Florin-Dorian Buzatu [ISI] Articles:

Similar documents
ON THE DETERMINATION OF THE SPINODAL CURVE FOR THE SYSTEM WATER + CHLOROFORM + ACETIC ACID FROM THE MUTUAL DIFFUSION COEFFICIENTS

THE SPINODAL CURVE OF THE SYSTEM WATER 1-BUTANOL 1-PROPANOL ACCORDING TO THE WHEELER WIDOM MODEL

HYDRODYNAMIC AND THERMODYNAMIC ASPECTS OF DIFFUSION COEFFICIENTS IN THE TERNARY SYSTEM WATER-CHLOROFORM-ACETIC ACID AT 25 C

A THREE-COMPONENT MOLECULAR MODEL WITH BONDING THREE-BODY INTERACTIONS

The Effect of Salt on Protein Chemical Potential Determined by Ternary Diffusion in Aqueous Solutions

List of published papers

On the Role of Solute Solvation and Excluded-Volume Interactions in Coupled Diffusion

Strongly Correlated Systems:

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

Tuesday, September 22, Ionic Compounds

Macromolecular hydration compared with preferential hydration and their role on macromolecule-osmolyte coupled diffusionwz

Talk online at

WORLD SCIENTIFIC (2014)

M7 Question 1 Higher

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

Chapter 6 and 15 Ionic Compounds

SOLUTIONS. Homogeneous mixture uniformly mixed on the molecular level. Solvent & Solute. we will focus on aqueous solutions

Copyright 2018 Dan Dill 1

Onofrio Annunziata, Luigi Paduano,, Arne J. Pearlstein, Donald G. Miller,, and John G. Albright*, 5916 J. Am. Chem. Soc. 2000, 122,

Hardness Prediction and First Principle Study of Re-123(Re = Y, Eu, Pr, Gd) Superconductors

Tuesday, September 15, Ionic Compounds

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes

Wed Sep 5, Characteristics of Water

TYPES OF CHEMICAL REACTIONS

Chapter 4 Chemical Formulas, Reactions, Redox and Solutions

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Chem 321 Lecture 11 - Chemical Activities 10/3/13

Part A Answer all questions in this part.

Solutions Solubility. Chapter 14

Thermodynamics of Salt Dissolution

Part I: Solubility!!!

Quantum phase transitions in Mott insulators and d-wave superconductors

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

CHEM-102 EXAM I Name Fall 2004 Section

Chapter 3: Molecules, Compounds, and Chemical Equations

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule

Copyright 2018 Dan Dill 1

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings

Chem 1515 Section 2 Problem Set #4. Name Spring 1998

Chapter 15. Solutions

AS91164 Bonding, structure, properties and energychanges Level 2 Credits 5

Talk online: sachdev.physics.harvard.edu

The Periodic Table consists of blocks of elements

CHM151 Quiz Pts Fall 2013 Name: Due at time of final exam. Provide explanations for your answers.

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms

HW 2. CHEM 481 Chapters 3 & 5 Chapter 3. Energetics of Ionic Bonding

4-1 Dissolution Reactions 4-2 Precipitation Reactions 4-3 Acids and Bases and Their Reactions 4-4 Oxidation-Reduction Reactions

The BCS-BEC Crossover and the Unitary Fermi Gas

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples:

Name: Period: Date: solution

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Description Computer Bonding. Late Lab Stamp (this stamp means you are not qualified to do lab and test corrections) Name: Period:

Solutions. π = n RT = M RT V

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model

Molecular Driving Forces

Bonding. October 20, Intro to Ionic Bonds Honors.notebook

WYSE Academic Challenge Sectional Chemistry 2005 SOLUTION SET

Assessment Schedule 2017 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Chemical Bonding: Chemical Formulas OL

Covalent Bonding H 2. Using Lewis-dot models, show how H2O molecules are covalently bonded in the box below.

Some phenomenological and thermodynamic aspects of diffusion in multicomponent systems

Properties of Compounds

Tuning order in cuprate superconductors

Unit 7: Formulas and Equations. NaCl. Jan 22 12:35 PM

How do Elements Combine to Form Compounds?

Chapter 6: Chemical Bonding

Practice Test 1 Bio 103 Name

THERMODYNAMIC PROPERTIES OF ONE-DIMENSIONAL HUBBARD MODEL AT FINITE TEMPERATURES

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

Properties of Aqueous Solutions

Chapter 7 & 8 Nomenclature Notes/Study Guide. Properties of ionic bonds & compounds. Section 7-2

Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Gozo College Boys Secondary Victoria - Gozo, Malta Ninu Cremona

'etion 4. Surfaces and -interface. Chapter 1 Statistical Mechanics of SurfcSytman Quantum -Correlated Systems. Chapter 2 Synchrotron X-Ray Studies o

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. Some Examples of Solutions. Type Example Solute Solvent Gas in gas Air Oxygen (gas) Nitrogen (gas)

Percent Composition and Empirical Formulas

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

Polar molecules vs. Nonpolar molecules A molecule with separate centers of positive and negative charge is a polar molecule.

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

Solutions & Solubility: Net Ionic Equations (9.1 in MHR Chemistry 11)

Chapter 4. Reactions in Aqueous Solutions. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O

Modeling Viscosity of Multicomponent Electrolyte Solutions 1

Bonding. October 13, Honors TypesofChemicalBonds.notebook

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry

Chemistry Section Review 7.3

Fundamentals and New Frontiers of Bose Einstein Condensation

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion

Chapter. Basic Food Chemistry: The Nature of Matter. Images shutterstock.com

9.1 Water. Chapter 9 Solutions. Water. Water in Foods

1 Sulfur, atomic number 16, is found within the Earth s crust. Sulfur is released into the atmosphere at times of volcanic activity.

Exact results concerning the phase diagram of the Hubbard Model

Semiempirical study on the valences of Cu and bond covalency in Y 1 x Ca x Ba 2 Cu 3 O 6 y

Transcription:

List of Publications Florin-Dorian Buzatu [ISI] Articles: 1. F. D. Buzatu, Stud. Cerc. Fiz. 36 (1984) 163-182. Soliton solutions and the quantization of the sine-gordon theory 2. A. Corciovei and F. D. Buzatu, Rev. Roum. Phys. 29 (1984) 577-586. Soliton solutions and conservation laws 3. F. D. Buzatu and A. Corciovei, Stud. Cerc. Fiz. 39 (1987) 265-275. Monodromy matrices, Stokes multipliers and harmonic oscillator 4. F. D. Buzatu, F. H. Liu, L. Macarie, L. Vasiliu-Doloc and M. Apostol, Fizika 21 Suppl.3 (1989) 243-246. Oxygen displacive interaction in high-temperature superconductors 5. M. Apostol, F. D. Buzatu and F. H. Liu, Int. J. Mod. Phys. B 4 (1990) 159-177. Critical temperature of third generation high-temperature superconductors 6. L. Macarie, L. Vasiliu-Doloc, F. D. Buzatu and M. Apostol, Studia Univ. Babeş-Bolyai, Physica 36 (1991) 45-57. On the superconducting critical temperature of La 2 x Ba x CuO 4 7. F. D. Buzatu, Stud. Cerc. Fiz. 43 (1991) 169-188. The Hubbard model in the low concentration limit of the charge carriers 8. F. D. Buzatu, Stud. Cerc. Fiz. 43 (1991) 319-362. The Bardeen-Cooper-Schrieffer model of superconductivity 9. F. D. Buzatu, Mod. Phys. Lett. B 6 (1992) 1593-1600. Ground-state energy for the 1D (t, U, X) model at low densities [1]10. F. D. Buzatu, Phys. Rev. B 49 (1994) 10176-10180. One-dimensional (t, U, X) model: Ground-state phase diagram in a mean-field-type approximation [2]11. F. D. Buzatu, Int. J. Mod. Phys. B 9 (1995) 1503-1514. The effect of a bond-site interaction on the ground-state instabilities of the one-dimensional Hubbard model 1

[3]12. F. D. Buzatu, Mod. Phys. Lett. B 9 (1995) 1149-1157. Ground-state energy of the one-dimensional Hubbard model in a simple self-consistent version of the ladder approximation [4]13. A. Belkasri and F. D. Buzatu, Phys. Rev. B 53 (1996) 7171-7175. Ground-state instabilities in the one-dimensional Penson-Kolb-Hubbard model [5]14. F. D. Buzatu, Phys. Rev. B 55 (1997) 2114-2121. One-dimensional fermions with delta-function repulsion in the Brueckner theory [6]15. F. D. Buzatu, Phys. Lett. A 224 (1997) 367-371. The independent-pair model for one-dimensional fermions interacting through a repulsive delta-potential 16. F. D. Buzatu and E. Pieleanu, Rom. J. Phys. 42 (1997) 185-196. Hubbard-type interactions in alternating chains 17. F. D. Buzatu, Rom. J. Phys. 42 (1997) 431-441. One-dimensional Yang model in the independent-pair approximation [7]18. F. D. Buzatu and G. Jackeli, Phys. Lett. A 246 (1998) 163-171. Alternating chains with Hubbard-type interactions: renormalization group analysis 19. A. Avella, F. Mancini, M. M. Sánchez, D. Villani, and F. D. Buzatu, J. Phys. Stud. 2 (1998) 228-231. Local quantities for the 1D Hubbard model in the Composite Operator Method [8]20. D. A. Huckaby, A. Pȩkalski, D. Buzatu, and F. D. Buzatu, J. Chem. Phys. 115 (2001) 6775-6779. Amphiphile-rich phase in a model ternary solution on the honeycomb lattice [9]21. F. D. Buzatu and D. A. Huckaby, Physica A 299 (2001) 427-440. An exactly solvable model ternary solution with strong three-body interactions [10]22. F. D. Buzatu, D. Buzatu, and J. G. Albright, J. Sol. Chem. 30 (2001) 969-983. Spinodal curve of a model ternary solution 2

23. F. D. Buzatu and D. Buzatu, Rom. J. Phys. 47 (2002) 293-305. Effective spinodal curve of a three-component molecular system 24. F. D. Buzatu, D. Buzatu, and J. G. Albright, Rom. J. Phys. 47 (2002) 359-370. Spinodal curve of the Wheeler-Widom model with three-body interactions on the Bethe lattice 25. F. D. Buzatu and D. A. Huckaby, Rom. J. Phys. 48 (2003) 557-565. Exact results for a model ternary solution with strong three-body interactions 26. F. D. Buzatu and D. Buzatu, Rom. J. Phys. 48, Suppl. I (2003) 521-532. Antiferromagnetic-like ordering in a model ternary solution [11]27. D. Buzatu, E. Petrescu, C. Popa, F. D. Buzatu, J. G. Albright, Rev. Chim. (Buc.) 55 (2004) 435-438. Measurements of multicomponent diffusion coefficients for lysozyme chloride in water and aqueous Na 2 SO 4 [12]28. F. D. Buzatu, R. P. Lungu, and D. A. Huckaby, J. Chem. Phys. 121 (2004) 6195-6206. An exactly solvable model for a ternary solution with three-body interactions and orientationally dependent bonding [13]29. D. Buzatu, E. Petrescu, C. Popa, F. D. Buzatu, J. G. Albright, Rev. Chim. (Buc.) 55 (2004) 759-763. Extraction of thermodynamic data from ternary diffusion coefficients of lysozyme chloride in water and aqueous Na 2 SO 4 [14]30. D. Buzatu, E. Petrescu, C. Popa, F. D. Buzatu, Rev. Chim. (Buc.) 56 (2005) 61-65. Conductivity and viscosity measurements for binary lysozyme chloride aqueous solution and ternary lysozyme-salt-water solution [15]31. D. Buzatu, E. Petrescu, C. Popa, F. D. Buzatu, Rev. Roum. Chim. 50 (2005) 193-199. Conductimetric method applied to ternary lysozyme-nacl-water solution and lysozyme-nh 4 Cl-water solution [16]32. D. Buzatu, E. Petrescu, C. Popa, F. D. Buzatu, Rev. Roum. Chim. 50 (2005) 185-191. 3

Conductimetric method applied to ternary lysozyme-kcl-water solution and lysozyme-nh 4 Cl-water solution [17]33. D. Buzatu, E. Petrescu, C. Popa, F. D. Buzatu, J. Optoel. Adv. Mat. 7 (2005) 1079-1090. Determination of the difussion coefficients for ternary systems by Gosting difusiometer; aparatus and method [18]34. D. Buzatu, O. Annunziata, E. Petrescu, C. Popa, F. D. Buzatu, J. Optoel. Adv. Mat. 7 (2005) 3161-3168. Dynamic light scattering: a useful optical method to probe common ion-effects in protein-salt aqueous solutions. 35. F. D. Buzatu, Radu P. Lungu, Dale A. Huckaby, D. Buzatu, Rom. J. Phys. 50 (2005) 417-425. A three-component molecular model with bonding three-body interactions 36. R. P. Lungu, D. A. Huckaby, F. D. Buzatu, D. Buzatu, Rom. J. Phys. 51 (2006) 769-782. Three-body and bonding effects on phase separation in a model binary solution [19]37. R. P. Lungu, D. A. Huckaby, F. D. Buzatu, Phys. Rev. E 73 (2006) 021508(1-14). Phase separation in an exactly solvable model binary solution with threebody interactions and intermolecular bonding [20]38. F. D. Buzatu and D. Buzatu, Rom. Rep. Phys. 59 (2007) 351-356. One dimensional ionic Hubbard model in the high ionicity limit 39. D. Buzatu, A. M. Popovici, F. D. Buzatu, L. Paduano, and R. Sartorio, Sci. Bull. UPB 69 (2007) 73-80. Hydrodynamic and thermodynamic aspects of diffusion coefficients in the ternary system water-chloroform-acetic acid at 25 0 C. [21]40. D. Buzatu, F. D. Buzatu, L. Paduano, and R. Sartorio, J. Sol. Chem. 36 (2007) 1373-1384. Diffusion coefficients in the ternary system water-chloroform-acetic acid at 25 0 C. Part 1. [22]41. Gh. Adam, S. Adam, A. Ayriyan, E. Dushanov, E. Hayryan, V. Korenkov, A. Lutshenko, V. Mitsyn, T. Sapozhnikova, A. Sapozhnikov, O. Streltsova, F. Buzatu, M. Dulea, I. Vasile, A. Sima, C. Vişan, J. 4

Buša, I. Pokorny, Rom. J. Phys. 53 (2008) 665-667. Performance assesment of the SIMFAP parralel cluster at IFIN-HH Bucharest [23]42. F. D. Buzatu and D. Buzatu, Rom. J. Phys. 53 (2008) 1045-1052. Site density waves vs. bond density waves in the one-dimensional ionic Hubbard model in the high ionicity limit [24]43. D. Buzatu, F. D. Buzatu, and R. Sartorio, Sci. Bull. UPB 70 (2008) 103-110. Partial molar volumes and diffusion coefficients for ternay system waterchloroform-acetic acid at 25 0 C for different choices of solvent. [25]44. F. D. Buzatu, R. P. Lungu, D. Buzatu, R. Sartorio, and L. Paduano, J. Sol. Chem. 38 (2009) 403-415. Spinodal composition of the system water + chloroform + acetic acid at 25 C [26]45. D. Buzatu, F. D. Buzatu, R. P. Lungu, L. Paduano, and R. Sartorio, Rom. J. Phys. 55 (2010) 342-351. On the determination of the spinodal curve for the system water + chloroform + acetic acid from the mutual diffusion coefficients [27]46. R. P. Lungu, R. Sartorio, and F. D. Buzatu, J. Sol. Chem. 40 (2011) 1687-1700. New method for theoretical spinodals corresponding to ternary solutions with an amphiphile component [28]47. R. P. Lungu, R. Sartorio, and F. D. Buzatu, Rom. J. Phys. 56 (2011) 1069-1079. Theoretical spinodal for ternary solution with an amphiphile component using a generalized Wheeler-Widom model May 2016 5