MA3232 Numerical Analysis Week 9. James Cooley (1926-)

Size: px
Start display at page:

Download "MA3232 Numerical Analysis Week 9. James Cooley (1926-)"

Transcription

1 MA umerical Analysis Week 9 James Cooley (96-) James Cooley is an American mathematician. His most significant contribution to the world of mathematics and digital signal processing is the Fast Fourier transform, which he co-developed with John Tukey (Cooley-Tukey FFT algorithm). John Tukey (95-000) John Tukey was an American statistician. One can FT anything often meaningfully. --- John W. Tukey FFT (Fast Fourier transform) FFT is an efficient way of calculating DFT. Assuming = p. DFT: F = { f j, j = 0,,, } Y = y k, k = 0,,, k j y k = f j ω, k = 0,,, j =0 where ω = ep iπ Cost of straightforward calculation =. { } Let us look at a recursive way of calculating Y = DFT( F). Theorem: Consider DFT: F Y Let F = f 0, f,, f F = f, f,, f Y = y 0, y,, y Then = y, y +,, y Y - -

2 Y = DFT( F )+ V.* DFT F Y = DFT( F ) V.* DFT F where V = ω 0, ω,, ω MA umerical Analysis ( ) ( ). (See handout # for the proof of this theorem) ote: This theorem provides a recursive way of calculating Y = DFT( F). FFT (Fast Fourier transform) A recursive way of calculating Y = DFT( F) Let F = f 0, f,, f F = f, f,, f Y = y 0, y,, y = y, y +,, y Y Then we have Y = DFT( F )+ V.* DFT F Y = DFT( F ) V.* DFT F where V = ω 0, ω,, ω ( ) ( ). Let C( ) be the cost of the recursive algorithm on a vector of size. It satisfies C = 0 C ( ) = C + (a recursive equation) ==> ==> C( ) = C( ) = C C + + log ( ) log - -

3 MA umerical Analysis ==> C( ) C log ( ) = Consider the function g = g g g = 0 ==> g( ) = 0 ==> = C( ) C( ) log ( ) = 0 ==> C( ) = log ( ) log log ( ). We have otice that the cost of the recursive algorithm is much smaller than that of the straightforward calculation. log << Solving linear systems Consider the linear system where A = b b b b = b a a A = a a = is given (a vector of size ) is given (a matri of ) is known (a vector of size ) - -

4 MA umerical Analysis In Matlab, = A \ b; Principles of the method solving A = b Special case #: A is lower triangular. a 0 0 a a A = 0 a a a We start with the first row and go down a = b = b a ( a + a = b = b a ) a ( ) a a + + a ( ) + a = b = b a a This is called forward substitution. The cost of forward substitution is C = ( ) = ( j ) = Special case #: j = A is upper triangular. a a a 0 a a A = 0 0 a We start with the last row and go up a = b = b a ( ) a ( ) ( ) + a ( ) = b = b a a ( ) ( ) a a + a + + a = b = b a a - 4 -

5 MA umerical Analysis This is called backward substitution. The cost of backward substitution is C = Special case #: A = LU L: lower triangular U: upper triangular A = b ==> LU = b L y = b ==> U = y Solve L y = b using forward substitution Solve U = y using backward substitution Given A = LU, the cost of solving LU = b is C = + = Question: How to write A as A = LU? LU decomposition (Gauss elimination): To eliminate part of row # for i = :, end add a i a row # to row # i a a a a a a a a a To eliminate part of row # for i = :, end add a i row # to row # i a a a a 0 a a 0 a a - 5 -

6 MA umerical Analysis The cost of LU decomposition is C = ( ) + ( ) + = ( j) j = ote: ) A sum can be approimated by an integral. This is a convenient way of estimating a sum. ( j) j = 0 d = ( ) = 0 ) The cost of LU decomposition is much larger than the cost of solving LU = b. >> The cost of solving A = b by Gaussian elimination is. Solving linear systems with iterative methods Consider the linear system where A = b b b b = b a a A = a a = is given (a vector of size ) is given (a matri of ) is known (a vector of size ) - 6 -

7 MA umerical Analysis Jacobi Iteration Method and Gauss-Seidel Iteration Method Eample: Consider A = b where 9 0 A = 0, b 9 =. 4 0 The eact solution is =. We rewrite the linear system as = b = b = b In the equation numbered k, solve k in terms of the remaining unknowns. So we rearrange linear system as follows: = b = [ b ] = b = b = b = 4 [ ] [ b ] If we assume initial values for,,, and substitute these values into the right-hand of the above equations, we may determine new values for,,. The iterative process is continued by substituting these values of,, into the right-hand side of the equations. There are several variants of the process: () If we use old values of,, in the righthand side of the equations to determine ALL the new values of,, in the left-hand side of the equation, then this method is called Jacobi or simultaneous iteration. () Alternatively, we may use a new value of i in the right-hand side of the equation as soon as it is determined, to obtain the other values of i in the right-hand side. For eample, once is determined from the first equation above, it is used in the second equation, together with the old, to determine. These two new values of, are then used in the third equation to find. This is called Gauss-Seidel or cyclic iteration. This method usually converges faster than the Jacobi method (For our eample, it takes 0 iterations for Jacobi method to converge whereas it takes 5 iterations for Gauss-Seidel to converge to the eact solution =, =, =. ) - 7 -

8 MA umerical Analysis We stop the iteration when the latest iterates ( k + ) ( k ) tolerance. ( k ) + and ( k ) satisfy ( 0) ( 0) ( 0) Mathematically, let = be an initial guess of the true solution. Then the Jacobi ( 0) iteration method defines an iteration sequence: ( k + ) ( k ) ( k ) = b 9 = 0 b = b 4 k = 0,,,. ( k + ) ( k ) ( k ) ( k + ) ( k ) ( k ) The Gauss-Seidel iteration method generates an iteration sequence: ( k + ) ( k ) ( k ) = b 9 = 0 b = b 4 k = 0,,,. ( k + ) ( k + ) ( k ) ( k + ) ( k + ) ( k + ) The condition for convergence for Jacobi iteration and Gauss-Seidel iteration are n aii >> aij for i =,,, n. j= j i Thus these iterative methods are only guaranteed to work when the coefficient matri is diagonally dominant. Successive Overrelaation Method (SOR) Convergence in the Gauss-Seidel method can be speeded if we do what is called overrelaing. The term comes from an old hand method where a set of ``residuals were ``relaed to zero

9 MA umerical Analysis The successive overrelaation method (SOR) is derived by taking the form of a weighted average between the previous iterate and the computed Gauss-Seidel iterate successively for each component: ( + ) ( + ), ( ω ) = ω + k k GS k i i i + k, GS where i denotes a Gauss-Seidel iterate and ω is the overrelaation factor. The idea is to choose a value for ω that will accelerate the rate of convergence of the iterates to the solution. If ω =, the SOR method simplifies to the Gauss-Seidel method. A theorem due to Kahan (958) shows that SOR fails to converge if ω is outside the interval (0,). In general, it is not possible to compute in advance the optimal value of ω that will maimize the rate of ω = O h, where h convergence of SOR. Frequently, some heuristic estimate is used, such as is mesh size of the discretization of the underlying physical domain. For our eample, the SOR method gives ( k + ) ω ( k ) ( k ) = b 9 + ( k + ) ω ( k + ) ( k ) = b 0 + ( k + ) ω ( k + ) ( k + ) = b 4 + k = 0,,,. ( ω) ( k ) ( ω) ( ω) ( k ) ( k ) - 9 -

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 207 Philippe B. Laval (KSU) Linear Systems Fall 207 / 2 Introduction We continue looking how to solve linear systems of the

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Linear Systems Fall 2015 1 / 12 Introduction We continue looking how to solve linear systems of

More information

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD Mathematical Question we are interested in answering numerically How to solve the following linear system for x Ax = b? where A is an n n invertible matrix and b is vector of length n. Notation: x denote

More information

3.2 Iterative Solution Methods for Solving Linear

3.2 Iterative Solution Methods for Solving Linear 22 CHAPTER 3. NUMERICAL LINEAR ALGEBRA 3.2 Iterative Solution Methods for Solving Linear Systems 3.2.1 Introduction We continue looking how to solve linear systems of the form Ax = b where A = (a ij is

More information

Computational Methods. Systems of Linear Equations

Computational Methods. Systems of Linear Equations Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #1 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Chapter 12: Iterative Methods

Chapter 12: Iterative Methods ES 40: Scientific and Engineering Computation. Uchechukwu Ofoegbu Temple University Chapter : Iterative Methods ES 40: Scientific and Engineering Computation. Gauss-Seidel Method The Gauss-Seidel method

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 54 CHAPTER 10 NUMERICAL METHODS 10. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Iteration basics Notes for 2016-11-07 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information

Iterative Methods. Splitting Methods

Iterative Methods. Splitting Methods Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

JACOBI S ITERATION METHOD

JACOBI S ITERATION METHOD ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations Linear Equations: a + a + a + a +... + a = c 11 1 12 2 13 3 14 4 1n n 1 a + a + a + a +... + a = c 21 2 2 23 3 24 4 2n n 2 a + a + a + a +... + a = c 31 1 32 2 33 3 34 4 3n n

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

CAAM 454/554: Stationary Iterative Methods

CAAM 454/554: Stationary Iterative Methods CAAM 454/554: Stationary Iterative Methods Yin Zhang (draft) CAAM, Rice University, Houston, TX 77005 2007, Revised 2010 Abstract Stationary iterative methods for solving systems of linear equations are

More information

Process Model Formulation and Solution, 3E4

Process Model Formulation and Solution, 3E4 Process Model Formulation and Solution, 3E4 Section B: Linear Algebraic Equations Instructor: Kevin Dunn dunnkg@mcmasterca Department of Chemical Engineering Course notes: Dr Benoît Chachuat 06 October

More information

EXAMPLES OF CLASSICAL ITERATIVE METHODS

EXAMPLES OF CLASSICAL ITERATIVE METHODS EXAMPLES OF CLASSICAL ITERATIVE METHODS In these lecture notes we revisit a few classical fixpoint iterations for the solution of the linear systems of equations. We focus on the algebraic and algorithmic

More information

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018 Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer 28. (Vector and Matrix Norms) Homework 3 Due: Tuesday, July 3, 28 Show that the l vector norm satisfies the three properties (a) x for x

More information

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns 5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns (1) possesses the solution and provided that.. The numerators and denominators are recognized

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let Chapter 6: Power Flow Network Matrices Network Solutions Newton-Raphson Method Fast Decoupled Method Bus Admittance Matri Let I = vector of currents injected into nodes V = vector of node voltages Y bus

More information

Gauss-Seidel method. Dr. Motilal Panigrahi. Dr. Motilal Panigrahi, Nirma University

Gauss-Seidel method. Dr. Motilal Panigrahi. Dr. Motilal Panigrahi, Nirma University Gauss-Seidel method Dr. Motilal Panigrahi Solving system of linear equations We discussed Gaussian elimination with partial pivoting Gaussian elimination was an exact method or closed method Now we will

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

30.5. Iterative Methods for Systems of Equations. Introduction. Prerequisites. Learning Outcomes

30.5. Iterative Methods for Systems of Equations. Introduction. Prerequisites. Learning Outcomes Iterative Methods for Systems of Equations 0.5 Introduction There are occasions when direct methods (like Gaussian elimination or the use of an LU decomposition) are not the best way to solve a system

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1.

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1. The Bisection method or BOLZANO s method or Interval halving method: Find the positive root of x 3 x = 1 correct to four decimal places by bisection method Let f x = x 3 x 1 Here f 0 = 1 = ve, f 1 = ve,

More information

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

Introduction to Scientific Computing

Introduction to Scientific Computing (Lecture 5: Linear system of equations / Matrix Splitting) Bojana Rosić, Thilo Moshagen Institute of Scientific Computing Motivation Let us resolve the problem scheme by using Kirchhoff s laws: the algebraic

More information

Numerical Methods Process Systems Engineering ITERATIVE METHODS. Numerical methods in chemical engineering Edwin Zondervan

Numerical Methods Process Systems Engineering ITERATIVE METHODS. Numerical methods in chemical engineering Edwin Zondervan IERAIVE MEHODS Numerical methods in chemical engineering Edwin Zondervan 1 OVERVIEW Iterative methods for large systems of equations We will solve Laplace s equation for steady state heat conduction LAPLACE

More information

Iterative Solution methods

Iterative Solution methods p. 1/28 TDB NLA Parallel Algorithms for Scientific Computing Iterative Solution methods p. 2/28 TDB NLA Parallel Algorithms for Scientific Computing Basic Iterative Solution methods The ideas to use iterative

More information

7.3 The Jacobi and Gauss-Siedel Iterative Techniques. Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP.

7.3 The Jacobi and Gauss-Siedel Iterative Techniques. Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP. 7.3 The Jacobi and Gauss-Siedel Iterative Techniques Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP. 7.3 The Jacobi and Gauss-Siedel Iterative Techniques

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 3 Chapter 10 LU Factorization PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Lecture 16 Methods for System of Linear Equations (Linear Systems) Songting Luo. Department of Mathematics Iowa State University

Lecture 16 Methods for System of Linear Equations (Linear Systems) Songting Luo. Department of Mathematics Iowa State University Lecture 16 Methods for System of Linear Equations (Linear Systems) Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Probabilistic model checking System Probabilistic model e.g. Markov chain Result 0.5

More information

Scientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1

Scientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1 Scientific Computing WS 2018/2019 Lecture 9 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 9 Slide 1 Lecture 9 Slide 2 Simple iteration with preconditioning Idea: Aû = b iterative scheme û = û

More information

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination Chapter 2 Solving Systems of Equations A large number of real life applications which are resolved through mathematical modeling will end up taking the form of the following very simple looking matrix

More information

TMA4125 Matematikk 4N Spring 2017

TMA4125 Matematikk 4N Spring 2017 Norwegian University of Science and Technology Institutt for matematiske fag TMA15 Matematikk N Spring 17 Solutions to exercise set 1 1 We begin by writing the system as the augmented matrix.139.38.3 6.

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

ME Computational Fluid Mechanics Lecture 5

ME Computational Fluid Mechanics Lecture 5 ME - 733 Computational Fluid Mechanics Lecture 5 Dr./ Ahmed Nagib Elmekawy Dec. 20, 2018 Elliptic PDEs: Finite Difference Formulation Using central difference formulation, the so called five-point formula

More information

Lecture 11. Fast Linear Solvers: Iterative Methods. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico

Lecture 11. Fast Linear Solvers: Iterative Methods. J. Chaudhry. Department of Mathematics and Statistics University of New Mexico Lecture 11 Fast Linear Solvers: Iterative Methods J. Chaudhry Department of Mathematics and Statistics University of New Mexico J. Chaudhry (UNM) Math/CS 375 1 / 23 Summary: Complexity of Linear Solves

More information

Page No.1. MTH603-Numerical Analysis_ Muhammad Ishfaq

Page No.1. MTH603-Numerical Analysis_ Muhammad Ishfaq Page No.1 File Version v1.5.3 Update: (Dated: 3-May-011) This version of file contains: Content of the Course (Done) FAQ updated version.(these must be read once because some very basic definition and

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Notes for CS542G (Iterative Solvers for Linear Systems)

Notes for CS542G (Iterative Solvers for Linear Systems) Notes for CS542G (Iterative Solvers for Linear Systems) Robert Bridson November 20, 2007 1 The Basics We re now looking at efficient ways to solve the linear system of equations Ax = b where in this course,

More information

MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 1 MATHEMATICS FOR COMPUTER VISION WEEK 2 LINEAR SYSTEMS Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 2 Linear Systems and solutions Systems of linear

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb.

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb. umerical solutions of higher order ODE We can convert a high order ODE into a system of first order ODEs and then apply RK method to solve it. Stiff ODEs Stiffness is a special problem that can arise in

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems.

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems. COURSE 9 4 Numerical methods for solving linear systems Practical solving of many problems eventually leads to solving linear systems Classification of the methods: - direct methods - with low number of

More information

Matrices and Determinants

Matrices and Determinants Math Assignment Eperts is a leading provider of online Math help. Our eperts have prepared sample assignments to demonstrate the quality of solution we provide. If you are looking for mathematics help

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Illustration of Gaussian elimination to find LU factorization. A = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44

Illustration of Gaussian elimination to find LU factorization. A = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 Illustration of Gaussian elimination to find LU factorization. A = a 21 a a a a 31 a 32 a a a 41 a 42 a 43 a 1 Compute multipliers : Eliminate entries in first column: m i1 = a i1 a 11, i = 2, 3, 4 ith

More information

ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices. Numerical Methods and Simulation / Umberto Ravaioli

ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices. Numerical Methods and Simulation / Umberto Ravaioli ECE539 - Advanced Theory of Semiconductors and Semiconductor Devices 1 General concepts Numerical Methods and Simulation / Umberto Ravaioli Introduction to the Numerical Solution of Partial Differential

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Example - Newton-Raphson Method

Example - Newton-Raphson Method Eample - Newton-Raphson Method We now consider the following eample: minimize f( 3 3 + -- 4 4 Since f ( 3 2 + 3 3 and f ( 6 + 9 2 we form the following iteration: + n 3 ( n 3 3( n 2 ------------------------------------

More information

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark DM559 Linear and Integer Programming LU Factorization Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides by Lieven Vandenberghe, UCLA] Outline

More information

Cache Oblivious Stencil Computations

Cache Oblivious Stencil Computations Cache Oblivious Stencil Computations S. HUNOLD J. L. TRÄFF F. VERSACI Lectures on High Performance Computing 13 April 2015 F. Versaci (TU Wien) Cache Oblivious Stencil Computations 13 April 2015 1 / 19

More information

Lecture 7 January 26, 2016

Lecture 7 January 26, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture 7 January 26, 26 Prof Emmanuel Candes Scribe: Carlos A Sing-Long, Edited by E Bates Outline Agenda:

More information

Numerical methods, midterm test I (2018/19 autumn, group A) Solutions

Numerical methods, midterm test I (2018/19 autumn, group A) Solutions Numerical methods, midterm test I (2018/19 autumn, group A Solutions x Problem 1 (6p We are going to approximate the limit 3/2 x lim x 1 x 1 by substituting x = 099 into the fraction in the present form

More information

9. Iterative Methods for Large Linear Systems

9. Iterative Methods for Large Linear Systems EE507 - Computational Techniques for EE Jitkomut Songsiri 9. Iterative Methods for Large Linear Systems introduction splitting method Jacobi method Gauss-Seidel method successive overrelaxation (SOR) 9-1

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

CPE 310: Numerical Analysis for Engineers

CPE 310: Numerical Analysis for Engineers CPE 310: Numerical Analysis for Engineers Chapter 2: Solving Sets of Equations Ahmed Tamrawi Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public

More information

Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas

Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas Finding Eigenvalues Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas plus the facts that det{a} = λ λ λ n, Tr{A}

More information

The Triangle Algorithm: A Geometric Approach to Systems of Linear Equations

The Triangle Algorithm: A Geometric Approach to Systems of Linear Equations : A Geometric Approach to Systems of Linear Equations Thomas 1 Bahman Kalantari 2 1 Baylor University 2 Rutgers University July 19, 2013 Rough Outline Quick Refresher of Basics Convex Hull Problem Solving

More information

Numerical Methods for Chemical Engineers

Numerical Methods for Chemical Engineers Numerical Methods for Chemical Engineers Chapter 3: System of Linear Algebraic Equation Morteza Esfandyari Email: Esfandyari.morteza@yahoo.com Mesfandyari.mihanblog.com Page 4-1 System of Linear Algebraic

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS Jordan Journal of Mathematics and Statistics JJMS) 53), 2012, pp.169-184 A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS ADEL H. AL-RABTAH Abstract. The Jacobi and Gauss-Seidel iterative

More information

MARN 5898 Fourier Analysis.

MARN 5898 Fourier Analysis. MAR 5898 Fourier Analysis. Dmitriy Leykekhman Spring 2010 Goals Fourier Series. Discrete Fourier Transforms. D. Leykekhman - MAR 5898 Parameter estimation in marine sciences Linear Least Squares 1 Complex

More information

The purpose of computing is insight, not numbers. Richard Wesley Hamming

The purpose of computing is insight, not numbers. Richard Wesley Hamming Systems of Linear Equations The purpose of computing is insight, not numbers. Richard Wesley Hamming Fall 2010 1 Topics to Be Discussed This is a long unit and will include the following important topics:

More information

Pivoting. Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3

Pivoting. Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3 Pivoting Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3 In the previous discussions we have assumed that the LU factorization of A existed and the various versions could compute it in a stable manner.

More information

CSE 160 Lecture 13. Numerical Linear Algebra

CSE 160 Lecture 13. Numerical Linear Algebra CSE 16 Lecture 13 Numerical Linear Algebra Announcements Section will be held on Friday as announced on Moodle Midterm Return 213 Scott B Baden / CSE 16 / Fall 213 2 Today s lecture Gaussian Elimination

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University

CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University CS475: Linear Equations Gaussian Elimination LU Decomposition Wim Bohm Colorado State University Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution

More information

Direct Methods for solving Linear Equation Systems

Direct Methods for solving Linear Equation Systems REVIEW Lecture 5: Systems of Linear Equations Spring 2015 Lecture 6 Direct Methods for solving Linear Equation Systems Determinants and Cramer s Rule Gauss Elimination Algorithm Forward Elimination/Reduction

More information

Poisson Equation in 2D

Poisson Equation in 2D A Parallel Strategy Department of Mathematics and Statistics McMaster University March 31, 2010 Outline Introduction 1 Introduction Motivation Discretization Iterative Methods 2 Additive Schwarz Method

More information

Analysis of Mesh Circuit Using Linear Algebra

Analysis of Mesh Circuit Using Linear Algebra Analysis of Mesh Circuit Using Linear Algebra Submitted By: Md. Anowar Hossain Researcher No: 75654 Submitted To: Dr. Yacine Benhadid 1 Abstract An interesting application of linear algebra can be found

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Block-tridiagonal matrices

Block-tridiagonal matrices Block-tridiagonal matrices. p.1/31 Block-tridiagonal matrices - where do these arise? - as a result of a particular mesh-point ordering - as a part of a factorization procedure, for example when we compute

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Sequential Fast Fourier Transform (PSC ) Sequential FFT

Sequential Fast Fourier Transform (PSC ) Sequential FFT Sequential Fast Fourier Transform (PSC 3.1 3.2) 1 / 18 Applications of Fourier analysis Fourier analysis studies the decomposition of functions into their frequency components. Piano Concerto no. 9 by

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information