Effects of Etching and Chemo-Mechanical Polishing on the Electrical Properties of CdZnTe Nuclear Detectors

Similar documents
Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Research Article Performance Test and Evaluation for Pixel CdZnTe Detector of Different Thickness

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

THE mobility-lifetime product (μτ) is used to characterize

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY

New trends in CdTe detectors for X and γ-ray applications

CADMIUM telluride (CdTe) and cadmium zinc telluride

On the development of compound semi-conductor thallium bromide detectors for astrophysics

THE spectroscopic performance of large volume CdZnTe

MINIATURE CdZnTe DETECTORS FOR APPLICATION IN HIGH INTENSITY RADIATION FIELDS

RESPONSE CALCULATIONS OF THE CdZnTe DETECTOR USING EGS4. James C. Liu, W. R. Nelson and R. Seefred

Nuclear Instruments and Methods in Physics Research A

ONE of the most noticeable facts in the field of room

Investigation of the Asymmetric Characteristics and Temperature Effects of CdZnTe Detectors

Simulation of charge transport in pixelated CdTe

Efficiency and Attenuation in CdTe Detectors

Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

Stand-off Nuclear Radiation Detection

Advances in Compound Semiconductor Radiation Detectors. a review of recent progress

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers

arxiv:physics/ v2 [physics.ins-det] 22 Nov 2005

Nuclear Instruments and Methods in Physics Research A

Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor

Spatial resolved efficiency determination of CdZnTe semiconductor detectors with a collimated gamma-ray source for the C0BRA experiment

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Semiconductor Detectors

THE CdTe and CdZnTe materials have been effectively

Fast Polycrystalline-CdTe Detector for LHC Luminosity Measurements

In order to get the energy response of the CZT detector, the measurements were done using the mono-energetic X-ray beam sources from 10 to 40 kev and

Development of Radiation Detectors Based on Semi-Insulating Silicon Carbide

Double Sided Diffusion and Drift of Lithium Ions on Large Volume Silicon Detector Structure

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy

Hard X- and g-ray measurements with a large volume coplanar grid CdZnTe detector

Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors

InAs avalanche photodiodes as X-ray detectors

The scanning microbeam PIXE analysis facility at NIRS

High-resolution photoinduced transient spectroscopy of radiation defect centres in silicon. Paweł Kamiński

Characterization of Irradiated Doping Profiles. Wolfgang Treberspurg, Thomas Bergauer, Marko Dragicevic, Manfred Krammer, Manfred Valentan

Development of compound semiconductors for planetary and astrophysics space missions

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation

X-ray induced radiation damage in segmented p + n silicon sensors

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct.

CVD Diamond History Introduction to DDL Properties of Diamond DDL Proprietary Contact Technology Detector Applications BDD Sensors

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Development of a Spectral Model Based on Charge Transport for the Swift/BAT 32K CdZnTe Detector Array

Performance of semi-insulating. insulating GaAs-based radiation detectors: Role of key physical parameters of base material

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure

Chem 481 Lecture Material 3/20/09

physics/ Sep 1997

Investigation of Ce-doped Gd2Si2O7 as a scintillator. Author(s) Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Furusaka, Instructions for use

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

NEW X-RAY DETECTORS FOR XRF ANALYSIS. Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324

Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ

GaN for use in harsh radiation environments

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

A. Optimizing the growth conditions of large-scale graphene films

A study of the double-acceptor level of the silicon divacancy in a proton irradiated n-channel CCD.

GaAs X- Ray System Detectors for Medical Applications

Electrical Characteristics and Fast Neutron Response of Semi-Insulating Bulk Silicon Carbide

New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH STUDIES OF THE RADIATION HARDNESS OF OXYGEN-ENRICHED SILICON DETECTORS

Graphene Field Effect Transistor as Radiation Sensor

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

Pixels GaAs Detectors for Digital Radiography. M.E. Fantacci. and. Abstract

BREAST cancer is a major health concern for women, and

Cadmium Zinc Telluride (CZT) Detectors

Characterization of 3D thermal neutron semiconductor detectors

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators

TECHNICAL WORKING GROUP ITWG GUIDELINE ON IN-FIELD APPLICATIONS OF HIGH- RESOLUTION GAMMA SPECTROMETRY FOR ANALYSIS OF SPECIAL NUCLEAR MATERIAL

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona, USA

National Academy of Sciences of Ukraine. Athens, 10 April 2008

CdZnTe for Simultaneous Detection. 241-Am source. X-rays/gammas. alphas. Am-Pu-Cm source. Voltage [mv] Voltage [mv]

Semiconductor-Detectors

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

SUPPLEMENTARY INFORMATION

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.

Thermal measurement a requirement for monolithic microwave integrated circuit design

detector development Matthias Beilicke X ray Science Analysis Group meeting (12 April 2013, Monterey, CA) Collaborators: GSFC, BNL

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Characteristics of the Large-Area Stacked Microstructured Semiconductor Neutron Detector

Determination of threshold values and monitoring of the surface state of semiconductors under pulsed laser irradiation

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

1. Introduction. Study of Thick CZT Detectors for X-ray and Gamma-Ray Astronomy

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Maximum-Likelihood Deconvolution in the Spatial and Spatial-Energy Domain for Events With Any Number of Interactions

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Boron-based semiconductor solids as thermal neutron detectors

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

SUPPLEMENTARY INFORMATION

Readout of LYSO using a new silicon photodetector for positron emission tomography

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

Review of Semiconductor Drift Detectors

A Study On Radioactive Source Imaging By Using A Pixelated CdTe Radiation Detector

Transcription:

American Journal of Materials Science 5, 5(3A): 6- DOI:.593/s.materials.5.3 Effects of Etching and Chemo-Mechanical Polishing on the Electrical Properties of CdZnTe Nuclear Detectors Stephen U. Egarievwe,,3,*, Julius O. Jow,, Alexander A. Egarievwe, Rubi Gul,3, Richard D. Martin, Zaveon M. Hales, Anwar Hossain 3, Utpal N. Roy 3, Ralph B. James 3 Department of Electrical Engineering and Computer Science, Alabama A&M University, Normal, USA Nuclear Engineering and Radiological Science Center, Alabama A&M University, Normal, USA 3 Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, USA Abstract Chemical etching and chemo-mechanical polishing are techniques used to remove surface defects and damages caused by cutting and mechanical polishing of cadmium zinc telluride (CdZnTe) nuclear detector materials. Etching and chemo-mechanical polishing processes often form thin films on the surfaces of the CdZnTe wafers. While several studies have been done on etching and chemo-mechanical polishing using different chemicals, there is a lack of reporting on the uses of the same chemical solution to study the effects of these two-surface processing techniques. This paper focuses on comparing the effects of chemical etching and chemo-mechanical polishing on the electrical properties of CdZnTe detectors using the same chemical solution: bromine-methanol-ethylene glycol. Three CdZnTe samples were cut from the same region of the ingot, mechanically polished, and used to studying the two surface processing techniques. The current-voltage experiments on the samples gave a measured bulk resistivity of.6 x Ω-cm for mechanical polishing,.6 x Ω-cm for chemical etching, and 3.5 x Ω-cm for chemo-mechanical polishing. The variations in the measured resistivity for the different surface processing techniques are due to the additional contribution of surface currents to the measured bulk current. The spectral response measurements of the 59.5-keV peak of Am-4 gave a full-width-at-half-maximum (FWHM) of 3.4%,.7%, and 3.8% for the mechanical polishing, chemical etching, and chemo-mechanical polishing respectively. In this study, the chemo-mechanical polishing process resulted in a lower measured bulk current. The chemical etching process gave a better spectral resolution (FWHM =.7%), and a higher charge-carrier mobility lifetime product of.86 x -3 cm /V compared to.6 x -3 cm /V and.64 x -3 cm /V for mechanical and chemo-mechanical polishing processes respectively. Keywords Cadmium zinc telluride detector, Chemical etching, Chemo-mechanical polishing, Surface defects. Introduction Cadmium zinc telluride (CdZnTe) has found applications in X-rays and gamma-rays detection in medical imaging [, ], astrophysics [], and national security. The CdZnTe detector device fabrication involved cutting wafers of desired sizes from the crystal ingot, followed by polishing, surface treatment, and deposition of electrical contacts. During the cutting of wafers from the CdZnTe ingot, defects are induced on the surfaces. Rough surfaces increase leakage current and create charge-carrier trapping centres that limit the performance of CdZnTe detectors [3, 4]. The CdZnTe wafers are mechanically polished to produce very smooth surfaces. Further smoothening is accomplished through etching of the surfaces by dipping in about % to % bromine methanol solution before contacts * Corresponding author: stephen.egarievwe@aamu.edu (Stephen U. Egarievwe) Published online at http://journal.sapub.org/materials Copyright 5 Scientific & Academic Publishing. All Rights Reserved are deposited on two opposite planner surfaces. In previous experiments, our atomic force microscopy (AFM) results showed that the surface-area roughness of the CdZnTe wafer was reduced from 9.5 nm root mean square (RMS) for mechanical polishing, to.5 nm RMS after etching in % bromine-methanol solution [5]. The chemical etching of CdZnTe wafers has been reported to result in a Te-rich surface layer that is subject to oxidation [3-7]. The chemical etching process using bromine-methanol solution has also been observed to increase the surface leakage current [3], which in turn, adds to the measured bulk current. The bromine-methanol solution induces surface features that make them more conductive [3]. We have reported improvements through the usage of a bromine-based passivated etchant where the residual Br is removed from the surfaces to generate nonconductive smooth surfaces, and the use of non-bromine-based etchants for treating the polished surfaces [8]. We also replaced the chemical etching in bromine-methanol solution with chemo-mechanical polishing using hydrogen bromide in hydrogen peroxide

American Journal of Materials Science 5, 5(3A): 6-7 solution, and also using bromine methanol ethylene glycol solution [9, ]. The etching and chemo-mechanical polishing processes often form thin films on the surfaces of the CdZnTe wafers. The properties of the thin films influence the amount of surface current that is added to the measured bulk current. Extensive research has been done on etching and chemo-mechanical polishing using different chemicals [3-], but there is a lack of reporting on the uses of the same chemical solution to study the effects of these two surface-processing techniques. This paper focuses on comparing the effects of chemical etching and chemo-mechanical polishing on the electrical properties of CdZnTe detectors using the same chemical solution: bromine-methanol-ethylene glycol.. Experimental Procedure Three CdZnTe samples (,, and 3), each sized 6 x 6 x mm 3, were cut from the same wafer of the bulk ingot. The three samples (samples,, and 3) were mechanically polished with 8-grit and -grit silicon carbide abrasive papers, followed by polishing on MultiTex pads with decreasing size alumina powder to.9 µm. Sample was used as the control, sample was chemically etched in bromine-methanol-ethylene (BME) glycol solution, and sample 3 was chemo-mechanically polished in BME glycol solution. The chemical etching was done by dipping and slowly moving the CdZnTe sample in the BME glycol solution in a circular motion for about minutes. The chemo-mechanical polishing was accomplished by polishing the wafer on felt pad using BME glycol solution. The chemo-mechanical polishing time for each surface of the wafer was about minute. To enable current voltage (I V) measurements, gold contacts were deposited on the two opposite planner surfaces of each CdZnTe sample. This was accomplished by using a pipette to put an appropriate size drop of 5% gold chloride solution on the planner surface. The I V measurements were made using a customized current-voltage probe in a metal box that is connected to a Keithley Picoammeter/Voltage Source. After the I V measurements, we recorded the spectral responses of the three samples for Am-4 gamma line at an applied voltage of 5 V. The set-up consists of a standard ev Products brass holder used to secure the detector against a beryllium window with a gold-plated spring contact. The brass holder was connected to a multi-channel analyser (MCA) through a pre-amplifier and a shaping amplifier. Each CdZnTe detector was irradiated with a sealed Am-4 gamma-ray source, and the generated signal was recorded through the MCA and stored for processing and analysis. 3. Results and Discussion The I V curves for the surface processing techniques are shown in Figures 3. We expect the electrical properties and spectral responses of the three samples to be similar since they were cut from the same wafer of the CdZnTe ingot. Any difference in these electrical properties and spectral responses would be due to the surface processing techniques and the electrical contacts. The measured bulk leakage currents include contributions from surface currents. Table. Electrical resistivity for the CdZnTe samples as calculated from current-voltage measurements Surface process Electrical resistivity range (Ω-cm) Mechanical polishing only.6 x 5.3 x Mechanical polishing followed by chemical etching Mechanical polishing followed by chemo-mechanical polishing.6 x.8 x 3.5 x 4. x The I V curve for the mechanical polishing followed by chemical etching (Figure ) showed a perfect ohmic contact, but it resulted in an increased measured current compared to that of the control sample (Figure ). In contrast, the mechanical polishing followed by chemo-mechanical polishing gave a near-ohmic contact I V (Figure 3), and a decrease in the measured current compared to the control sample (Figure ). The electrical resistivity range for each sample is shown in Table for both positive and negative applied voltage. On the average (using positive and negative applied voltages), the chemical etching process increased the measured electrical resistivity while further increase was measured for the chemo-mechanical polishing process, as well. The variations in the measured resistivity for the different surface processing techniques are due to the additional contribution of surface currents to the measured bulk current. 3 - -8-6 -4-4 6 8 - - -3 Figure. I-V plot of the CdZnTe sample : Mechanical polishing only

8 Stephen U. Egarievwe et al.: Effects of Etching and Chemo-Mechanical Polishing on the Electrical Properties of CdZnTe Nuclear Detectors 5 4 3 - -8-6 -4 - - 4 6 8 - -3-4 resolution (smallest FWHM) corresponds to the highest charge carrier mobility lifetime product. The value of µτ is.6 x -3 cm /V for the mechanical polishing only,.86 x -3 cm /V for chemical etching, and.64 x -3 cm /V for chemo-mechanical polishing. This showed that the sample that is chemically etched has a better mobility the lifetime product for charge carriers. Table. Energy resolutions (measured as FWHM) and charge carriers mobility lifetime products of the CdZnTe samples Surface process Mobility lifetime product (x -3 cm /V) FWHM for 59.5 kev of Am-4 Mechanical polishing only.6 3.4% -5 Figure. I-V plot of the CdZnTe sample : Mechanical polishing followed by chemical etching. The curve showed a perfect ohmic contact, but an increase in the measured current compared to Figure Mechanical polishing followed by chemical etching Mechanical polishing followed by chemo-mechanical polishing.86.7%.64 3.8% 59.5 kev peak of Am-4 FWHM = 3.4% - -8-6 -4-4 6 8 - - Figure 3. I-V plot of the CdZnTe sample : Mechanical polishing followed by chemo-mechanical polishing. The curve showed a decrease in the measured current compared to Figure, and contrary to Figure where chemical etching increased the current Figures 4 6 show the spectral responses of the CdZnTe samples to irradiation with a sealed Am-4 gamma-ray source for the three surface processing techniques. The applied bias is 5 V, and the shaping time is µs for all three samples. The full-width-at-half-maximum (FWHM) for the 59.5 kev energy peak of Am-4 is 3.4% for the mechanical polishing only,.7% for chemical etching, and 3.8% for chemo-mechanical polishing. Thus, the chemical etching gave a better spectral resolution. The 59.5 kev energy peak remained stable at about the same channel number for the three surface processing techniques. The mobility lifetime product, µτ, was extracted using the Hecht equation [], from the best fit of the pulse height of the 59.5 kev gamma peaks taken at different bias voltages; see Figures 7 9. As shown in Table, the mobility lifetime product values are in good agreement with the energy resolution of the 59.5 kev peak of Am-4. The best energy Figure 4. The spectral response of mechanically polished CdZnTe sample using a sealed Am-4 source 59.5 kev peak of Am-4 FWHM =.7% Figure 5. The spectral response of CdZnTe sample mechanically polished followed by chemical etching in bromine-methanol-ethylene glycol solution. The energy resolution is improved to.7% from 3.4% in Figure

American Journal of Materials Science 5, 5(3A): 6-9 59.5 kev peak of Am-4 FWHM = 3.8% Figure 6. The spectral response of CdZnTe sample mechanically polished followed by chemo-mechanical polishing with bromine-methanol-ethylene glycol solution. There is no significant change in energy resolution compared to Figure Figure 7. The mobility lifetime product of the mechanically polished CdZnTe detector is about.6 x -3 cm /V, as extracted from the best fit of the pulse height to the applied voltage using the Hecht equation [] Figure 8. The mobility lifetime product of the chemically etched CdZnTe detector is about.86 x -3 cm /V, as extracted from the best fit of the pulse height to the applied voltage using the Hecht equation [] Figure 9. The mobility lifetime product of the chemo-mechanically polished CdZnTe detector is about.64 x -3 cm /V, as extracted from the best fit using the Hecht equation [] 4. Conclusions We compared the effects of chemical etching and chemo-mechanical polishing on the electrical properties of CdZnTe detectors using the same chemical solution, bromine-methanol-ethylene glycol. The three CdZnTe samples used in this study were cut from the same region of the ingot. Therefore, their electrical properties and spectral responses should be similar, and the recorded differences are mainly due to the surface processing techniques and the electrical contacts. Distinctive results for the current-voltage measurements were obtained with a negative applied voltage, which showed that the chemical etching technique increased the leakage current (bulk plus surface contributions) immediately after the process. In contrast, the chemo-mechanical polishing process decreased the leakage current. These results were further confirmed, for negative applied voltage, by the measured bulk resistivity of.6 x Ω-cm for mechanical polishing,.6 x Ω-cm for chemical etching, and 3.5 x Ω-cm for chemo-mechanical polishing. The spectral response measurements of the 59.5-keV peak of Am-4 showed the best energy resolution for the chemical etching process, which has a FWHM value of.7%, compared to 3.4% for mechanical polishing and 3.8% for chemo-mechanical polishing. The chemical etching process also exhibited the best charge transport properties, with the best mobility lifetime product of.86 x -3 cm /V, compared to.6 x -3 cm /V for mechanical polishing and.64 x -3 cm /V for chemo-mechanical polishing. The 59.5 kev energy peak remained fairly stable at about the same channel number for the three surface processing techniques. ACKNOWLEDGEMENTS This work has been supported by the U.S. Department of

Stephen U. Egarievwe et al.: Effects of Etching and Chemo-Mechanical Polishing on the Electrical Properties of CdZnTe Nuclear Detectors Homeland Security, Domestic Nuclear Detection Office, under award number -DN-77-ARI65-4. Alabama A&M University researchers were also supported by the U.S. Nuclear Regulatory Commission through award number NRC-7--54, and BNL scientists received support from the U.S. Department of Energy Office of Defense Nuclear Nonproliferation R&D. REFERENCES [] L. Verger, M. Boitel, M. C. Gentet, R. Hamelin, C. Mestais, F. Mongellaz, J. Rustique, and G. Sanchez, Characterization of CdTe and CdZnTe detectors for gamma-ray imaging applications, Nucl. Instrum. Methods Phys. Res. A., vol. 458, no. -, pp. 97 39,. [] Stefano Del Sordo, Leonardo Abbene, Ezio Caroli, Anna Maria Mancini, Andrea Zappettini and Pietro Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors, vol. 9, pp. 349 356, 9. [3] M. C. Duff, D. B. Hunter, A. Burger, M. Groza, V. Buliga, and D. R. Black, Effect of surface preparation technique on the radiation detector performance of CdZnTe, Applied Surface Science vol. 54, pp. 889 89, 8. [4] A. Hossain, A. E. Bolotnikov, G. S. Camarda, Y. Cui, S. Babalola, A. Burger, and R. B. James, Effects of surface processing on the response of CZT gamma detectors: studies with a collimated synchrotron X-ray beam, Journal of Electronic Materials, vol. 38, no. 9, pp. 356 36, 8. [5] A. Hossain, S. Babalola, A. E. Bolotnikov, G. S. Camarda, Y. Cui, G. Yang, M. Guo, D. Kochanowska, A. Mycielski, A. Burger and R. B. James, Effect of chemical etching on the surface roughness of CdZnTe and CdMnTe gamma radiation detectors, Proc. of SPIE 779, 779E-, 8. [6] K. Chattopadhyay, M. Hayes, J. O. Ndap, A. Burger, M. J. Lu, H. G. McWhinney, T. Grady and R. B. James, Surface passivation of cadmium zinc telluride radiation detectors by potassium hydroxide solution, Journal of Electronic Materials, vol. 9, No. 6, pp. 78 7,. [7] G. Zha, W. Jie, T. Tan, P. Li, The surface leakage currents of CdZnTe wafers, Applied Surface Science, vol. 53, pp. 3476 3479, 7. [8] A. Hossain, A. E. Bolotnikov, G. S. Camarda, Y. Cui, D. Jones, J. Hall, K. H. Kim, J. Mwathi, X. Tong, G. Yang and R. B. James, Novel approach to surface processing for improving the efficiency of CdZnTe detectors, Journal of Electronic Materials, vol. 43, No. 8, pp. 77 777, 4. [9] D. E. Jones, S. U. Egarievwe, A. Hossain, I. O. Okwechime, M. L. Drabo, J. Hall, A. L. Adams, S. O. Babalola, G. S. Camarda, A. E. Bolotnikov, W. Chan and R. B. James, Study of Surface Passivation and Contact Deposition Techniques in CdZnTe X-Ray and Gamma-Ray Detectors, IEEE Records of Nuclear Science Symposium and Medical Imaging Conference, pp. 44 47,. [] I. O. Okwechime, S. U. Egarievwe, A. Hossain, Z. M Hales, A. A. Egarievwe and R. B. James, Chemical treatment of CdZnTe radiation detectors using hydrogen bromide and ammonium-based solutions, Proc. SPIE 93, 93Y, 4. [] K. Hecht, Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen, Z. Phys., vol. 77, pp. 35 45, 93.