Linear Algebraic Equations

Similar documents
Matrix notation. A nm : n m : size of the matrix. m : no of columns, n: no of rows. Row matrix n=1 [b 1, b 2, b 3,. b m ] Column matrix m=1

Numerical Analysis Fall. Gauss Elimination

A Review of Matrix Analysis

Linear System of Equations

Process Model Formulation and Solution, 3E4

Chapter 9: Gaussian Elimination

Linear Equations and Matrix

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

POLI270 - Linear Algebra

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems.

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Linear Algebra March 16, 2019

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

Solving Linear Systems of Equations

Phys 201. Matrices and Determinants

Matrix Arithmetic. j=1

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

Next topics: Solving systems of linear equations

CPE 310: Numerical Analysis for Engineers

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination

CS 246 Review of Linear Algebra 01/17/19

Matrix & Linear Algebra

CHAPTER 6. Direct Methods for Solving Linear Systems

Chapter 8 Gauss Elimination. Gab-Byung Chae

Exact and Approximate Numbers:

MATH 3511 Lecture 1. Solving Linear Systems 1

Linear Algebraic Equations

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination

Section 9.2: Matrices.. a m1 a m2 a mn

Linear System of Equations

Solving Linear Systems

Example: Current in an Electrical Circuit. Solving Linear Systems:Direct Methods. Linear Systems of Equations. Solving Linear Systems: Direct Methods

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

Fundamentals of Engineering Analysis (650163)

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Numerical Methods for Chemical Engineers

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns

Linear Algebra and Matrix Inversion

Review of Linear Algebra

Chapter 4 No. 4.0 Answer True or False to the following. Give reasons for your answers.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Matrices and Determinants

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

Solution of Linear systems

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7

CE 601: Numerical Methods Lecture 7. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Chapter 2 Notes, Linear Algebra 5e Lay

The Solution of Linear Systems AX = B

Math 313 Chapter 1 Review

Elementary maths for GMT

ELEMENTARY LINEAR ALGEBRA

Basic Concepts in Linear Algebra

The purpose of computing is insight, not numbers. Richard Wesley Hamming

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

Systems of Linear Equations

Engineering Computation

Introduction to PDEs and Numerical Methods Lecture 7. Solving linear systems

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

Elimination Method Streamlined

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

Review of Basic Concepts in Linear Algebra

Matrices and systems of linear equations

Section 12.4 Algebra of Matrices

Elementary Row Operations on Matrices

Gaussian Elimination -(3.1) b 1. b 2., b. b n

2.1 Gaussian Elimination

Chapter 1 Matrices and Systems of Equations

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Numerical Analysis FMN011

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Matrices and Determinants

Matrix decompositions

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

Page No.1. MTH603-Numerical Analysis_ Muhammad Ishfaq

1.Chapter Objectives

Solving Linear Systems of Equations

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

Systems of Linear Equations and Matrices

Inverting Matrices. 1 Properties of Transpose. 2 Matrix Algebra. P. Danziger 3.2, 3.3

Introduction to Applied Linear Algebra with MATLAB

Systems of Linear Equations and Matrices

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

MA3232 Numerical Analysis Week 9. James Cooley (1926-)

Math Linear Algebra Final Exam Review Sheet

Numerical Linear Algebra

MATH 2030: MATRICES. Example 0.2. Q:Define A 1 =, A. 3 4 A: We wish to find c 1, c 2, and c 3 such that. c 1 + c c

22A-2 SUMMER 2014 LECTURE 5

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

A matrix over a field F is a rectangular array of elements from F. The symbol

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method

1 Number Systems and Errors 1

Matrix operations Linear Algebra with Computer Science Application

Transcription:

Linear Algebraic Equations

Linear Equations: a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n 3...... a + a + a + a +... + a = c m1 1 m2 2 m3 3 m4 4 mn n m m equations in n unknowns Where a ij are constant coefficients, c j are constants.

Brief Review of Matrices [ A] a11 a12... a1 n a a... a............ am1 am2... amn 22 2n = [m*n] matri İf m=n square matri If m=1, [1*n] row vector and if n=1 [m*1] column vector [ ] C c1 c2... cn b b.. b = 1 b 2 = m

Matri is symmetric if: a ij =a ji Matri is diagonal if a i j=0 for i j for all i Matri is identity Matri, I, if a i j=0 for i j for all i and a ii =1 Upper and Lower Triangular Matrices Banded matri Transpose of a matri

Matri Operations [A]=[B] if both matrices have the same m rows, n columns and a ij =b ij for all i,j Addition and Subtraction: [C]=[A]+[B], c ij =a ij +b ij [C]=[B]+[A] = [A]+[B] Commutative ([A]+[B])+[C]= [A]+([B]+[C]) Associative

Multiplication by a constant: k[a]=g g ij =ka ij Multiplication of Matrices: [C]= [A] [B] m*l m*n n*l c ij = Σa ik b kj (AB)C=A(BC) (Associative) A(B+C)=AB + AC (Distributive) AB BA (is not commutative)

Trace of a Matri: Augmentation: [ ] tr A n = a i= 1 ii Matri A augmented by an identity Matri: [ ] a a a 11 12 13 = 22 23 31 32 33.1 0 0 AI, a a a.0 1 0 a a a.0 0 1 AX Matri A augmented by B: = B a a a. b A, B a a a. b [ ] 11 12 13 1 = 22 23 2 a a a. b 31 32 33 3

Inverse of a Matri A 1 A 1 If (Inverse of Matri A)İs such that 1 1 A A= AA = I AX = B Multiply both sides by A 1 Since 1 A A= I 1 1 A AX = A B X = 1 A B

DETERMINANT (Defined for square matrices only) 22 a a a A a a a [ ] 11 12 13 = 22 23 a a a a 31 32 33 a 11 12 D = = a11a22 a12a21 a21 a22 Determinant of Matri A a a a 11 12 13 D= a a a 22 23 a a a 31 32 33 33 or a a a a a a a a a D = a a a = a a + a 11 12 13 22 23 23 22 22 23 11 12 13 a32 a33 a31 a33 a31 a32 31 32 33 a a a a a a a a a a a a D= a a a = a a + a 11 12 13 22 23 12 13 12 13 22 23 11 31 a32 a33 a32 a33 a22 a23 31 32 33 a a a

Gauss Elimination a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n 3...... a + a + a + a +... + a = c n1 1 n2 2 n3 3 n4 4 nn n n n equations in n unknowns

When n is small: (Graphical Method) a + a = b 11 1 12 2 1 a + a = b 21 2 2 2 Solve for 2 a = + b 11 2 1 1 a12 a = + b 21 2 a22 = slope* + intercept 2 1 1 3 + 2 = 18 + 2 = 2 3 = + 9 2 1 = + 1 2 2 1 2 1

No Solution Infinite Solutions Ill Conditioned

When n is small Cramer s Rule a11 a12 a13 1 b1 a a a = b 22 23 2 2 a31 a32 a 33 3 b 3 1 = b a a 1 12 13 b a a 2 23 b a a 1 32 33 D D is the determinant of the coefficient Matri A

When n is small: Elimination of the unknowns a + a = b 11 1 12 2 1 a + a = b 21 2 2 2 a a + a a = a b 21 11 1 12 2 21 1 a a + a a = a b 11 1 12 2 1 a22a112 a21a122 = a11b2 a21b1 2 = a b a a a b a a 1 21 1 22 11 12

Naive Gauss Elimination a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n 3...... a + a + a + a +... + a = c n1 1 n2 2 n3 3 n4 4 nn n n Step 1: eliminate 1 from the second upto nth equation a21 Multiply the first equation by: a21 a11 a11 a a a a a a211 + a122 + a133 + a144 +... + a1 nn = c1 a a a a a 21 11 11 11 11 11 Subtract it from the second equation: the result is: a a a a a a + a a +... + a a = c c or 21 22 12 2 23 13 3 2n 1n n 2 1 a11 a11 a11 a11 a' + a' +... + a' = b' 22 2 23 3 2n n

Repeat the same procedure to eliminate 1 from the other equations a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1... a' + a' + a' +... + a' = c' 22 2 23 3 24 4 2n n 2... a' + a' + a' +... + a' = c'...... 32 2 33 3 34 4 3n n 3... a' + a' + a' 4 +... + a' = c' n2 2 n3 3 n4 nn n n First equation is the pivot equation and a 11 is the pivot coefficient Repeat the above procedure to eliminate 2 from the third upto nth equation a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1... a' + a' + a' +... + a' = c' 22 2 23 3 24 4 2n n 2... + a" + a" +... + a" = c"......... a" 33 3 34 4 3n n 3 + a" +... + a" = c" + n3 3 n4 4 nn n n

Repeat the procedure (n-1) times till n-1 is eliminated from the nth equation. a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1... a' + a' + a' +... + a' = c' 22 2 23 3 24 4 2n n 2... + a" + a" +... + a" = c"...... Upper triangular system is formed. 33 3 34 4 3n n 3 n... + a = c ( 1) ( n 1) nn n n Determine i by back substitution n = c a ( n 1) n ( n 1) nn i = n ( i 1) ( i 1) i ij j j=+ i 1 c a a ( i 1) ii

Forward elimination Back Sustitution

Eample (Pr.9.10): 2 + = 1 1 5 + 2 + 2 = 4 3 3 + + = 5 3 Back Substitution 3 2.. +..... = 1 1... 0.5 + 4.5 = 6. 5 2 3... 0.5 + 2. 5 = 3. 5 2 3 10 = = 5 2 1 = [ 6.5 4.5 ] = 32 0.5 2 3 1 1 = [ 1 ( 1) 3 ] = 14 2 Forward Elimination 2.. +...... = 1 1... 0.5 + 4.5 = 6.5 2 3... 2. = 10 Check your result!!! 3

Eample 3 + 2 = 12 1 + 2 + 3 = 11 3 2 2 = 2 3 Augmented Matri 3 12 3 11 2 2 We shall use 3 digits Row2-1/3*Row1... Row3-1/3*Row1... 3 12 0 2.333 2.334 7.004 0 1.334 2.332 5.992 Row3-(-1.334/2.333)*Row1.. 3 12 0 2.333 2.334 7.004 0 0 1 1.993 X 3 =1.993, 2 =(7.004-2.334*1.993)/2.333=1.008, X 1 =(12-2*1.993+1*1.008)/3=3.007 (actual result is 2,1,3)

Operation Count Elimination: Outer Loop k 1 2.. k Middle Loop i 2,n 3,n.. k+1,n FLOPS [n-1][1+n] [n-2][n] [n-k][1n+2- k] n-1 n,n [1][3] Number of Mult&Div= n 3 3 + On 2 ( ) Back Substitution: 2 On ( ) Therefore, the number of operations is proportional to n 3 /3

Pitfalls: 1. Division by zero: If the pivot element is zero i.e. a 11 =0 2. Round off errors (especially when n is large) 3. Ill conditioned systems (when the determinant D 0 but, D~0 Improvements: 1. Use more significant figures (time?) 2. Pivoting Partial pivoting: Determine the largest coefficient in the column below the pivot element and switch rows (equations). Complete pivoting: Determine the largest element (in rows and columns and switch the rows (equations) and columns ( s) Too costly!!! 3. Scaling (normalization- make the highest coefficient equal to unity)

Eample (Partial pivoting): No Pivoting 0.0003 + 1.566 = 1.569 0.3454 2.436 = 1.018 We shall use 4 digit accuracy. With Pivoting 0.3454 2.436 = 1.018 0.0003 + 1.566 = 1.569 Multiply the first eq. By 0.3454/0.0003= 1 151 Multiply the first eq. By 0.0003/0.3454= 0.0009 0.0003 + 1. 566 = 1.569... 1804 = 1805 2 0.3454 2.436 = 1.018... + 1.5682 = 1.5681 2 X 2 = 1.001 X 1 =(1.569-1.566*1.001)/.0003= 3.333 X 2 = 0.9999 X 1 =(1.018+2.436*0.9999)/0.3454= 9.9993

Eample (Scaling): We shall use 3 significant digits + 50000 = 50000... +... = 2 + 50000 = 50000... 50000 = 50000 X 2 =1 and 1 =0 Pivot, but do not scale... +... = 2 2 + 50000 = 50000... +... = 2...50000 = 50000 2 If we scale the equations Pivot 0.00002 + = 1... + =... + = 2 0.00002 + = 1 + =... 2 2 = 1 X 2 =1 and 1 =1 2

Eample (Partial Pivoting)... 2... + 2 = 0 2 4 2 + 2 + 3 + 2 = 2 3 4 4 3... +... = 7 4 6 + 6 5.. = 6 3 4 Eliminate 6 1-6 -5 6 0 1.6667 5 3.6667-4 0-3.6667 4 4.3333-11 0 2 0 2 0 Eliminate 6 1-6 -5 6 0-3.6667 4 4.3333-11 0 0 6.8181 5.6364-9 0 0 2.1818 4.3636-6 0 2 0 2 0 2 2 3 2 2 4 3 0 1 7 6 1 6 5 6 Pivot change Use back substitution to obtain: X 4 = -1.2188; 3 = -0.3125; 2 = 1.2188; 1 = -.5313 6 1-6 -5 6 2 2 3 2-2 4-3 0 1-7 0 2 0 2 0 Pivot change 6 1-6 -5 6 0-3.6667 4 4.3333-11 0 1.6667 5 3.6667-4 0 2 0 2 0 Eliminate 6 1-6 -5 6 0-3.6667 4 4.3333-11 0 0 6.8181 5.6364-9 0 0 0 2.5600-3.12

Pseudo Code

Comments on pseudocode Equations are not scaled but scaled values of the elements are used to determine whether pivoting is required. Diagonal term is monitored to determine near-zero occcurrence s i : is the value of the maimum element on ith row. a: Coefficient matri, b: column vector of a set of equations a=b n: number of equations (or unknowns) to be solved. tol, a small value defined by the user. If the diagonal element <tol the matri is considered as singular and er is set to -1. er is to be returned by the program.

Gauss Jordan Augmented Matri Interchange row 1&4 and normalize... 2... + 2 = 0 2 4 2 + 2 + 3 + 2 = 2 3 4 4 3... +... = 7 4 6 + 6 5.. = 6 3 4 Eliminate 1 0.1667-1 -0.8333 1 0 1.6667 5 4.3333-11 0-3.6667 4 3.6667-4 0 2 0 2 0 Normalize 3rd row and eliminate 1 0 0 0.0400-0.58 0 1 0-2.800 1.56 0 0 1 0.8267-1.32 0 0 0 2.5600-3.12 0 2 0 2 0 2 2 3 2 2 4 3 0 1 7 6 1 6 5 6 Interchange Row 2&3, normalize & eliminate all elements in the second column. Normalize 4th row and eliminate 1 0.1667-1 -0.8333 1 2 2 3 2-2 4-3 0 1-7 0 2 0 2 0 1 0-0.8182-0.6364 0.5 0 1-1.0909-1.1818 3 0 0 6.8182 5.6364-9 0 0 2.1818 4.3636-6 1 0 0 0-0.5313 0 1 0 0 1.2188 0 0 1 0-0.3125 0 0 0 1-1.2188 Requires more work (n 3 /2, compared to n 3 /3 İn Gauss elimination)

Gauss-Jordan Method Eliminate the unknown from all but one of the equations. Pivot and Normalize 2 + = 1 1 5 + 2 + 2 = 4 3 3 + + = 5 3 Eliminate 2 1 1 1 1 1/3 1/3 5/3 5 2 2 4 /5 2/5 4/5 3 1 1 5 1 1/2 1/2 1/2 1 1/3 1/3 5/3 1 1/3 1/3 5/3 1 0 0 14 0 1/15 1/15 37/15 0 1 1 37 0 1 1 37 0 1/6 5/6 7/6 0 1 5 7 0 0 6 30 1 0 0 14 0 1 1 37 0 0 1 5 1 0 0 14 0 1 0 32 0 0 1 5 Right Column is the result. No back substitution

Inverse of a matri Using Gauss-Jordan: AA -1 =I Augment A with I 1 A = 3 0 1 1 0 2 Change Row 1&2 and normalize 1 1 0 0 1 0 0.3333 0 0.3333 0 3 0 1 0 1 0 1 1 0 0 1 0 2 0 0 1 1 0 2 0 0 1 Normalize and eliminate Eliminate 1 0 0.3333 0 0.3333 0 1 0 0.3333 0 0.3333 0 0 1 1.6667 1 0.3333 0 0 1 1.6667 1 0.3333 0 0 0 1.6667 0 0.3333 1 0 0 1.6667 0 0.3333 1 Normalize and eliminate 1 0 0 0 0.4 0.2 0 1 0 1 0 1 0 0 1 0 0.2 0.6 1 A 0 0.4 0.2 = 1 0 1 0 0.2 0.6 One can also use LU decomposition eplained in the book (pg 273).

Iterative Methods Guess a solution and improve your solution The Equations must be diagonally dominant Consider: a + a + a = b 11 1 12 2 13 3 1 a + a + a = b 21 2 2 23 3 2 a + a + a = b 31 1 32 2 33 3 3 Solve the first eq. For 1, second for 2 and the third for 3 : 1 2 3 = = = b a a a 1 12 2 13 3 11 b a a a 2 21 3 3 22 b a a a 3 31 1 32 2 33

Iterative Method 1: Gauss-Seidel 1. Assume i =0 (i=0, 1,2, n) 2. Solve for 1 from the first eq. 3. Solve for 2 from the second eq. (use 1 obtained in step 2) 4. Solve for 3 from the 3rd eq. (use 1 and 2 values) 5. Solve for 1 from the 1st eq. (use the latest values available) 6. Repeat until: j j 1 i i ε ai, = *100% < ε j s i 1 2 3 b a a = a11 b a a = a22 b a a = a 1 12 2 13 3 2 21 3 3 3 31 1 32 2 33

8 + = 8 3 7 + 2 = 4 3 2 + + 9 = 12 3 = 1 0.125 + 0.125 3 = 0.571+ 0.143 + 0.286 2 1 3 = 1.333 0.222 + 0.111 3 0 1 2 3 4 5 6 7 8 1 0.000000 1.000000 1.039718 0.996848 1.000565 0.999930 1.000010 0.999999 1.000000 2 0.000000 0.714000 1.014759 0.996559 1.000390 0.999942 1.000008 0.999999 1.000000 3 0.000000 1.031746 0.989544 1.001082 0.999831 1.000022 0.999997 1.000000 1.000000 ε s <10-6

PseudoCode for GaussSeidel

Start Iteration Iter=1 Do While Iter<MaIterations Sentinel=1 For i= 0 to n-1 Old=(i) (i)= BC(i) For j= 0 to n-1 If i<>j Then (i)=(j)-ac(i,j)*(j) Net j (i)=lambda*(i)+(1-lambda)*old = λ + (1 λ) new new old i i i 0< λ < 2 Relaation: λ=1 Original Gauss-Seidel λ<1 underrelaation λ>1 overrelaation

Iterative Method 2: Jacobi Compute a set of new values before using them in the equations. Gauss-Seidel Jacobi

Eample: 8 + = 8 3 7 + 2 = 4 3 2 + + 9 = 12 3 = 1 0.125 + 0.125 3 = 0.571+ 0.143 + 0.286 2 1 3 = 1.333 0.222 + 0.111 3 0 3 4 5 6 7 8 9 10 11 1 0.0000 1.0000 1.0953 0.9940 0.9926 1.0010 1.0005 0.9999 1.0000 1.0000 1.0000 1.0000 2 0.0000 0.5710 1.0952 1.0272 0.9901 0.9985 1.0009 1.0001 0.9999 1.0000 1.0000 1.0000 3 0.0000 1.3330 1.0476 0.9683 0.9983 1.0027 0.9999 0.9998 1.0000 1.0000 1.0000 1.0000 Jacobi 1 0 0.0000 1 1.0000 2 1.0397 3 0.9968 4 1.0006 5 0.9999 6 1.0000 Gauss-Seidel ε s <10-4 2 0.0000 0.7140 1.0148 0.9966 1.0004 0.9999 1.0000 3 0.0000 1.0317 0.9895 1.0011 0.9998 1.0000 1.0000

Matri Norms and Matri Condition Number Norm is the largest sum of the columns A = ma n 1 1 j n i = 1 a ij Norm is largest sum of the rows A = ma 1 i n n j = 1 a ij Uniform Matri Norm or Row-Sum Norm Condition Number of Matri A (>1) 1 Cond [ A] = A A

System of Nonlinear equations N nonlinear equations in n unknowns f (,,,,,... ) = 0 1 3 4 f (,,,,,... ) = 0... 2 3 4 f (,,,,,... ) = 0 n 3 4 n n n Sometimes you can use a fied point iteration or an iteration similar to Gauss Seidel Iteration for linear equations. Newton Raphson method for n variables Newton Raphson Method for one variable: f( ) = f( ) + '( )( f ) ( 0 f f f = f + ) + ( ) +... + ( ) + HOTerms 0 i+ 1 1, i 1, i 1, i i+ 1 i i i+ 1 i 1, i+ 1 1, i 1, i+ 1 1, i 2, i+, i n, i+ 1 n, i 1 2 1 = i f2, i f2, i f2, i f( i ) f2, i+ 1 = f2, i + ( 1, i+ 1 1, i) + ( 2, i+ 1 2, i) +... + ( n, i+ 1 n, i) + HOTerms 0 1 2 1 f '( i )... f f f f = f + ( ) + ( ) +... + ( ) + HOTerms 0 ni, ni, ni, ni, + 1 ni, 1, i+ 1 1, i 2, i+, i ni, + 1 ni, 1 2 1 f f f f f f + +... + = f + +... + 1, i 1, i 1, i 1, i 1, i 1, i 1, i+, i+ 1 n, i+ 1 1, i 1, i 2, i n, i n n f f f f f f + +... + = f + +... +... 2, i 2, i 2, i 2, i 2, i 2, i 1, i+, i+ 1 n, i+, i 1, i 2, i n n f f f f f f + +... + = f + +... + ni, ni, ni, ni, ni, ni, 1, i+, i+ 1 ni, + 1 ni, 1, i 2, i ni, n n ni,

J = i i+ 1 Bi J i f f f... d d d f f f.. 1 1 1 1 i 2 i n i 2 2 2 = d1 d i 2 d i n i............ fn fn fn.. d d d 1 i 2 i n i B i f1 f1 f1 f1, i + 1, i + 2, i... + n, i 1 i 2 i n i f2 f2 f 2 f2, i + 1, i + 2, i... + n, i = 1 i 2 i n i... fn fn fn fni, + 1, i+ 2, i... + ni, 1 i 2 i n i Solve for i+1 using any one of the methods discussed and repeat till there is convergence Or, if we let u i+1 = i+1 - i then J iu = i+ 1 Ci Where C i f1, i f 2, i =... fni, Solve for u i+1, i+1 =u i+1 + i

or Let: δ ki, = ki, + 1 ki, Aδ = B Then: i i i A i f f f... d d d f f f.. 1 1 1 1 i 2 i n i 2 2 2 = Ji = d1 d i 2 d i n i............ fn fn fn.. d d d 1 i 2 i n i B i f1, i f 2, i =... f2, i δ i δ1, i δ 2, i =... δ2, i = + +δ ki, 1 ki, ki,