A Note on Void Ratio of Fibre-Reinforced Soils

Similar documents
Geotechnical and Geoenvironmental Engineering Research Group

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

PRINCIPLES OF GEOTECHNICAL ENGINEERING

Influence of particle shape on small-strain damping ratio of dry sands

Chapter I Basic Characteristics of Soils

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil

VARIATION OF CONSOLIDATION COEFFICIENT OF EXPANSIVE CLAYS AT HIGH INITIAL WATER CONTENT

P.E. Civil Exam Review: GEOMECHANICS. Jerry Vandevelde, P.E.

Effect of Moisture on Shear Strength Characteristics of Geosynthetic Reinforcement Subgrade

REGRESSION MODELING FOR STRENGTH AND TOUGHNESS EVALUATION OF HYBRID FIBRE REINFORCED CONCRETE

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE BEARING CAPACITY OF SQUARE FOOTING RESTING ON GEOGRID- REINFORCED SAND

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Earthquake Resistant Design of Reinforced Soil Structures Using Pseudo Static Method

Shear Strength Behavior of Different Geosynthetic Reinforced Soil Structure from Direct Shear Test

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Flexural properties of polymers

12 th ICSGE Dec Cairo - Egypt

BACKFILL AND INTERFACE CHARACTERISTICS

Effect of Cementation on the Shear Strength of Tehran Gravelly Sand Using Triaxial Tests

Effect of Cementation on the Shear Strength of Tehran Gravelly Sand Using Triaxial Tests

Effect of Lime on the Compressibility Characteristics of a Highly Plastic Clay

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011

Compressibility & Consolidation

Chapter 1 - Soil Mechanics Review Part A

Three-Dimensional Failure Criteria Based on the Hoek Brown Criterion

Numerical Modeling for Prediction of Compression Index from Soil Index Properties

Mechanistic Investigation of Granular Base and Subbase Materials A Saskatchewan Case Study

Effect on Engineering properties of Black Cotton Soil by Alkali Content Sodium Hydroxide (NaOH)

Centrifuge Modelling of Fibre-Reinforcement as a Liquefaction Countermeasure for Quay Wall Backfill

7. STRESS ANALYSIS AND STRESS PATHS

Geology 229 Engineering Geology. Lecture 8. Elementary Soil Mechanics (West, Ch. 7)

by a factor (F) of 1.8 and 1.6 for vane

Bearing Capacity Analysis of Piled Raft Foundation by Numerical Analysis Using Finite Element Method (FEM) for Dhaka- Chittagong Elevated Expressway

The CPT in unsaturated soils

GEOTEXTILE-REINFORCED EMBANKMENTS ON SOFT CLAYS - EFFECTS OF A FOUNDATION SOIL CRUST STRENGTHENED BY LIME DIFFUSION

Predicting the performances of rigid rover wheels on extraterrestrial surfaces based on test results obtained on earth

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Sci.Int.(Lahore),28(2), ,2016 ISSN ; CODEN: SINTE

Journal of Asian Scientific Research

EFFECT OF PARTICLE SHAPE ON SAND-GEOSYNTHETIC INTERFACES

INVESTIGATION OF SAMPLING ERROR ON SOIL TESTING RESULTS

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

THE GEOTECHNICAL INDEX PROPERTIES OF SOIL IN WARRI, DELTA STATE, NIGERIA

A Study on Suitability of Crusher Dust Stabilized Red Earth and Gravel as Subgrade and Sub Base Material

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

Variability in Some Geotechnical Properties of Three Lateritic Sub-Base Soils Along Ibadan Oyo Road

Chapter 7 Permeability and Seepage

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test

A Review of Shear Stress Sign Convention in Interpreting Mohr s Circle. Scott M. Merry 1, Member, ASCE and Evert C. Lawton 2, Member, ASCE

Effects of Basalt Fibres on Mechanical Properties of Concrete

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

Liquefaction Potential Variations Influenced by Building Constructions

Role of Force Resultant Interaction on Ultra-High Performance Concrete

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES

ADVANCES in NATURAL and APPLIED SCIENCES

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

4. Soil Consistency (Plasticity) (Das, chapter 4)

Safe bearing capacity evaluation of the bridge site along Syafrubesi-Rasuwagadhi road, Central Nepal

Course Scheme -UCE501: SOIL MECHANICS L T P Cr

Probabilistic models of construction materials Prof. Liudmyla Trykoz

Geotechnical Properties of Soil

Chapter. Materials. 1.1 Notations Used in This Chapter

Test Study on Strength and Permeability Properties of Lime-Fly Ash Loess under Freeze-Thaw Cycles

Theory of Shear Strength

Model tests and FE-modelling of dynamic soil-structure interaction

THE SHEAR BEHAVIOR OBTAINED FROM THE DIRECT SHEAR AND PULLOUT TESTS FOR DIFFERENT POOR GRADED SOIL-GEOSYNTHETIC SYSTEMS

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Engineer. Engineering. Engineering. (in-ja-neer ) A person trained and skilled in any of the various branches of engineering: a civil engineer

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Geotechnical Engineering I CE 341

A Study on Reliability Analysis for Reinforced Earth Retaining Walls

B.E. (Civil) Semester: V Subject Name: GEOTECHNICAL ENGINEERING-I (CV503)

Determination of Poisson s Ratio of Rock Material by Changing Axial Stress and Unloading Lateral Stress Test

Studies on Furan Polymer Concrete

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS

Time Rate of Consolidation Settlement

Degree of saturation effect on the grout-soil interface shear strength of soil nailing

VALLIAMMAI ENGINEERING COLLEGE

Compaction of coal wash as reclamation fill

On the Effects of Subgrade Erosion on the Contact Pressure Distribution under Rigid Surface Structures

An Analytical Method for Static Earth Pressure Distribution against Rectangular Shallow Tunnels Using Lateral Deformation


Fatigue Strength of Hybrid Steel-Polypropylene Fibrous Concrete Beams in Flexure

REGRESSION ANALYSIS OF SHORT TERM TIME-SETTLEMENT RESPONSE OF SOFT CLAYEY SOIL AT CONSTANT LOADING CONDITION

9/23/ S. Kenny, Ph.D., P.Eng. Lecture Goals. Reading List. Students will be able to: Lecture 09 Soil Retaining Structures

Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid

GG 454 January 18, SOILS (06)

Consolidation Properties of NAPL Contaminated Sediments

Small and large scale direct shear tests on sand-concrete Interface

Assessment of accuracy in determining Atterberg limits for four Iraqi local soil laboratories

On equal settlement plane height in piled reinforced embankments

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

EFFECT OF SOIL PRESENCE ON FLOW CAPACITY OF DRAINAGE GEOCOMPOSITES UNDER HIGH NORMAL LOADS. Aigen Zhao, Tenax Corporation, Baltimore, Maryland, U.S.A.

EFFECT OF SOIL TYPE LOCATION ON THE LATERALLY LOADED SINGLE PILE

Calculation of 1-D Consolidation Settlement

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

ROCK MASS CHARATERISATION: A COMPARISON OF THE MRMR AND IRMR CLASSIFICATION SYSTEMS. G P Dyke AngloGold Ashanti 1

Transcription:

Int. J. of Geosynth. and Ground Eng. (205) :29 DOI 0.007/s4089-05-0030-6 TECHNICAL NOTE A Note on Void Ratio of Fibre-Reinforced Soils Sanjay Kumar Shukla Mohamed A. Shahin 2 Hazim Abu-Taleb 2 Received: 5 June 205 / Accepted: August 205 / Published online: 9 August 205 Springer International Publishing AG 205 Abstract This technical note extends the concept of void ratio, presented traditionally in soil mechanics, for fibrereinforced soils. Phaselationships related to the void ratio of fibre-reinforced soils are presented along with their definitions. A simple analytical model verified with experimental data for estimating the void ratio of fibrereinforced soils is developed which can be used to express the compressibility of fibre-reinforced soils in geotechnical engineering applications. Thesults indicate that the void ratio of fibre-reinforced soils is dependent on the volume ratio of fibre-soil solid. Keywords Introduction Fibre Soil Void ratio Reinforcement The concept of phaselationships of soil mechanics is extensively used in geotechnical engineering to quantify the engineering behavior of soils due to the fact that thelative proportions of each phase in an element of soil have a significant impact on its engineering behavior. An element of & Mohamed A. Shahin m.shahin@curtin.edu.au Sanjay Kumar Shukla s.shukla@ecu.edu.au; sanjaykshukla@gmail.com Hazim Abu-Taleb hazim.abu-taleb@hotmail.com 2 Discipline of Civil and Environmental Engineering, School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia Department of Civil Engineering, Curtin University, Perth, WA 6845, Australia soil mass can bepresented as shown in Fig. by a threephase system containing soil solid (mineral particles), liquid (usually water), and gas (usually air). The space occupied by the air and/or water in a soil mass represents the volume of soil void. Thatio of the volume of soil void to the volume of soil solid in a given soil mass is called the void ratio of soil. The importance of the void ratio lies in the fact that it significantly affects the soil behavior, such as compressibility, which is generally studied in terms of the change in the soil void ratio while ignoring the change in the volume of the individual solid particles due to the fact that crushing and fracturing of the solid particles under applied stresses are insignificant [ 3]. In recent years, synthetic fibres have been developed from several wastes such as plastic and old tires, and have been used for improving the engineering behavior of soils by the addition of random distribution of fibres within the soil mass or by placing one or more layers of fibres in the form of geosynthetic products within the soil mass [4]. An element of fibre mass can bepresented as shown in Fig. 2 by a three-phase system containing fibre solid, liquid and gas. When fibre is added to the soil matrix, a similar phase system to that used for soils can be proposed for fibrereinforced soils. However, it is well expected that the addition of fibre to unreinforced soils, forming the fibrereinforced soils, affects the phaselationships of fibrereinforced soils. The properties of added fibre under applied stresses are expected to behave differently from those of the soil matrix alone; thus, the soil solid and fibre solid should be dealt with as two different components of the phase system of fibre-reinforced soils. Consequently, an additional phase can be embedded into the phase system of fibre-reinforced soils to represent the solid volume of fibre, leading to the four-phase system shown in Fig. 3. Diambra et al. [5] and Ibrahim et al. [6] briefly discussed the fibre

29 Page 2 of 5 Int. J. of Geosynth. and Ground Eng. (205) :29 Vvs Soil solid Vss Fig. An element of soil mass represented by a three-phase system Vvf been paid to the volume of fibre (i.e., fibre void volume? fibre solid volume) to develop the phaselationships for fibre-reinforced soils. Keeping the need for developing phaselationships in mind, the concept of void ratio needs to be extended in order to make it possible to explain the behavior of fibrereinforced soils, following the approach used widely in soil mechanics for analyzing the unreinforced soils. In the present work, an attempt is made to extend the traditional concept of the phaselationships for the void ratio of fibre-reinforced soils, which has not received due attention in the past but is considered to be an important factor in geotechnical engineering applications of fibre-reinforced soils. Void Ratio of Fibre-Reinforced Soils Fibre solid Vsf In the context of the phase diagram of an element of fibrereinforced soil, as shown in Fig. 3, the following phase relationships are proposed along with their definitions:void ratio of reinforced soil mass, Fig. 2 An element of fiber mass represented by a three-phase system ¼ V v V s Void ratio of soil mass, ðþ Fibre solid Soil solid Vv = Vvf +Vvs Vsf Vss Vs = Vsf + Vss Fig. 3 An element of fiber-reinforced soil mass represented by a three-phase system content in terms of the total dry unit weight and total volume of fibre-reinforced soil to study the behavior of fibre-reinforced sands, without focusing on the void ratio. When dealing with the behavior of fibre-reinforced soils in most studies found in the literature on the fibre-reinforced soils, both the fibre solid and soil solid are combined together as one component and no special attention has e s ¼ V vs Void ratio of fibre mass, e f ¼ V vf V sf Volumatio of fibre-soil solid, ð2þ ð3þ m ¼ V sf ð4þ where V v is the volume of void of fibre-reinforced soil, V s is the volume of solid of fibre-reinforced soil, V vs is the volume of soil void, is the volume of soil solid, V vf is the volume of fiber void, and V sf is the volume of fibre solid. A derivation of an expression for the void ratio of fiberreinforced soil,, can be obtained in terms of the void ratio of soil, e s, void ratio of fibre, e f, and volumatio of fibersoil solid, m, as follows: ¼ V v ¼ V V vs V vs vf V ¼ ss V vf V sf V sf V s V sf V ¼ e s me f ð5þ sf m From Eq. (5), the following two extreme special cases may be observed:

Int. J. of Geosynth. and Ground Eng. (205) :29 Page 3 of 5 29 (a) As the volumatio of fibre-soil solid, m, tends to 0, the void ratio of fibre-reinforced soil,, becomes equal to the void ratio of soil, e s ; and (b) As the volumatio of fibre-soil solid, m, tends to?, the void ratio of fibre-reinforced soil,, becomes equal to the void ratio of fibre, e f. Variation of the void ratio of fibre-reinforced soil,, with the volumatio of fibre-soil solid, m, can be observed graphically, as shown in Fig. 4, for typical randomly selected values of void ratio of soil, e s, and void ratio of fibre, e f, equal to 0.8 and.5, respectively. It can be noticed that the void ratio of fibre-reinforced soil,, is greatly dependent on the volumatio of fibre-soil solid, m. In the following section, a variation of with m will also be observed experimentally so that an expression that correlates with m can be established, which can be used for prediction of. Experimental Programme Testing materials The soil used in this study is Brickies sand, classified in accordance with the Unified Soil Classification System (USCS) as poorly graded sand (SP). Figure 5 shows the particle-size distribution curve of the sand used and Table summarizes its basic properties. The fibre used as reinforcement is virgin homo-polymer polypropylene, with the properties given in Table 2 and structure shown in Fig. 6. Preparation of Specimens In this section, a series of laboratory tests were conducted on fibre-reinforced soils in an attempt to establish an weight % Passing by 00 90 80 70 60 50 40 30 20 0 0 0.00 0.0 0. 0 00 Particle size (mm) Fig. 5 Particle-size distribution of the sand used Table Properties of the sand used Property Value Specific gravity 2.65 Maximum dry unit weight* (kn/m 3 ) 7.4 Particle size D 0 (mm) 0.8 D 30 (mm) 0.32 D 60 (mm) 0.50 Coefficient of uniformity, C u 2.78 Coefficient of curvature, C c.4 * Standard proctor Table 2 Properties of the fiber used Property Value Specific gravity 0.9 Length (mm) 9 Tensile strength (MPa) 620 758.5.4.3.2..0 0.9 e s = 0.8 e f =.5 0.8 0 2 3 4 5 6 7 8 9 0 m Fig. 4 Effect of volumatio of fibre-soil solid, m, on void ratio of fibre-reinforced soil, based on Eq. (5) Fig. 6 Virgin homo-polymer polypropylene fiber

29 Page 4 of 5 Int. J. of Geosynth. and Ground Eng. (205) :29 empirical expression to predict from m. Before conducting the tests, it was important to relate both and m to some other properties that can be measured in the laboratory. To do so, m was expressed in terms of the weights of fibre solid and soil solid as well as the specific gravity of fibre and soil instead of the volumes of fibre solid and soil solid, as follows: m ¼ V sf ¼ ðw sf=c w G sf Þ ðw ss =c w G ss Þ ¼ W sfg ss ¼ p G ss ð6þ W ss G sf G sf where W sf is the weight of fibre solid; W ss is the weight of soil solid; p is thatio of W sf to W ss, that is, the fibre content by dry weight of soil; c w is the unit weight of water; G ss is the specific gravity of soil; and G sf is the specific gravity of fibre. On the other hand, using the soil mechanics phase relationships, can be calculated as follows: ¼ G src w ð7þ c dr where G sr is the specific gravity of fibre-reinforced soil mixture; c w is the unit weight of water; and c dr is the dry unit weight of fibre-reinforced soil mixture. In geotechnical engineering applications of fibre-reinforced soils, the mixture of soil and fibre should be compacted to reach its optimum compaction, hence, c dr in Eq. (7) is that corresponds to the maximum dry unit weight, c drðmaxþ. In order to develop thelationship between the void ratio of fibre-reinforced soil,, and volumatio of fibre-soil solid, m, a number of specimens of sand-fibre mixtures were prepared at seven different values of p = 0.25, 0.5,.0, 2.0, 3.0, 4.0, and 5.0 %. For each sand-fibre mixture, a specific gravity test was performed to obtain G sr and the standard Proctor compaction test was also carried out to obtain c drðmaxþ. The fibre-reinforced soil samples were prepared by mixing dry sand with fibre using Hobart mixer, and water was added to the mixture to achievequired moisture content. The prepared samples were mixed for 90 s to allow homogeneity and were then placed in polyethylene bags, tied up and left overnight for water to be uniformly distributed prior to testing. Using the experimental data obtained together with Eqs. (6) and (7), seven different values of m and corresponding were calculated and used to develop the relationship between m and, as explained below. Test Results ad Discussion Thesults of specific gravity tests carried out on the sandfibre mixtures for different values of fiber content p are presented in Fig. 7. It can be seen that the specific gravity of mixtures decreases with an increase of p, as expected. In the current work, it was also possible to develop an G sr 2.70 2.65 2.60 2.55 2.50 2.45 2.40 0.0 0.5.0.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 analytical derivation for determination of the specific gravity of the sand-fibre mixture based on the specific gravity of both the soil and fibre, as follows: G sr ¼ W s W ss W sf ¼ V s c w ð V sf Þ c w W ss p W ss ¼ h ¼ i ¼ W ss p W ss W sf W G sf c c ss w w G ss p W ss G sf p ¼ðpÞ p G ss G sf W ss G ss c w G ss p G sf p (%) Measured Predicted Fig. 7 Variation of the specific gravity G sr of sand-fibre mixtures with the fibre content p ð8þ The validity of Eq. (8) was verified by the experimental data in Fig. 7 and thesults show an excellent agreement. The results of the compaction tests are presented in Fig. 8,which indicates that the maximum dry density of the sand-fibre mixtures decreases with an increase of fibre content, as expected. Using thesults of the above tests, the values of m and corresponding were calculated and plotted in Fig. 9, D ry unit weight, γ d ( kn/ m 3 ) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 Sand alone p = 0.25% p = 0.5% p = % p = 2% p = 3% p = 4% p = 5% 3.5 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 Moisture content, w (%) Fig. 8 Compaction curves for various sand-fibre mixtures

Int. J. of Geosynth. and Ground Eng. (205) :29 Page 5 of 5 29 which shows that the void ratio of the sand-fibre mixture increases with an increase of the volumatio m of the mixture. The trend in Fig. 9 obtained from the experimental results is in a good agreement with that observed in Fig. 4 obtained analytically using Eq. (5). The data shown in Fig. 9 can be-plotted on log scale in the horizontal axis, as shown in Fig. 0. It can be seen from Fig. 0 that m was adjusted to be ð00 m Þ to make the value of m fits more adequately on the log scale and to avoid the problem of having log of zero. Based on the data shown in Fig. 0, a linear model is proposed for thelationship between m and, as follows: ¼ a lnð00 m Þb ð9þ where a ¼ 0:0333 is the slope of the linear relationship and represent the type of fibre used (i.e., virgin homo-polymer polypropylene) and b ¼ 0:493 is the value of at m ¼ 0 and represents the type of sand used (i.e., poorly graded silica sand). For other types of fibre and/or sand, a and b 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.00 0.02 0.04 0.06 0.08 0.0 0.2 0.4 0.6 m Fig. 9 Effect of volumatio of fibre-soil solid, m, on void ratio of fibre-reinforced soil,, based on the experimental data can be obtained from the data obtained from a minimum of four compaction tests on the fibre-reinforced soil at hand from which the measured values of m and the corresponding can be calculated and used to determine a and b, then Eq. (9) can be used for future prediction the void ratio of that fibre-reinforced soil. Concluding Remarks The concept of phaselationships, being adopted widely in soil mechanics for unreinforced soils, was utilized for developing the phaselationships related to the void ratio of fibre-reinforced soils. The phaselationships are fairly of general nature and can be utilized in several applications of fibre-reinforced soils especially in design of foundations. An analytical linear regression model for thelationship between the void ratio of fibre-reinforced soil and logarithmic of volumatio of fibre-soil solid was derived, which can be useful for expressing the fibrereinforced soil compressibility, relative density and permeability in a way similar to that traditionally used in soil mechanics for analysis of unreinforced soils. The developed relationship includes two dependent empirical parameters, one for the soil type and the other for the fibre type. These two parameters can be determined for any soil-fiber mixture from the data obtained from a minimum of four compaction tests on the fibre-reinforced soil of interest. The developed void ratio of sand-fibre mixtureduces the gap knowledge in soil mechanics of fibre-reinforced soils. It should be noted that other researchers may carry out experimental studies with several fibre types and also for cemented fibre-reinforced soils to compare their results with the developed phase relationships. 0.60 0.58 0.56 0.54 0.52 0.50 y = 0.0333ln(x) + 0.493 R² = 0.9935 0.48.00 0.00 00.00 00m + Fig. 0 Variation of void ratio,, of the sand-fibre mixture used with logarithm of (00 m? ) References. Lambe TW, Whitman RV (979) Soil mechanics, SI version. Wiley, New York 2. Terzaghi K, Peck RB, Mesri G (996) Soil mechanics in engineering practice, 3rd edn. Wiley, New York 3. Shukla SK (204) Core principles of soil mechanics. ICE Publishing, London 4. Shukla SK, Sivakugan N, Das BM (2009) Fundamental concepts of soil reinforcement an overview. Int J Geotech Eng 3(3):329 342 5. Diambra A, Ibrahim E, Muir Wood D, Russell AR (200) Fiber reinforced sands: experiments and modeling. Geotext Geomembr 28(3):238 250 6. Ibrahim E, Diambra A, Muir Wood D, Russell AR (200) Static liquefaction of fiber reinforced sand under monotonic loading. Geotext Geomembr 28(4):374 385