Quantum phase transitions of insulators, superconductors and metals in two dimensions

Similar documents
Quantum criticality of Fermi surfaces in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Quantum disordering magnetic order in insulators, metals, and superconductors

AdS/CFT and condensed matter

Quantum criticality of Fermi surfaces

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Metals without quasiparticles

Quantum criticality and the phase diagram of the cuprates

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Saturday, April 3, 2010

3. Quantum matter without quasiparticles

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions and Fermi surface reconstruction

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

General relativity and the cuprates

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The phase diagrams of the high temperature superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

From the pseudogap to the strange metal

Quantum Melting of Stripes

Electronic quasiparticles and competing orders in the cuprate superconductors

arxiv: v2 [cond-mat.str-el] 22 Aug 2010

Strange metals and gauge-gravity duality

Mean field theories of quantum spin glasses

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

A quantum dimer model for the pseudogap metal

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Topological order in insulators and metals

Quantum critical metals and their instabilities. Srinivas Raghu (Stanford)

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Condensed Matter Physics in the City London, June 20, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

The Superfluid-Insulator transition

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Can superconductivity emerge out of a non Fermi liquid.

Entanglement, holography, and strange metals

Spin liquids on the triangular lattice

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Superconductivity due to massless boson exchange.

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Z 2 topological order near the Neel state on the square lattice

Nematic and Magnetic orders in Fe-based Superconductors

Landau s Fermi Liquid Theory

The Hubbard model in cold atoms and in the high-tc cuprates

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

J. McGreevy, arxiv Wednesday, April 18, 2012

Quantum transitions of d-wave superconductors in a magnetic field

Exact results concerning the phase diagram of the Hubbard Model

Emergent gauge fields and the high temperature superconductors

Finite Temperature Field Theory

Emergent light and the high temperature superconductors

Emergent Quantum Criticality

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

arxiv: v2 [cond-mat.str-el] 2 Apr 2014

Singularites in Fermi liquids and the instability of a ferromagnetic quantum-critical point

Valence Bonds in Random Quantum Magnets

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Holographic transport with random-field disorder. Andrew Lucas

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Notes on Renormalization Group: ϕ 4 theory and ferromagnetism

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

Universal Post-quench Dynamics at a Quantum Critical Point

Unusual ordered phases of magnetized frustrated antiferromagnets

Topological order in the pseudogap metal

Exotic phases of the Kondo lattice, and holography

Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals

arxiv: v1 [cond-mat.str-el] 15 Jan 2018

Spontaneous symmetry breaking in fermion systems with functional RG

Tuning order in cuprate superconductors

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute

The bosonic Kondo effect:

A New look at the Pseudogap Phase in the Cuprates.

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor

Strongly correlated Cooper pair insulators and superfluids

Properties of monopole operators in 3d gauge theories

Quantum entanglement and the phases of matter

2. Spin liquids and valence bond solids

Magnets, 1D quantum system, and quantum Phase transitions

Disordered metals without quasiparticles, and charged black holes

Entanglement, holography, and strange metals

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Quantum phase transitions in condensed matter physics, with connections to string theory

arxiv:cond-mat/ v1 4 Aug 2003

Talk online at

Topological order in quantum matter

Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

SYK models and black holes

Quantum Simulation Studies of Charge Patterns in Fermi-Bose Systems

Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum mechanics without particles

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Transcription:

Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD

Outline 1. Phenomenology of the cuprate superconductors (and other compounds) 2. QPT of antiferromagnetic insulators (and bosons at rational filling) 3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions 4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): Hot spots on Fermi surfaces B. Zero wavevector ordering (Nematic): Hot Fermi surfaces

Outline 1. Phenomenology of the cuprate superconductors (and other compounds) 2. QPT of antiferromagnetic insulators (and bosons at rational filling) 3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions 4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): Hot spots on Fermi surfaces B. Zero wavevector ordering (Nematic): Hot Fermi surfaces

Max Metlitski

Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

Order parameter at a nonzero wavevector: Hot spots on the Fermi surface.

T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of SDW quantum phase transition in Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC metal SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

T Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Theory of SDW quantum phase transition in Thermally fluctuating SDW Magnetic quantum criticality Spin gap d-wave SC metal SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

Hole-doped cuprates Increasing SDW order Γ Γ Γ Γ Hole pockets Electron pockets Large Fermi surface breaks up into electron and hole pockets S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Hole-doped cuprates Increasing SDW order Γ Γ Γ ϕ Γ Hole pockets Electron pockets ϕ fluctuations act on the large Fermi surface S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Start from the spin-fermion model Z = Dc α Dϕ exp ( S) S = dτ k λ c kα dτ i τ ε k c kα c iα ϕ i σ αβ c iβ e ik r i + dτd 2 r 1 2 ( r ϕ ) 2 ζ + 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

=3 =2 =4 =1 Low energy fermions ψ 1α, ψ 2α =1,...,4 L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v =1 1 =(v x,v y ), v =1 2 =( v x,v y )

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v 1 v 2 ψ 1 fermions occupied ψ 2 fermions occupied

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α v 1 v 2 Hot spot Cold Fermi surfaces

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ Hertz-Moriya-Millis (HMM) theory 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms)

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain non-local corrections to L ϕ L ϕ = 1 2 ϕ 2 q 2 + γ ω /2 ; γ = 2 But, higher order terms contain an infinite number of marginal couplings...... 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 πv x v y Exponent z = 2 and mean-field criticality (upto logarithms) ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = λϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Perform RG on both fermions and ϕ, using a local field theory.

Order parameter at zero wavevector: Hot Fermi surface.

T Fluctuating, paired Fermi pockets T* Strange Metal Large Fermi surface T c Fluctuating, paired Fermi pockets T sdw d-wave SC VBS and/or Ising nematic order SC+ SDW SC H c2 H SDW Insulator M SDW (Small Fermi pockets) "Normal" (Large Fermi 22 surface)

Broken rotational symmetry in the pseudogap phase of a high-tc superconductor R. Daou, J. Chang, David LeBoeuf, Olivier Cyr- Choiniere, Francis Laliberte, Nicolas Doiron- Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer arxiv: 0909.4430, Nature, in press

Quantum criticality of Pomeranchuk instability y x Fermi surface with full square lattice symmetry

Quantum criticality of Pomeranchuk instability y x Spontaneous elongation along x direction: Ising order parameter φ > 0.

Quantum criticality of Pomeranchuk instability y x Spontaneous elongation along y direction: Ising order parameter φ < 0.

Quantum criticality of Pomeranchuk instability φ =0 φ =0 λ c λ Pomeranchuk instability as a function of coupling λ

Quantum criticality of Pomeranchuk instability T Quantum critical T c φ =0 φ =0 λ c λ Phase diagram as a function of T and λ

Quantum criticality of Pomeranchuk instability T Quantum critical T c Classical d=2 Ising criticality φ =0 φ =0 λ c λ Phase diagram as a function of T and λ

Quantum criticality of Pomeranchuk instability T Quantum critical T c φ =0 φ =0 D=2+1 quantum λ criticality c? λ Phase diagram as a function of T and λ

Quantum criticality of Pomeranchuk instability Effective action for Ising order parameter S φ = d 2 rdτ ( τ φ) 2 + c 2 ( φ) 2 +(λ λ c )φ 2 + uφ 4

Quantum criticality of Pomeranchuk instability Effective action for Ising order parameter S φ = d 2 rdτ ( τ φ) 2 + c 2 ( φ) 2 +(λ λ c )φ 2 + uφ 4 Effective action for electrons: S c = dτ N f i c iα τ c iα i<j t ij c iα c iα α=1 N f dτc kα ( τ + ε k ) c kα α=1 k

Quantum criticality of Pomeranchuk instability Coupling between Ising order and electrons S φc = γ dτ φ N f (cos k x cos k y )c kα c kα α=1 k for spatially independent φ φ > 0 φ < 0

Quantum criticality of Pomeranchuk instability Coupling between Ising order and electrons S φc = γ dτ N f φ q (cos k x cos k y )c k+q/2,α c k q/2,α α=1 k,q for spatially dependent φ φ > 0 φ < 0

Quantum criticality of Pomeranchuk instability S φ = d 2 rdτ ( τ φ) 2 + c 2 ( φ) 2 +(λ λ c )φ 2 + uφ 4 S c = S φc = γ N f α=1 k dτ N f α=1 dτc kα ( τ + ε k ) c kα k,q φ q (cos k x cos k y )c k+q/2,α c k q/2,α

A φ fluctuation at wavevector q couples most efficiently to fermions near ± k 0. Expand fermion kinetic energy at wavevectors about k 0

L = ψ y + ζ τ i x 2 ψ+ + ψ y ζ τ + i x 2 ψ ψ λφ +ψ + + ψ ψ + 1 2g ( yφ) 2 + r 2 φ2

Emergent Galilean invariance at low energy (s = ±): φ(x, y) φ(x, y + θx), ψ s (x, y) e is( θ 2 y+ θ2 4 x) ψ s (x, y + θx) which implies for the fermion Green s function G(q x,q y )=G(sq x + qy). 2 Every point on the Fermi surface sq x +qy 2 = 0 has the same singularity: Hot Fermi surface.

Hot Fermi surfaces Emergent Galilean invariance at low energy (s = ±): φ(x, y) φ(x, y + θx), ψ s (x, y) e is( θ 2 y+ θ2 4 x) ψ s (x, y + θx) which implies for the fermion Green s function G(q x,q y )=G(sq x + qy). 2 Every point on the Fermi surface sq x +qy 2 = 0 has the same singularity: Hot Fermi surface.

Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain effective action for φ L φ = 1 q 2 y 2 φ2 g + ω 4π q y Exponent z = 3 and mean-field criticality?

Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

Strategy 1. Write down local field theory for order parameter and fermions 2. Apply renormalization group to field theory

Order parameter at a nonzero wavevector: Hot spots on the Fermi surface.

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ Yukawa coupling: L c = λϕ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Under the rescaling x = xe, τ = τe z, the spatial gradients are fixed if the fields transform as ϕ = e (d+z 2)/2 ϕ ; ψ = e (d+z 1)/2 ψ. Then the Yukawa coupling transforms as λ = e (4 d z)/2 λ For d = 2, with z = 2 the Yukawa coupling is invariant, and the bare time-derivative terms ζ, ζ are irrelevant.

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β With z = 2 scaling, ζ is irrelevant. So we take ζ 0 ( watch for dangerous irrelevancy).

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set ϕ wavefunction renormalization by keeping co-efficient of ( r ϕ ) 2 fixed (as usual).

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β Set fermion wavefunction renormalization by keeping Yukawa coupling fixed. Y. Huh and S. Sachdev, Phys. Rev. B 78, 064512 (2008).

L f = ψ 1α ζ τ iv 1 r ψ 1α + ψ 2α ζ τ iv 2 r ψ 2α Order parameter: L ϕ = 1 2 ( r ϕ ) 2 + ζ 2 ( τ ϕ ) 2 + s 2 ϕ 2 + u 4 ϕ 4 Yukawa coupling: L c = ϕ ψ 1α σ αβψ2β + ψ 2α σ αβψ1β We find consistent two-loop RG factors, as ζ 0, for the velocities v x, v y, and the wavefunction renormalizations. Consistency check: the expression for the boson damping constant, γ = 2 πv x v y, is preserved under RG.

RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2

RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2 The velocities flow as 1 dv x v x d A(α) B(α) = A(α)+B(α) 2 3 α πn 1+α 2 1 1 2πN α α 1+ ; 1 dv y v y d = A(α)+B(α) 2 1 α α tan 1 1 α

RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = v y /v x whose flow obeys dα d = 3 πn α 2 1+α 2 The anomalous dimensions of ϕ and ψ are 1 1 1 η ϕ = 2πN α α + α 2 + α2 tan 1 1 α η ψ = 1 1 1 4πN α α 1+ α α tan 1 1 α

RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting v 1 v 2 Bare Fermi surface

RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Bare Fermi surface

RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. Dynamical Nesting Dressed Fermi surface

RG-improved Migdal-Eliashberg theory α = v y /v x 0 logarithmically in the infrared. In ϕ SDW fluctuations, characteristic q and ω scale as q ω 1/2 exp 3 64π 2 ln(1/ω) N 3 However, 1/N expansion cannot be trusted in the asymptotic regime..

New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf v 2 q 2 ω

New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) ϕ propagator 1 N 1 (q 2 + γ ω ) fermion propagator v q + iζω + i 1 1 N γv ωf v 2 q 2 ω Dangerous

New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 ζ 2 1 ω

New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) Ignoring fermion self energy: 1 N 2 1 Actual order 1 N 0 ζ 2 1 ω

Double line representation A way to compute the order of a diagram. Extra powers of N come from the Fermi-surface What are the conditions for all propagators to be on the Fermi surface? Concentrate on diagrams involving a single pair of hot-spots Any bosonic momentum may be (uniquely) written as R. Shankar, Rev. Mod. Phys. 66, 129 (1994). S. W. Tsai, A. H. Castro Neto, R. Shankar, and D. K. Campbell, Phys. Rev. B 72, 054531 (2005).

New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Singularities as ζ 0 appear when fermions in closed blue and red line loops are exactly on the Fermi surface Actual order 1 N 0

New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 Graph is planar after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop Sung-Sik Lee, arxiv:0905.4532

New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg) = Actual order 1 N 0 A consistent analysis requires resummation of all planar graphs

Theory for the onset of spin density wave order in metals is strongly coupled in two dimensions