APPENDIX D: Binning BSIM3v3 Parameters

Similar documents
APPENDIX A: Parameter List

APPENDIX D: Model Parameter Binning

APPENDIX A: Parameter List

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

Study of MOSFET circuit

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon)

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded)

Integrated Circuit Design: OTA in 0.5µm Technology

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model

num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1

MITLL Low-Power FDSOI CMOS Process

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate?

Chapter 5: BSIM3v3 Characterization

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

The Devices. Devices

USC-ISI. The MOSIS Service. BSIM3v3.1 Model. Parameters Extraction and Optimization. October 2000

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

BSIM4v4.7 MOSFET Model

BSIM3v3 Manual. (Final Version) Department of Electrical Engineering and Computer Sciences. University of California, Berkeley, CA 94720

ESE 570 MOS TRANSISTOR THEORY Part 2

CHAPTER 3 - CMOS MODELS

BSIM4.6.4 MOSFET Model

Generation and classification of Kerwin Huelsman Newcomb circuits using the DVCC

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Chapter 5 g m /I D -Based Design

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

BSIM3v3.2.2 MOSFET Model

Reference. [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa,

N Channel MOSFET level 3

Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Stochastic Simulation Tool for VLSI

BSIM4.6.0 MOSFET Model

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

BSIM4.3.0 MOSFET Model

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

LEVEL 61 RPI a-si TFT Model

ELECTRONICS RESEARCH LABORATORY. College of Engineering University of California, Berkeley, CA Users' Manual. BSIM3v3.

MOSFET Capacitance Model

Chapter 5 MOSFET Theory for Submicron Technology

Fig The electron mobility for a-si and poly-si TFT.

ELECTRONICS RESEARCH LABORATORY

UNIVERSITY OF SOUTHERN CALIFORNIA. FALL EE Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder

ECE 342 Electronic Circuits. 3. MOS Transistors

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture #27. The Short Channel Effect (SCE)

MOS Amplifiers Dr. Lynn Fuller Webpage:

Diode Model (PN-Junction Diode Model)

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EKV MOS Transistor Modelling & RF Application

Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage:

High Speed Logic Circuits Dr. Lynn Fuller Webpage:

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation

MOSFET: Introduction

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

A Multi-Gate CMOS Compact Model BSIMMG

ECE 497 JS Lecture - 12 Device Technologies

MOS Transistor Theory

The Devices. Jan M. Rabaey

The Devices: MOS Transistors

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Conduction in Semiconductors -Review

Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain. Sadayuki Yoshitomi, Fumie Fujii

ECE 546 Lecture 10 MOS Transistors

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Philips Research apple PHILIPS

Combinatorial and Sequential CMOS Circuits Dr. Lynn Fuller Webpage:

Long Channel MOS Transistors

MOSFET Internal Capacitance Dr. Lynn Fuller Webpage:

Class 05: Device Physics II

Technology file available in the CD-Rom length. Table 1-xxx: correspondence between technology and the value of lambda in µm

BSIM4.3.0 Model. Enhancements and Improvements Relative to BSIM4.2.1

EE 560 MOS TRANSISTOR THEORY

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

The simulated two volt performance of CMOS circuits with submicron transistors

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

Vrg Qgd Gdg Vrd Gate Rg Rd Vgd Vgs Qds Ids = f(vds,vgs,t Qgs Ids Vds Idiode_f = f(vds Idiode_r = f(vdiode_r,t Ggs Qds = f(vds,t Qgs = f(vgs,t Vrs Rs Q

Integrated Circuits & Systems

Lecture 3: CMOS Transistor Theory

ECE-305: Fall 2017 MOS Capacitors and Transistors

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Enhancement and Technical Notes

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Lecture 12: MOS Capacitors, transistors. Context

The Intrinsic Silicon

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Device Models (PN Diode, MOSFET )

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

CMOS Digital Integrated Circuits Analysis and Design

Lab 1 Getting Started with EDA Tools

Lecture 5: CMOS Transistor Theory

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Transcription:

APPENDIX D: Binning BSIM3v3 Parameters Below is a list of all BSIM3v3 model parameters which can or cannot be binned. All model parameters which can be binned follow the following implementation: P L P W P p P = P 0 + -------- + ---------- + ------------------------- L eff W eff L eff W eff For example, for the parameter k1: P 0 =k1, P L =lk1, P W =wk1, P P =pk1. Binunit is a bin unit selector. If binunit=1, the units of Leff and Weff the binning above have the units of microns. Otherwise, they are in meters. For example, for a device with Leff=0.5µm and Weff=10µm. If binunit = 1, the parameter values for vsat are 1e5, 1e4, 2e4, and 3e4 for vsat, lvsat, wvsat, and pvsat, respectively. Therefore, the effective value of vsat for this device is: vsat = 1e5 + 1e4/0.5 + 2e4/10 + 3e4/(0.5*10) = 1.28e5 To get the same effective value of vsat for binunit = 0, the values of vsat, lvsat, wvsat, and pvsat would be 1e5, 1e-2, 2e-2, 3e-8, respectively. Thus, vsat = 1e5 + 1e-2/0.5e6 + 2e-2/10e-6 + 3e-8/(0.5e-6 * 10e-6) = 1.28e5 As a final note: although BSIM3v3 supports binning as an option for model extraction, it is not strongly recommended. BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-1

BSIM3v3 Model Control Parameters D.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector Mobmod mobmod Mobility model selector Capmod capmod Flag for the short channel capacitance model Nqsmod nqsmod Flag for NQS model Noimod noimod Flag for Noise model D.2 DC Parameters Vth0 vth0 Threshold voltage @Vbs=0 for Large L. K1 k1 First order body effect coefficient K2 k2 Second order body effect coefficient K3 k3 Narrow width coefficient K3b k3b Body effect coefficient of k3 W0 w0 Narrow width parameter Nlx nlx Lateral non-uniform doping parameter D-2 BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley

DC Parameters Dvt0 dvt0 first coefficient of short-channel effect on Vth Dvt1 dvt1 Second coefficient of shortchannel effect on Vth Dvt2 dvt2 Body-bias coefficient of shortchannel effect on Vth Dvt0w dvt0w First coefficient of narrow width effect on Vth for small channel length Dvt1w dvtw1 Second coefficient of narrow width effect on Vth for small channel length Dvt2w dvt2w Body-bias coefficient of narrow width effect for small channel length µ0 u0 Mobility at Temp = Tnom NMOSFET PMOSFET Ua ua First-order mobility degradation coefficient Ub ub Second-order mobility degradation coefficient Uc uc Body-effect of mobility degradation coefficient νsat vsat Saturation velocity at Temp = Tnom A0 a0 Bulk charge effect coefficient for channel length BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-3

DC Parameters Ags ags gate bias coefficient of Abulk B0 b0 Bulk charge effect coefficient for channel width B1 b1 Bulk charge effect width offset Keta keta Body-bias coefficient of bulk charge effect A1 a1 First non0saturation effect parameter A2 a2 Second non-saturation factor Rdsw rdsw Parasitic resistance per unit width Prwb prwb Body effect coefficient of Rdsw Prwg prwg Gate bias effect coefficient of Rdsw Wr wr Width Offset from Weff for Rds calculation Wint wint Width offset fitting parameter from I-V without bias Lint lint Length offset fitting parameter from I-V without bias dwg dwg Coefficient of Weff s gate dependence dwb dwb Coefficient of Weff s substrate body bias dependence Voff voff Offset voltage in the subthreshold region for large W and L Yes Nfactor nfactor Subthreshold swing factor BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-4

DC Parameters Eta0 eta0 DIBL coefficient in subthreshold region Etab etab Body-bias coefficient for the subthreshold DIBL effect Dsub dsub DIBL coefficient exponent in subthreshold region Cit cit Interface trap capacitance Cdsc cdsc Drain/Source to channel coupling capacitance Cdscb cdscb Body-bias sensitivity of Cdsc Cdscd cdscd Drain-bias sensitivity of Cdsc Pclm pclm Channel length modulation parameter Pdiblc1 pdiblc1 First output resistance DIBL effect correction parameter Pdiblc2 pdiblc2 Second output resistance DIBL effect correction parameter Pdiblcb pdiblcb Body effect coefficient of DIBL correction parameters Drout drout L dependence coefficient of the DIBL correction parameter in Rout Pscbe1 pscbe1 First substrate current bodyeffect parameter Pscbe2 pscbe2 Second substrate current bodyeffect parameter BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-5

AC and Capacitance Parameters Pvag pvag Gate dependence of Early voltage δ delta Effective Vds parameter Ngate ngate poly gate doping concentration α0 alpha0 The first parameter of impact ionization current β0 beta0 The second parameter of impact ionization current Rsh rsh Source drain sheet resistance in ohm per square Jso js Source drain junction saturation current per unit area D.3 AC and Capacitance Parameters Xpart xpart Charge partitioning rate flag CGS0 cgso Non LDD region source-gate overlap capacitance per channel length BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-6

AC and Capacitance Parameters CGD0 cgdo Non LDD region drain-gate overlap capacitance per channel length CGB0 cgbo Gate bulk overlap capacitance per unit channel length Cj cj Bottom junction per unit area Mj mj Bottom junction capacitance grating coefficient Mjsw mjsw Source/Drain side junction capacitance grading coefficient Cjsw cjsw Source/Drain side junction capacitance per unit area Pb pb Bottom built-in potential Pbsw pbsw Source/Drain side junction built-in potential CGS1 cgs1 Light doped source-gate region overlap capacitance CGD1 cgd1 Light doped drain-gate region overlap capacitance CKAPPA ckappa Coefficient for lightly doped region overlap capacitance Fringing field capacitance Cf cf fringing field capacitance CLC clc Constant term for the short channel model CLE cle Exponential term for the short channel model BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-7

NQS Parameters DLC dlc Length offset fitting parameter from C-V DWC dwc Width offset fitting parameter from C-V Vfb vfb Flat-band voltage parameter (for capmod=0 only) D.4 NQS Parameters Elm elm Elmore constant of the channel BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-8

dw and dl Parameters D.5 dw and dl Parameters Wl wl Coefficient of length dependence for width offset Wln wln Power of length dependence of width offset Ww ww Coefficient of width dependence for width offset Wwn wwn Power of width dependence of width offset Wwl wwl Coefficient of length and width cross term for width offset Ll ll Coefficient of length dependence for length offset Lln lln Power of length dependence for length offset Lw lw Coefficient of width dependence for length offset Lwn lwn Power of width dependence for length offset Lwl lwl Coefficient of length and width cross term for length offset BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-9

Temperature Parameters D.6 Temperature Parameters Tnom tnom Temperature at which parameters are extracted µte ute Mobility temperature exponent Kt1 kt1 Temperature coefficient for threshold voltage Kt1l kt1l Channel length dependence of the temperature coefficient for threshold voltage Kt2 kt2 Body-bias coefficient of Vth temperature effect Ua1 ua1 Temperature coefficient for Ua Ub1 ub1 Temperature coefficient for Ub Uc1 uc1 Temperature coefficient for Uc At at Temperature coefficient for saturation velocity Prt prt Temperature coefficient for Rdsw nj nj Emission coefficient XTI xti Junction current temperature exponent coefficient BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-10

Flicker Noise Model Parameters D.7 Flicker Noise Model Parameters Noia noia Noise parameter A Noib noib Noise parameter B Noic noic Noise parameter C Em em Saturation field Af af Frequency exponent Ef ef Frequency exponent Kf kf Flicker noise parameter D.8 Process Parameters Tox tox Gate oxide thickness Xj xj Junction Depth γ1 gamma1 Body-effect coefficient near the surface BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-11

Bin Parameters γ2 gamma2 Body-effect coefficient in the bulk Nch nch Channel doping concentration Nsub nsub Substrate doping concentration Vbx vbx Vbs at which the depletion region width equals xt Vbm vbm Maximum applied body bias in Vth calculation Xt xt Doping depth D.9 Bin Parameters Lmin lmin Minimum channel length Lmax lmax Maximum channel length Wmin wmin Minimum channel width Wmax wmax Maximum channel width binunit binunit Bin unit selector BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-12

Bin Parameters BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley D-13

Bin Parameters D-14 BSIM3v3 Manual Copyright 1995, 1996, UC Berkeley