005 Quantitative measures of entanglement in pair coherent states arxiv:quant-ph/0501012v3 17 Jul 2005 G. S. Agarwal 1 and Asoka Biswas 2 1 Department of Physics, Oklahoma state University, Stillwater, OK

More information

Conditional quantum-state transformation at a beam splitter

Conditional quantum-state transformation at a beam splitter FSUJ TPI QO-14/98 November, 1998 Conditional quantum-state transformation at a beam splitter J. Clausen, M. Dakna, L. Knöll and D. G. Welsch Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

More information

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement 12/02/13 Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement Ryo Namiki Quantum optics group, Kyoto University 京大理 並木亮 求職中 arxiv:1109.0349 Quantum Entanglement

More information

arxiv:quant-ph/ v1 5 Aug 2004

arxiv:quant-ph/ v1 5 Aug 2004 Nonclassicality in Weak Measurements Lars M. Johansen and Alfredo Luis Department of Technology, Buskerud University College, N-36 Kongsberg, Norway Departamento de Óptica, Facultad de Ciencias Físicas,

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

Quântica Oscilador Paramétrico

Quântica Oscilador Paramétrico Luz e Átomos como ferramentas para Informação Quântica Oscilador Paramétrico Ótico Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Parametric Down Conversion Energy and

More information

10.6 Propagating quantum microwaves

10.6 Propagating quantum microwaves AS-Chap. 10-1 10.6 Propagating quantum microwaves Propagating quantum microwaves emit Quantum - - Superconducting quantum circuits Artificial quantum matter Confined quantum states of light Does the emitted

More information

Diagonal Representation of Density Matrix Using q-coherent States

Diagonal Representation of Density Matrix Using q-coherent States Proceedings of Institute of Mathematics of NAS of Ukraine 24, Vol. 5, Part 2, 99 94 Diagonal Representation of Density Matrix Using -Coherent States R. PARTHASARATHY and R. SRIDHAR The Institute of Mathematical

More information

Vacuum Entanglement. B. Reznik (Tel-Aviv Univ.)

Vacuum Entanglement. B. Reznik (Tel-Aviv Univ.) Vacuum Entanglement. Reznik (Tel-viv Univ.). otero (Los ndes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.). Retzker (Tel-viv Univ.) J. Silman (Tel-viv Univ.) Quantum Information Theory: Present

More information

arxiv:quant-ph/ v1 14 Sep 1999

arxiv:quant-ph/ v1 14 Sep 1999 Position-momentum local realism violation of the Hardy type arxiv:quant-ph/99942v1 14 Sep 1999 Bernard Yurke 1, Mark Hillery 2, and David Stoler 1 1 Bell Laboratories, Lucent Technologies, Murray Hill,

More information

Contribution of the Hanbury Brown Twiss experiment to the development of quantum optics

Contribution of the Hanbury Brown Twiss experiment to the development of quantum optics Contribution of the Hanbury Brown Twiss experiment to the development of quantum optics Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege

More information

Two-mode excited entangled coherent states and their entanglement properties

Two-mode excited entangled coherent states and their entanglement properties Vol 18 No 4, April 2009 c 2009 Chin. Phys. Soc. 1674-1056/2009/18(04)/1328-05 Chinese Physics B and IOP Publishing Ltd Two-mode excited entangled coherent states and their entanglement properties Zhou

More information

1 Photon antibunching

1 Photon antibunching VARIOUS APPROACHES TO PHOTON ANTIBUNCHING IN SECOND-HARMONIC GENERATION 1 A. Miranowicz Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, U.K. J. Bajer Laboratory of Quantum

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

Inverse Problems in Quantum Optics

Inverse Problems in Quantum Optics Inverse Problems in Quantum Optics John C Schotland Department of Mathematics University of Michigan Ann Arbor, MI schotland@umich.edu Motivation Inverse problems of optical imaging are based on classical

More information

Applied Physics 150a: Homework #3

Applied Physics 150a: Homework #3 Applied Physics 150a: Homework #3 (Dated: November 13, 2014) Due: Thursday, November 20th, anytime before midnight. There will be an INBOX outside my office in Watson (Rm. 266/268). 1. (10 points) The

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Thursday, October 13, 016 Lecture Number 10 Fall 016 Jeffrey H.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Problem Set 4 Solutions Fall 016 Problem 4.1 Here we shall show that

More information

arxiv: v1 [quant-ph] 27 Oct 2013

arxiv: v1 [quant-ph] 27 Oct 2013 Loss of non-gaussianity for damped photon-tracted thermal states arxiv:1310.7229v1 [quant-ph] 27 Oct 2013 Iulia Ghiu 1, Paulina arian 1,2, and Tudor A. arian 1 1 Centre for Advanced Quantum Physics, Department

More information

Optical Production of the Husimi Function of Two Gaussian Functions

Optical Production of the Husimi Function of Two Gaussian Functions Applied Mathematics & Information Sciences (3) (008), 309-316 An International Journal c 008 Dixie W Publishing Corporation, U. S. A. Optical Production of the Husimi Function of Two Gaussian Functions

More information

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Seiji Armstrong 1, Meng Wang 2, Run Yan Teh 3, Qihuang Gong 2, Qiongyi He 2,3,, Jiri Janousek 1,

More information

Difference-phase squeezing from amplitude squeezing by means of a beamsplitter

Difference-phase squeezing from amplitude squeezing by means of a beamsplitter Quantum Semiclass. Opt. 8 (1996) 1041 1051. Printed in the UK Difference-phase squeezing from amplitude squeezing by means of a beamsplitter Mark Hillery, Mingliang Zou and Vladimir Bužek Department of

More information

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium ISSN 2186-6570 Evaluation Method for Inseparability of Two-Mode Squeezed Vacuum States in a Lossy Optical Medium Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

NEGATIVE BINOMIAL STATES OF THE RADIATION FIELD AND THEIR EXCITATIONS ARE NONLINEAR COHERENT STATES

NEGATIVE BINOMIAL STATES OF THE RADIATION FIELD AND THEIR EXCITATIONS ARE NONLINEAR COHERENT STATES Modern Physics Letters B, Vol. 13, No. 18 1999) 617 623 c World Scientific Publishing Company NEGATIVE BINOMIAL STATES OF THE RADIATION FIELD AND THEIR EXCITATIONS ARE NONLINEAR COHERENT STATES XIAO-GUANG

More information

Decoherence of quantum excitation of even/odd coherent states in thermal environment

Decoherence of quantum excitation of even/odd coherent states in thermal environment PRAMANA c Indian Academy of Sciences Vol. 86, No. 4 journal of April 2016 physics pp. 763 776 Decoherence of quantum excitation of even/odd coherent states in thermal environment A MOHAMMADBEIGI 1 and

More information

Lecture 12. The harmonic oscillator

Lecture 12. The harmonic oscillator Lecture 12 The harmonic oscillator 107 108 LECTURE 12. THE HARMONIC OSCILLATOR 12.1 Introduction In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the time-independent

More information

Single-Mode Linear Attenuation and Phase-Insensitive Linear Amplification

Single-Mode Linear Attenuation and Phase-Insensitive Linear Amplification Massachusetts Institute of echnology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: hursday, October 20, 2016 Lecture Number 12 Fall 2016 Jeffrey H.

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

A New Kind of k-quantum Nonlinear Coherent States: Their Generation and Physical Meaning

A New Kind of k-quantum Nonlinear Coherent States: Their Generation and Physical Meaning Commun. Theor. Phys. (Beiing, China) 41 (2004) pp. 935 940 c International Academic Publishers Vol. 41, No. 6, June 15, 2004 A New Kind o -Quantum Nonlinear Coherent States: Their Generation and Physical

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO IDENTIFYING AND EXPLORING THE QUANTUM-CLASSICAL BORDER Quantum Classical FOCUSING ON CORRELATIONS AMONG COMPOSITE SYSTEMS OUTLINE Quantum correlations

More information

arxiv:quant-ph/ v1 19 Aug 2005

arxiv:quant-ph/ v1 19 Aug 2005 arxiv:quant-ph/050846v 9 Aug 005 WITNESSING ENTANGLEMENT OF EPR STATES WITH SECOND-ORDER INTERFERENCE MAGDALENA STOBIŃSKA Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warszawa 00 68, Poland magda.stobinska@fuw.edu.pl

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:1.138/nature1366 I. SUPPLEMENTARY DISCUSSION A. Success criterion We shall derive a success criterion for quantum teleportation applicable to the imperfect, heralded dual-rail

More information

Nonclassical properties and algebraic characteristics of negative binomial states in quantized radiation fields

Nonclassical properties and algebraic characteristics of negative binomial states in quantized radiation fields Eur. Phys. J. D, 45 4 () THE EUROPEAN PHSICAL JOURNAL D c EDP Sciences Società Italiana di Fisica Springer-Verlag Nonclassical properties and algebraic characteristics of negative binomial states in quantized

More information

Generation of Glauber Coherent State Superpositions via Unitary Transformations

Generation of Glauber Coherent State Superpositions via Unitary Transformations Proceedings of Institute of Mathematics of NAS of Ukraine 004, Vol. 50, Part, 881 885 Generation of Glauber Coherent State Superpositions via Unitary Transformations Antonino MESSINA, Benedetto MILITELLO

More information

The Gouy phase shift in nonlinear interactions of waves

The Gouy phase shift in nonlinear interactions of waves The Gouy phase shift in nonlinear interactions of waves Nico Lastzka 1 and Roman Schnabel 1 1 Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik

More information

Three problems from quantum optics

Three problems from quantum optics Institute of Theoretical Physics and Astrophysics Faculty of Science, Masaryk University Brno, Czech Republic Three problems from quantum optics (habilitation thesis) Tomáš Tyc Brno 005 Contents 1 Introduction

More information

A quantum walk based search algorithm, and its optical realisation

A quantum walk based search algorithm, and its optical realisation A quantum walk based search algorithm, and its optical realisation Aurél Gábris FJFI, Czech Technical University in Prague with Tamás Kiss and Igor Jex Prague, Budapest Student Colloquium and School on

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

arxiv:atom-ph/ v1 15 Mar 1996

arxiv:atom-ph/ v1 15 Mar 1996 Quantum Reservoir Engineering J.F. Poyatos, J.I. Cirac, and P. Zoller Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A 6020 Innsbruck, Austria. arxiv:atom-ph/9603002v1 15

More information

Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom laser

Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom laser Cent. Eur. J. Phys. 12(10) 2014 737-743 DOI: 10.2478/s11534-014-0510-7 Central European Journal of Physics Interference-induced enhancement of field entanglement in a microwave-driven V-type single-atom

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

arxiv:quant-ph/ v2 8 Jul 2004

arxiv:quant-ph/ v2 8 Jul 2004 Operational formulation of homodyne detection Tomáš Tyc 1 and Barry C. Sanders,3 1 Institute of Theoretical Physics, Masaryk University, 61137 Brno, Czech Republic Institute for Quantum Information Science,

More information

arxiv: v1 [quant-ph] 14 Jun 2018

arxiv: v1 [quant-ph] 14 Jun 2018 SCHRÖDINGER PICTURE ANALYSIS OF THE BEAM SPLITTER: AN APPLICATION OF THE JANSZKY REPRESENTATION arxiv:86.5748v [quant-ph] 4 Jun 8 Stephen M. Barnett School of Physics and Astronomy, University of Glasgow,

More information

arxiv: v1 [quant-ph] 29 May 2007

arxiv: v1 [quant-ph] 29 May 2007 arxiv:0705.4184v1 [quant-ph] 9 May 007 Fresnel-transform s quantum correspondence and quantum optical ABCD Law Fan Hong-Yi and Hu Li-Yun Department of Physics, Shanghai Jiao Tong University, Shanghai,

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution entropy Article Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution Luis Amilca Andrade-Morales, Braulio M. Villegas-Martínez and Hector M. Moya-Cessa * Instituto

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Higher Order Squeezing in Stimulated Mode in. Seven Wave Mixing

Higher Order Squeezing in Stimulated Mode in. Seven Wave Mixing Higher Order Squeezing in Stimulated Mode in Seven Wave Mixing Savita Gill* Department of pplied Science, University Institute of Engineering and Technology, Kurukshetra 36 9, Haryana, Indi STRT Higher

More information

Publikationen in wiss. Zeitschriften

Publikationen in wiss. Zeitschriften 1 Prof. Dr. Werner Vogel Fachbereich Physik Universität Rostock Publikationen in wiss. Zeitschriften 1. M. Schubert, W. Vogel Darstellung linearer und nichtlinearer optischer Prozesse mittels Eigenlösungen

More information

arxiv:quant-ph/ v2 7 Nov 2001

arxiv:quant-ph/ v2 7 Nov 2001 Quantum key distribution using non-classical photon number correlations in macroscopic light pulses A.C. Funk and M.G. Raymer Oregon Center for Optics and Department of Physics, University of Oregon, Eugene,

More information

OPERATORS IN QUANTUM AND CLASSICAL OPTICS

OPERATORS IN QUANTUM AND CLASSICAL OPTICS DRSTP/LOTN School, Driebergen, April 010 OPERATORS IN QUANTUM AND CLASSICAL OPTICS Gerard Nienhuis Huygens Laboratorium, Universiteit Leiden, Postbus 9504, 300 RA Leiden I. MAXWELL S EQUATIONS FOR RADIATION

More information

Single-Particle Interference Can Witness Bipartite Entanglement

Single-Particle Interference Can Witness Bipartite Entanglement Single-Particle Interference Can Witness ipartite Entanglement Torsten Scholak 1 3 Florian Mintert 2 3 Cord. Müller 1 1 2 3 March 13, 2008 Introduction Proposal Quantum Optics Scenario Motivation Definitions

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Thursday, September 9, 016 Lecture Number 7 Fall 016 Jeffrey H.

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

arxiv: v2 [quant-ph] 7 Mar 2017

arxiv: v2 [quant-ph] 7 Mar 2017 Quantifying the mesoscopic quantum coherence of approximate NOON states and spin-squeezed two-mode Bose-Einstein condensates B. Opanchuk, L. Rosales-Zárate, R. Y. Teh and M. D. Reid Centre for Quantum

More information

UNIVERSITY OF CALGARY. Ranjeet Kumar A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

UNIVERSITY OF CALGARY. Ranjeet Kumar A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE UNIVERSITY OF CALGARY Process Tomography of Photon Creation and Annihilation Operators by Ranjeet Kumar A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Deterministic secure communications using two-mode squeezed states

Deterministic secure communications using two-mode squeezed states Deterministic secure communications using twomode squeezed states Alberto M. Marino* and C. R. Stroud, Jr. The Institute of Optics, University of Rochester, Rochester, New York 467, USA Received 5 May

More information

Entanglement swapping using nondegenerate optical parametric amplifier

Entanglement swapping using nondegenerate optical parametric amplifier 15 July 00 Physics Letters A 99 (00 47 43 www.elsevier.com/locate/pla Entanglement swapping using nondegenerate optical parametric amplifier Jing Zhang Changde Xie Kunchi Peng The State Key Laboratory

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 208 Dr Jean M Standard March 9, 208 Name KEY Physical Chemistry II Exam 2 Solutions ) (4 points) The harmonic vibrational frequency (in wavenumbers) of LiH is 4057 cm Based upon this

More information

Quantum difference parametric amplification and oscillation. Abstract

Quantum difference parametric amplification and oscillation. Abstract Quantum difference parametric amplification and oscillation M. K. Olsen School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia. (Dated: August 26, 2018) arxiv:1708.01840v1

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Chemistry 532 Problem Set 7 Spring 2012 Solutions

Chemistry 532 Problem Set 7 Spring 2012 Solutions Chemistry 53 Problem Set 7 Spring 01 Solutions 1. The study of the time-independent Schrödinger equation for a one-dimensional particle subject to the potential function leads to the differential equation

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Integral-free Wigner functions

Integral-free Wigner functions Integral-free Wigner functions A. Teğmen Physics Department, Ankara University, 0600 Ankara, TURKEY tegmen@science.ankara.edu.tr Abstract arxiv:math-ph/070208v 6 Feb 2007 Wigner phase space quasi-probability

More information

arxiv: v1 [quant-ph] 16 Jan 2009

arxiv: v1 [quant-ph] 16 Jan 2009 Bayesian estimation in homodyne interferometry arxiv:0901.2585v1 [quant-ph] 16 Jan 2009 Stefano Olivares CNISM, UdR Milano Università, I-20133 Milano, Italy Dipartimento di Fisica, Università di Milano,

More information

Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics Introduction to Modern Quantum Optics Jin-Sheng Peng Gao-Xiang Li Huazhong Normal University, China Vfe World Scientific» Singapore* * NewJerseyL Jersey* London* Hong Kong IX CONTENTS Preface PART I. Theory

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

Quantum Imaging beyond the Diffraction Limit by Optical Centroid Measurements

Quantum Imaging beyond the Diffraction Limit by Optical Centroid Measurements Quantum Imaging beyond the Diffraction Limit by Optical Centroid Measurements The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Quantisation of the Electromagnetic Field

Quantisation of the Electromagnetic Field Chapter 2 Quantisation of the Electromagnetic Field Abstract The study of the quantum features of light requires the quantisation of the electromagnetic field. In this chapter we quantise the field and

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

Measuring the elements of the optical density matrix

Measuring the elements of the optical density matrix Measuring the elements of the optical density matrix Author Pregnell, Kenny, Pegg, David Published 2002 Journal Title Physical Review A: Atomic, Molecular and Optical Physics DOI https://doi.org/10.1103/physreva.66.013810

More information

arxiv:quant-ph/ v1 14 Mar 2001

arxiv:quant-ph/ v1 14 Mar 2001 Optimal quantum estimation of the coupling between two bosonic modes G. Mauro D Ariano a Matteo G. A. Paris b Paolo Perinotti c arxiv:quant-ph/0103080v1 14 Mar 001 a Sezione INFN, Universitá di Pavia,

More information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics C.W. Gardiner P. Zoller Quantum Nois e A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty

More information

Statistical Properties of a Ring Laser with Injected Signal and Backscattering

Statistical Properties of a Ring Laser with Injected Signal and Backscattering Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 87 92 c International Academic Publishers Vol. 35, No. 1, January 15, 2001 Statistical Properties of a Ring Laser with Injected Signal and Backscattering

More information

Bose Description of Pauli Spin Operators and Related Coherent States

Bose Description of Pauli Spin Operators and Related Coherent States Commun. Theor. Phys. (Beijing, China) 43 (5) pp. 7 c International Academic Publishers Vol. 43, No., January 5, 5 Bose Description of Pauli Spin Operators and Related Coherent States JIANG Nian-Quan,,

More information