Struktury analogových IO vnitřní zapojení OZ

Similar documents
MC MC35172 LOW POWER DUAL BIPOLAR OPERATIONAL AMPLIFIERS.. GOOD CONSUMPTION/SPEED RATIO : ONLY 200µA/Amp FOR 2.1MHz, 2V/µs

LM108/LM108AQML Operational Amplifiers

Low Drift, Low Power Instrumentation Amplifier AD621

SN54HC682, SN74HC682 8-BIT MAGNITUDE COMPARATORS

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

L7800 SERIES POSITIVE VOLTAGE REGULATORS

L7800 SERIES POSITIVE VOLTAGE REGULATORS

MM74HC574 3-STATE Octal D-Type Edge-Triggered Flip-Flop

Obsolete Product(s) - Obsolete Product(s)

MM74HC373 3-STATE Octal D-Type Latch

MM74HC573 3-STATE Octal D-Type Latch

Obsolete Product(s) - Obsolete Product(s)

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC354 M74HC354 8 CHANNEL MULTIPLEXER/REGISTER (3 STATE) tpd = 24 ns (TYP.

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

HAL501...HAL506, HAL508 Hall Effect Sensor ICs MICRONAS INTERMETALL MICRONAS. Edition May 5, DS

MM74HC373 3-STATE Octal D-Type Latch

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

L7800AB/AC SERIES PRECISION 1A REGULATORS

MM74C906 Hex Open Drain N-Channel Buffers

DM7417 Hex Buffers with High Voltage Open-Collector Outputs

AN8814SB. 4-channel driver IC for optical disk drive. ICs for Compact Disc/CD-ROM Player. Overview. Features. Applications.

PI4GTL bit bidirectional low voltage translator

SN54HC20, SN74HC20 DUAL 4-INPUT POSITIVE-NAND GATES

MM74C14 Hex Schmitt Trigger

Low Power Quint Exclusive OR/NOR Gate

DM Quad 2-Input NAND Buffers with Open-Collector Outputs

AVAILABLE OPTIONS PACKAGED DEVICES CHIP CARRIER (FK) CERAMIC DIP (JG) TL7702ACD TL7715ACD TL7702ACP TL7715ACP TL7702ACY TL7715ACY


LM35 Precision Centigrade Temperature Sensors

LP8340 Low Dropout, Low I Q, 1.0A CMOS Linear Regulator

Features Y Wide analog input voltage range g6v. Y Low on resistance 50 typ (VCC V EE e4 5V) Y Logic level translation to enable 5V logic with g5v

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS. LOW TURN OFF TIME MAXIMUM OPERATING FREQUENCY GREATER THAN 500kHz

MM74C14 Hex Schmitt Trigger

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC133 M74HC INPUT NAND GATE. tpd = 13 ns (TYP.) at VCC =5V

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation

DM74LS75 Quad Latch. DM74LS75 Quad Latch. General Description. Ordering Code: Connection Diagram. Logic Diagram. Function Table (Each Latch)

Operational Amplifiers

NCS1002A. Constant Voltage / Constant Current Secondary Side Controller

Obsolete Product(s) - Obsolete Product(s)

MM74HC374 3-STATE Octal D-Type Flip-Flop

HCF4555B DUAL BINARY TO 1 OF 4 DECODER/DEMULTIPLEXER OUTPUT HIGH ON SELECT

MM74HC244 Octal 3-STATE Buffer

DS1691A/DS3691 (RS-422/RS-423) Line Drivers with TRI-STATE Outputs

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC85 M74HC85 4-BIT MAGNITUDE COMPARATOR. tpd = 22 ns (TYP.) at VCC =5V

LM135 LM235 LM335 LM135A LM235A LM335A Precision Temperature Sensors

DM7404 Hex Inverting Gates

or Op Amps for short

DM74LS02 Quad 2-Input NOR Gate

DM74LS05 Hex Inverters with Open-Collector Outputs

SHM-14 Ultra-Fast, 14-Bit Linear Monolithic Sample-Hold Amplifiers

MM54C14 MM74C14 Hex Schmitt Trigger

INTEGRATED CIRCUITS. 74LV00 Quad 2-input NAND gate. Product specification Supersedes data of 1998 Apr 13 IC24 Data Handbook.

DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

CD4514BC CD4515BC 4-Bit Latched/4-to-16 Line Decoders

MM74HC540 MM74HC541 Inverting Octal 3-STATE Buffer Octal 3-STATE Buffer

. HIGH SPEED .LOW POWER DISSIPATION .OUTPUT DRIVE CAPABILITY M54HCT138 M74HCT138 3 TO 8 LINE DECODER (INVERTING) t PD = 16 ns (TYP.

HCF4532B 8-BIT PRIORITY ENCODER

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC148 M74HC148 8 TO 3 LINE PRIORITY ENCODER. tpd = 15 ns (TYP.

HCC/HCF4042B QUAD CLOCKED D LATCH

74VHCT138ATTR 3 TO 8 LINE DECODER (INVERTING)



5A Low Dropout Linear Regulator

ECE Analog Integrated Circuit Design - II P.E. Allen

Features. Y Wide supply voltage range 3 0V to 15V. Y Guaranteed noise margin 1 0V. Y High noise immunity 0 45 VCC (typ )

DM74S373 DM74S374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

MM74HCT573 MM74HCT574 Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

DM74LS09 Quad 2-Input AND Gates with Open-Collector Outputs

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

CD40106BC Hex Schmitt Trigger

DS1691A/DS3691 (RS-422/RS-423) Line Drivers with TRI-STATE Outputs

CD4071BC CD4081BC Quad 2-Input OR Buffered B Series Gate Quad 2-Input AND Buffered B Series Gate

SN54F109, SN74F109 DUAL J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

Low Voltage 2-1 Mux, Level Translator ADG3232

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

DM74LS08 Quad 2-Input AND Gates

High Performance Driver/Comparator, Active Load on a Single Chip AD53509

LM50 SOT-23 Single-Supply Centigrade Temperature Sensor

1 pc Charge Injection, 100 pa Leakage, CMOS 5 V/+5 V/+3 V Quad SPST Switches ADG611/ADG612/ADG613

74LVC573 Octal D-type transparent latch (3-State)

MM74HC32 Quad 2-Input OR Gate

LM /LM /LM Micropower Voltage Reference Diode

LD1117A SERIES LOW DROP FIXED AND ADJUSTABLE POSITIVE VOLTAGE REGULATORS

DATASHEET HS-2420RH. Features. Applications. Functional Diagram. Radiation Hardened Fast Sample and Hold

Maintenance/ Discontinued

DM74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver

INTEGRATED CIRCUITS. 74LV273 Octal D-type flip-flop with reset; positive-edge trigger. Product specification 1997 Apr 07 IC24 Data Handbook

LM /LM /LM Micropower Voltage Reference Diode

MM74HC154 4-to-16 Line Decoder

5-V Low Drop Fixed Voltage Regulator TLE 4275

Obsolete Product(s) - Obsolete Product(s)

I2 C Compatible Digital Potentiometers AD5241/AD5242

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

SP6828/ V Low Power Voltage Inverters V OUT C1+ SP6829 C % Voltage Conversion Efficiency +1.15V to +4.2V Input Voltage Range +1.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC4511 M74HC4511 BCD TO 7 SEGMENT LATCH/DECODER DRIVER. tpd = 28 ns (TYP.

HCC4543B HCF4543B BCD-TO-7 SEGMENT LATCH/DECODER/LCD DRIVER HCC/HCF4543B

Four-Channel Thermistor Temperature-to-Pulse- Width Converter

LC2 MOS 4-/8-Channel High Performance Analog Multiplexers ADG408/ADG409

Transcription:

Struktury analogových IO vnitřní zapojení OZ Jiří Hospodka Elektrické obvody analýza a simulace katedra Teorie obvodů, 804/B3 ČVUT FEL 7. přednáška Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 1 / 18

(D) (FK) (J) (JG) (P) (U) Struktury 40 C to 85 C analogových µa741id IO vnitřníµa741ip zapojení OZ 0 C to 70 C µa741cd µa741cp µa741cpw µa741y 55 C to 15 C µa741mfk µa741mj µa741mjg µa741mu The D package is available taped and reeled. Add the suffix R (e.g., µa741cdr). schematic VCC+ IN IN+ OUT OFFSET N1 OFFSET N VCC Component Count Transistors Resistors 11 Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška / 18

Základní koncepce OZ +U cc I 1 I Ri + T 7 T 1 T T 8 R z T 5 T 3 T 4 T 6 U cc Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 3 / 18

Základní koncepce OZ rozdělení na bloky +U cc I 1 I R i + T 7 u 1 T 1 T R z u T 8 T 5 T 3 T 4 T 6 u oa = u ib u ob = u ic Ucc Vstupní část, rozkmitový a koncový stupeň Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 4 / 18

Základní koncepce OZ nastavení pracovních bodů +U cc I 1 I R i I o0 + I 1 β F I 1 β F I 1 I 1 T 1 T α F I 1 α F I 1 +β F α F I 1 I β F I β F I I o0 β F I o0 β F T 7 T 8 0 R z T 3 T 4 T 5 T 6 I o0 I in = 80 na, I outmax U cc = 0 ma, β F = β = 80, U A = 100 V, R z = kω Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 5 / 18

Základní koncepce OZ nastavení pracovních bodů +U cc I 1 I R i I o0 + I 1 β F I 1 β F I 1 I 1 T 1 T α F I 1 α F I 1 +β F α F I 1 I β F I β F I I o0 β F I o0 β F T 7 T 8 0 R z T 3 T 4 T 5 T 6 I o0 U cc I in = 80 na, I outmax = 0 ma, β F = β = 80, U A = 100 V, R z = kω I 1 = β F I in, I = I outmax /β F, I o0 I. Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 5 / 18

Metoda dělení řetězce A B... u 1 u ia r ia g ma u ia r oa u oa u ib r ib g mb u ib...... B C r ob u ob u ic r ic g mc u ic r oc u oc R z u... Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 6 / 18

Analýza základní koncepce OZ vstupní díl Diferenční zesílení +U cc + u1 r ia u 1 u 1 I 1 T 1 T r oa u1 i e1 i 1 r e1 αi e1 R o 0 i e r e αi e u 1 i oa T 3 T 4 u oa r ib r e3 r p4 g mu be4 r za u oa u be4 U cc Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ vstupní díl Diferenční zesílení +U cc + u1 r ia u 1 u 1 I 1 T 1 T r oa u1 i e1 i 1 r e1 αi e1 R o 0 i e r e αi e u 1 i oa T 3 T 4 u oa r ib r e3 r p4 g mu be4 r za u oa u be4 U cc Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ vstupní díl Diferenční zesílení r e1 = r e = r e u 1 i e1 i 1 r e3 r p4 r e1 αi e1 u be4 R o 0 i e r e αi e u 1 g m u be4 i oa r za u oa i e1 = i e = i e = u 1 r e β. g m u be4 = αi e1 =. β + = αi e1 = αi e i oa = αi e u oa = α u 1 r e r za = = g m r za u 1 = A ua u 1 r za = (r o r o4 ) r ib Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ vstupní díl Diferenční zesílení r e1 = r e = r e u 1 i e1 i 1 r e3 r p4 r e1 αi e1 u be4 R o 0 i e r e αi e u 1 g m u be4 i oa r za u oa i e1 = i e = i e = u 1 r e β. g m u be4 = αi e1 =. β + = αi e1 = αi e i oa = αi e u oa = α u 1 r e r za = = g m r za u 1 = A ua u 1 r za = (r o r o4 ) r ib Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ vstupní díl Souhlasné zesílení ideové schéma R o i e1 i e r e1 r e i 1 u s αi e1 αi e i oa u s i e1 = i e = i e = r e + R o pokud g m u be4 = i e, pak i oa = 0 a A s = 0! β zde: g m u be4 = αi e1 β + u oa = i oa r za =.= u s R o β r z A r e3 r p4 u be4 g m u be4 r za u oa A s = u o A u s H = A ua A s. = r za R o β, R o r e =. g m R o β Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ vstupní díl Souhlasné zesílení ideové schéma R o i e1 i e r e1 r e i 1 u s αi e1 αi e i oa u s i e1 = i e = i e = r e + R o pokud g m u be4 = i e, pak i oa = 0 a A s = 0! β zde: g m u be4 = αi e1 β + u oa = i oa r za =.= u s R o β r z A r e3 r p4 u be4 g m u be4 r za u oa A s = u o A u s H = A ua A s. = r za R o β, R o r e =. g m R o β Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ vstupní díl Souhlasné zesílení kompletní zapojení R o i e1 i e i s r e1 r o1 r e u s r o αi e1 αi e r e3 r p4 u be4 g m u be4 r za u oa Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 7 / 18

Analýza základní koncepce OZ rozkmitový stupeň +U cc I R i r ib r ob r ib = (β + 1)(r e5 + r π6 ) = = (β + 1)r π6 = r π5 A ub = g m6r zb r zb = r ob r ic = (R i r o6 ) r ic T 5 r ic R i r o6 r oa u ib T 6 u ob U cc Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 8 / 18

Analýza základní koncepce OZ koncový stupeň +U cc T 7 r oc r ic = (β + 1)R z r ic T 8 R z u A uc = R z R z + r ek. = 1, rek = r e7 = r e8 r oc = r ek + r o B β + 1. = r o B β + 1 r ob u ic U cc Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 9 / 18

Modelový příklad výpočtu zesílení OZ +U cc I 1 I R i + T 7 u 1 β = 80 U A = 100 V R z = kω T 1 T T 5 T 3 T 4 T u u oa = u ob = u ic ib 6 I 1 = 6, 4 µa... r e1 = 4kΩ, rπ1 = 300kΩ, roa = 8 MΩ I = 50 µa... r ib = 1, 3MΩ, rob = 00 kω, ric = 160 kω T 8 R z Ucc u Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 10 / 18

Modelový příklad výpočtu zesílení OZ +U cc I 1 I R i + T 7 β = 80 U A = 100 V R z = kω u 1 T 1 T T 5 T 3 T 4 T u u oa = u ob = u ic ib 6 A ua = u o A = g m (r oa r ib ) =. 80,A ub = u o B = g m 6 (r ob r ic ) u 1 u ib A uc. = 1, Au = A ua A ub A uc. = 50 000. T 8 R z Ucc u. = 890, Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 10 / 18

Modelový příklad výpočtu zesílení OZ +U cc I 1 I R i + T 7 β = 80 U A = 100 V R z = kω u 1 T 1 T T 5 T 3 T 4 T u u oa = u ob = u ic ib 6 A ua = u o A = g m (r oa r ib ) =. 80,A ub = u o B = g m 6 (r ob r ic ) u 1 u ib T 8 R z Ucc u. = 890, R z A ub = 000! a A u. = 560 000 oproti původním 50 000. Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 10 / 18

LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS S LOS 080D ± S E PTE MBE R 1978 ± R E VIS E D AUGUS T 1996 Vnitřní struktura IO, operačního zesilovače TL071 schematic (each amplifier) V C C + IN + IN - 64 Ω 18 Ω 64 Ω OUT C 1 18 pf 1080 Ω 1080 Ω V C C - OF F S E T NUL L (N1) OF F S E T NUL L (N) TL071 Only All component values shown are nominal. Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 11 / 18

DS009341- DS009341-7 Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A. Note 8: Human body model, 1.5 kω in series with 100 pf. Vnitřní struktura IO, OZ LM741 Schematic Diagram LM741 Operational Amplifier General Description The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM01, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. Connection Diagrams Metal Can Package The LM741C is the LM741C has +70 C temperatu Du Note 1: LM741H is available per JM38510/10101 Order Number LM741H, LM741H/883 (Note 1), LM741AH/883 or LM741CH See NS Package Number H08C Order Num See NS Pa Typical Application O See Offset Nulling Circuit 000 National Semiconductor Corporation DS009341 DS009341-1 Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 1 / 18

(PW) (Y) (D) (FK) (J) (JG) (P) (U) 0 C to 70 C µa741cd µa741cp µa741cpw µa741y Vnitřní struktura IO, OZ µa741 40 C to 85 C µa741id µa741ip 55 C to 15 C µa741mfk µa741mj µa741mjg µa741mu The D package is available taped and reeled. Add the suffix R (e.g., µa741cdr). POST OFFICE BOX 655303 DALLAS, TEXAS 7565 schematic VCC+ IN IN+ OUT OFFSET N1 OFFSET N VCC Component Count Jiří Hospodka (ELO) Transistors Struktury Resistors analogových 11 IO 7. přednáška 13 / 18

OP07 also features low input bias current (± 4 na for and high open-loop gain (00 V/mV for OP07E). The ets and high open-loop gain make the OP07 particularly r high-gain instrumentation applications. e input voltage range of ±13 V minimum combined with RR of 106 db (OP07E) and high input impedace progh accuracy in the noninverting circuit configuration. t linearity and gain accuracy can be maintained even at OP07E is specified for operation over the 0 C to 70 C ra OP07C over the 40 C to +85 C temperature range. The OP07 is available in epoxy 8-lead Mini-DIP and 8-lea It is a direct replacement for 75,108A, and OP05 amp 741-types may be directly replaced by removing the 741 s potentiometer. For improved specifications, see the OP1 OP1177. For ceramic DIP and TO-99 packages and sta micro circuit (SMD) versions, see the OP77. Vnitřní struktura IO, operačního zesilovače OP07 Figure 1. Simplified Schematic on furnished by Analog Devices is believed to be accurate and owever, no responsibility is assumed by Analog Devices for its or any infringements of patents or other rights of third parties that One Technology Way, P.O. Box 9106, Norwood, MA 006-910 lt from its use. No license is granted by implication or otherwise Tel: 781/39-4700 www.an y patent or patent rights of Analog Devices. Fax: 781/36-8703 Analog Devices, Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 14 / 18

igh accuracy in the noninverting circuit configuration. nt Vstupní linearity obvody and gain operačního accuracy zesilovače can be maintained OP07 even at O m Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 15 / 18

Vnitřní struktura IO, operačního zesilovače OP50 Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 16 / 18

0077873 Vnitřní struktura IO, oeračního zesilovače LM358 matic Diagram (Each Amplifier) 00778703 Jiří Hospodka (ELO) Struktury analogových IO 7. přednáška 17 / 18

Děkuji za pozornost.