Welcome to EECS 150: Components and Design Techniques for Digital Systems

Similar documents
Welcome to EECS 150: Components and Design Techniques for Digital Systems

! Inherent parallelism in hardware " Parallel computation beyond 61C. ! Counterpoint to software design " Furthering our understanding of computation

CSE370: Introduction to Digital Design

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007

Intro To Digital Logic

Lecture A: Logic Design and Gates

Switches: basic element of physical implementations

Adders allow computers to add numbers 2-bit ripple-carry adder

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1)"

Combinational Logic Design Combinational Functions and Circuits

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs

From Sequential Circuits to Real Computers

14:332:231 DIGITAL LOGIC DESIGN. Organizational Matters (1)

Introduction to Computer Engineering ECE 203

Lecture 22 Chapters 3 Logic Circuits Part 1

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview

Floating Point Representation and Digital Logic. Lecture 11 CS301

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1

LECTURE 28. Analyzing digital computation at a very low level! The Latch Pipelined Datapath Control Signals Concept of State

CSC9R6 Computer Design. Practical Digital Logic

Mark Redekopp, All rights reserved. Lecture 1 Slides. Intro Number Systems Logic Functions

Example: A vending machine

Software Engineering 2DA4. Slides 8: Multiplexors and More

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

CprE 281: Digital Logic

Organisasi dan Arsitektur Komputer L#1: Fundamental Concepts Amil A. Ilham

EECS150 - Digital Design Lecture 11 - Shifters & Counters. Register Summary

CSE140: Components and Design Techniques for Digital Systems. Midterm Information. Instructor: Mohsen Imani. Sources: TSR, Katz, Boriello & Vahid

Memory, Latches, & Registers

CS470: Computer Architecture. AMD Quad Core

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors.

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture)

EE141- Fall 2002 Lecture 27. Memory EE141. Announcements. We finished all the labs No homework this week Projects are due next Tuesday 9am EE141

Chapter 7. Sequential Circuits Registers, Counters, RAM

ALU A functional unit

From Sequential Circuits to Real Computers

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1

Binary addition example worked out

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

Administrative Stuff

ECE 341. Lecture # 3

CPE100: Digital Logic Design I

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Fundamentals of Computer Systems

Digital Integrated Circuits A Design Perspective

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Implementation of Boolean Logic by Digital Circuits

ECE 448 Lecture 6. Finite State Machines. State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL Code. George Mason University

University of Toronto Faculty of Applied Science and Engineering Department of Electrical and Computer Engineering Midterm Examination

Laboratory Exercise #11 A Simple Digital Combination Lock

SAU1A FUNDAMENTALS OF DIGITAL COMPUTERS

of Digital Electronics

Semiconductor Memory Classification

CS 226: Digital Logic Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

COSC3330 Computer Architecture Lecture 2. Combinational Logic

Sample Test Paper - I

ECE321 Electronics I

The Digital Logic Level

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

! Chris Diorio. ! Gaetano Borrielo. ! Carl Ebeling. ! Computing is in its infancy


Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1.

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Fundamentals of Computer Systems

ALU, Latches and Flip-Flops

ELCT201: DIGITAL LOGIC DESIGN

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Class Material. Flash Memory. Read-Only Memory Cells MOS OR ROM

Semiconductor Memories

Every time has a value associated with it, not just some times. A variable can take on any value within a range

Design at the Register Transfer Level

State and Finite State Machines

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

Philadelphia University Student Name: Student Number:

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

CHW 261: Logic Design

CE1911 LECTURE FSM DESIGN PRACTICE DAY 1

Fundamentals of Digital Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Outline. policies for the first part. with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014

ELCT201: DIGITAL LOGIC DESIGN

For smaller NRE cost For faster time to market For smaller high-volume manufacturing cost For higher performance

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Semiconductor Memories

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #2 Nov 22, 2006

CprE 281: Digital Logic

Transcription:

Welcome to EECS 150: Components and Design Techniques for Digital Systems Course staff Randy Katz (Instructor), Po-Kai Chen (Head TA) Teaching Assistants: Bryan Brady, Jay Chen, Brian Gawalt, Jack Tzeng Readers: David Lin, Kevin Lin Course web inst.eecs.berkeley.edu/~eecs150 (coming soon) This week What is logic design? What is digital hardware? What will we be doing in this class? Quick Review Class administration, overview of course web, and logistics CS 150 - Fall 2005 Lecture #1: Introduction - 1 Why Are We Here? Implementation basis for modern computing devices Constructing large systems from small components Another view of a computer: controller + datapath Inherent parallelism in hardware Parallel computation beyond 61C Counterpoint to software design Furthering our understanding of computation CS 150 - Fall 2005 Lecture #1: Introduction - 2

We Will Learn in EECS 150 Language of logic design Logic optimization, state, timing, CAD tools Concept of state in digital systems Analogous to variables and program counters in software systems Hardware system building Datapath + control = digital systems Hardware system design methodology Hardware description languages: Verilog Tools to simulate design behavior: output = function (inputs) Logic compilers synthesize hardware blocks of our designs Mapping onto programmable hardware (code generation) Contrast with software design Both map specifications to physical devices Both must be flawless the price we pay for using discrete math CS 150 - Fall 2005 Lecture #1: Introduction - 3 What is Logic Design? What is design? Given problem spec, solve it with available components While meeting quantitative (size, cost, power) and qualitative (beauty, elegance) What is logic design? Choose digital logic components to perform specified control, data manipulation, or communication function and their interconnection Which logic components to choose? Many implementation technologies (fixed-function components, programmable devices, individual transistors on a chip, etc.) Design optimized/transformed to meet design constraints CS 150 - Fall 2005 Lecture #1: Introduction - 4

What is Digital Hardware? Devices that sense/control wires carrying digital values (physical quantity interpreted as 0 or 1 ) Digital logic: voltage < 0.8v is 0, > 2.0v is 1 Pair of wires where 0 / 1 distinguished by which has higher voltage (differential) Magnetic orientation signifies 0 or 1 Primitive digital hardware devices Logic computation devices (sense and drive) Two wires both 1 - make another be 1 (AND) At least one of two wires 1 - make another be 1 (OR) A wire 1 - then make another be 0 (NOT) Memory devices (store) Store a value sense Recall a value previously stored CS 150 - Fall 2005 Lecture #1: Introduction - 5 sense AND drive Source: Microsoft Encarta What is the Current State of Digital Design? Changes in industrial practice Larger designs Scale Shorter time to market Cheaper products Pervasive use of computer-aided design tools over hand methods Multiple levels of design representation Time Emphasis on abstract design representations Programmable rather than fixed function components Automatic synthesis techniques Importance of sound design methodologies Cost Higher levels of integration Use of simulation to debug designs $39 DVD Player@Amazon.com CS 150 - Fall 2005 Lecture #1: Introduction - 6

Parts Cost: $25 Sales Price: $30! CS 150 - Fall 2005 Lecture #1: Introduction - 7 CS 150: Concepts/Skills/Abilities Basics of logic design (concepts) Sound design methodologies (concepts) Modern specification methods (concepts) Familiarity with full set of CAD tools (skills) Appreciation for differences and similarities (abilities) in hardware and software design New ability: perform logic design with computer-aided design tools, validating that design via simulation, and mapping its implementation into programmable logic devices; Appreciating the advantages/disadvantages hw vs. sw implementation CS 150 - Fall 2005 Lecture #1: Introduction - 8

Administrative Details See course web page for gory details! MW 1-2:30 course lecture, F 2-3 lab lecture 1x3 hour lab, 1x1=hour discussion per week No labs or discussions first week! Grading Midterm Exams (28 Sep, 9 Nov): 20% Final Exam (16 Dec): 20% Labs (1-5): 15% Project (Etch-a-Sketch): 30% Homeworks (10 problem sets): 10% In-class pop quizzes: 5% First one NOW: Diagnostic Quiz (not graded!) CS 150 - Fall 2005 Lecture #1: Introduction - 9 Course Project: Electronic Etch-a-Sketch Not quite this but: Game controller interface CRT video I/f Pen effects E.g., Color E.g., Width Implemented in a Xilinx FPGA on the Calinx boards you will use in lab Groups of two CS 150 - Fall 2005 Lecture #1: Introduction - 10

Calinx EECS 150 Lab/Project Protoboard Video & Audio Ports Four 100 Mb Ethernet Ports AC 97 Codec & Power Amp Video Encoder & Decoder 8 Meg x 32 SDRAM Flash Card & Micro-drive Port Quad Ethernet Transceiver Prototype Area Xilinx Virtex 2000E Seven Segment LED Displays CS 150 - Fall 2005 Lecture #1: Introduction - 11 Computation: Abstract vs. Implementation Computation as a mental exercise (paper, programs) vs. implementation with physical devices using voltages to represent logical values Basic units of computation: Representation: Assignment: Data operations: Control: Sequential statements: Conditionals: Loops: Procedures: "0", "1" on a wire set of wires (e.g., for binary integers) x = y x+y 5 A; B; C if x == 1 then y for ( i = 1 ; i == 10, i++) A; proc(...); B; Study how these are implemented in hardware and composed into computational structures CS 150 - Fall 2005 Lecture #1: Introduction - 12

Switches: Basic Element of Physical Implementations Implementing a simple circuit (arrow shows action if wire changes to 1 ): A Z Close switch (if A is 1 or asserted) and turn on light bulb (Z) A Z Open switch (if A is 0 or unasserted) and turn off light bulb (Z) Z A CS 150 - Fall 2005 Lecture #1: Introduction - 13 Switches (cont d) Compose switches into more complex ones (Boolean functions): AND A B Z A and B A OR Z A or B B CS 150 - Fall 2005 Lecture #1: Introduction - 14

Switching Networks Switch settings Determine whether conducting path exists to light the bulb To build larger computations Use bulb (output of the network) to set other switches (inputs to another network) Interconnect switching networks Construct larger switching networks, i.e., connect outputs of one network to the inputs of the next. CS 150 - Fall 2005 Lecture #1: Introduction - 15 Transistor Networks Modern digital systems designed in CMOS MOS: Metal-Oxide on Semiconductor C for complementary: normally-open and normally- switches MOS transistors act as voltage-controlled switches Similar, though easier to work with, than relays. CS 150 - Fall 2005 Lecture #1: Introduction - 16

MOS Transistors Three terminals: drain, gate, and source Switch action: if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals G G S D S D n-channel open when voltage at G is low closes when: voltage(g) > voltage (S) + ε p-channel when voltage at G is low opens when: voltage(g) < voltage (S) ε CS 150 - Fall 2005 Lecture #1: Introduction - 17 MOS Networks 3v X what is the relationship between x and y? x y 0v Y 0 volts 3 volts CS 150 - Fall 2005 Lecture #1: Introduction - 18

Two Input Networks X Y 3v 0v 3v 0v X Y Z Z CS 150 - Fall 2005 Lecture #1: Introduction - 19 what is the relationship between x, y and z? x y z 0 volts 0 volts 3 volts 3 volts 0 volts 3 volts 0 volts 3 volts Representation of Digital Designs Physical devices (transistors, relays) Switches Truth tables Boolean algebra Gates Waveforms Finite state behavior Register-transfer behavior Concurrent abstract specifications scope of CS 150 more depth than 61C focus on building systems CS 150 - Fall 2005 Lecture #1: Introduction - 20

Mapping Physical to Binary World Technology State 0 State 1 Relay logic Circuit Open Circuit Closed CMOS logic 0.0-1.0 volts 2.0-3.0 volts Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts Fiber Optics Light off Light on Dynamic RAM Discharged capacitor Charged capacitor Nonvolatile memory (erasable) Trapped electrons No trapped electrons Programmable ROM Fuse blown Fuse intact Bubble memory No magnetic bubble Bubble present Magnetic disk No flux reversal Flux reversal Compact disc No pit Pit CS 150 - Fall 2005 Lecture #1: Introduction - 21 Combinational vs. Sequential Digital Circuits Simple model of a digital system is a unit with inputs and outputs: inputs system outputs Combinational means "memory-less" Digital circuit is combinational if its output values only depend on its inputs CS 150 - Fall 2005 Lecture #1: Introduction - 22

Combinational Logic Symbols Common combinational logic systems have standard symbols called logic gates Buffer, NOT A Z AND, NAND A B OR, NOR A B Z Z Easy to implement with CMOS transistors (the switches we have available and use most) CS 150 - Fall 2005 Lecture #1: Introduction - 23 Sequential Logic Sequential systems Exhibit behaviors (output values) that depend on current as well as previous inputs Time response of real circuits are sequential Outputs do not change instantaneously after an input change Why not, and why is it then sequential? Fundamental abstraction of digital design is to reason (mostly) about steady-state behaviors Examine outputs only after sufficient time has elapsed for the system to make its required changes and settle down CS 150 - Fall 2005 Lecture #1: Introduction - 24

Synchronous Sequential Digital Systems Combinational outputs depend only on current inputs After sufficient time has elapsed Sequential circuits have memory Even after waiting for transient activity to finish Steady-state abstraction: most designers use it when constructing sequential circuits Memory of system is its state Changes in system state only allowed at specific times controlled by external periodic signal (the clock) Clock period is time between state changes sufficiently long so that system reaches steady-state before next state change CS 150 - Fall 2005 Lecture #1: Introduction - 25 Distinction: Combinational vs. Sequential Logic Combinational: Input A, B Wait for clock edge Observe C Wait for another clock edge Observe C again: will stay the same A B C Sequential: Clock Input A, B Wait for clock edge Observe C Wait for another clock edge Observe C again: may be different CS 150 - Fall 2005 Lecture #1: Introduction - 26

Example: Combinational Design Calendar subsystem: number of days in a month (to control watch display) Used in controlling the display of a wrist-watch LCD screen Inputs: month, leap year flag Outputs: number of days CS 150 - Fall 2005 Lecture #1: Introduction - 27 Implementation in Software integer number_of_days (month, leap_year_flag) { switch (month) { case 1: return (31); case 2: if (leap_year_flag == 1) then return (29) else return (28); case 3: return (31);... case 12: return (31); default: return (0); } } CS 150 - Fall 2005 Lecture #1: Introduction - 28

Implementation as a Combinational Digital System Encoding: How many bits for each input/output? Binary number for month Four wires for 28, 29, 30, and 31 Behavior: Combinational Truth table specification month leap d28 d29 d30 d31 month leap d28 d29 d30 d31 0000 0001 0 0 0 1 0010 0 1 0 0 0 0010 1 0 1 0 0 0011 0 0 0 1 0100 0 0 1 0 0101 0 0 0 1 0110 0 0 1 0 0111 0 0 0 1 1000 0 0 0 1 1001 0 0 1 0 1010 0 0 0 1 1011 0 0 1 0 1100 0 0 0 1 1101 111 CS 150 - Fall 2005 Lecture #1: Introduction - 29 Combinational Example (cont d) Truth-table to logic to switches to gates d28 = 1 when month=0010 and leap=0 d28 = m8' m4' m2 m1' leap' symbol for or symbol for and symbol for not d31 = 1 when month=0001 or month=0011 or... month=1100 d31 = (m8' m4' m2' m1) + (m8' m4' m2 m1) +... (m8 m4 m2' m1') d31 = can we simplify more? CS 150 - Fall 2005 Lecture #1: Introduction - 30 month leap d28 d29 d30 d31 0001 0 0 0 1 0010 0 1 0 0 0 0010 1 0 1 0 0 0011 0 0 0 1 0100 0 0 1 0... 1100 0 0 0 1 1101 111 0000

Combinational Example (cont d) d28 = m8' m4' m2 m1' leap d29 = m8' m4' m2 m1' leap d30 = (m8' m4 m2' m1') + (m8' m4 m2 m1') + (m8 m4' m2' m1) + (m8 m4' m2 m1) d31 = (m8' m4' m2' m1) + (m8' m4' m2 m1) + (m8' m4 m2' m1) + (m8' m4 m2 m1) + (m8 m4' m2' m4') + (m8 m4' m2 m1') + (m8 m4 m2' m1') CS 150 - Fall 2005 Lecture #1: Introduction - 31 Combinational Example (cont d) d28 = m8' m4' m2 m1' leap d29 = m8' m4' m2 m1' leap d30 = (m8' m4 m2' m1') + (m8' m4 m2 m1') + (m8 m4' m2' m1) + (m8 m4' m2 m1) d31 = (m8' m4' m2' m1) + (m8' m4' m2 m1) + (m8' m4 m2' m1) + (m8' m4 m2 m1) + (m8 m4' m2' m4') + (m8 m4' m2 m1') + (m8 m4 m2' m1') CS 150 - Fall 2005 Lecture #1: Introduction - 32

Example: Sequential Design Door combination lock: Punch in 3 values in sequence and the door opens; if there is an error the lock must be reset; once the door opens the lock must be reset Inputs: sequence of input values, reset Outputs: door open/close Memory: must remember combination or always have it available as an input CS 150 - Fall 2005 Lecture #1: Introduction - 33 Implementation in Software integer combination_lock ( ) { integer v1, v2, v3; integer error = 0; static integer c[3] = 3, 4, 2; while (!new_value( )); v1 = read_value( ); if (v1!= c[1]) then error = 1; while (!new_value( )); v2 = read_value( ); if (v2!= c[2]) then error = 1; while (!new_value( )); v3 = read_value( ); if (v2!= c[3]) then error = 1; } if (error == 1) then return(0); else return (1); CS 150 - Fall 2005 Lecture #1: Introduction - 34

Implementation as a Sequential Digital System Encoding: How many bits per input value? How many values in sequence? How do we know a new input value is entered? How do we represent the states of the system? Behavior: Clock wire tells us when it s ok to look at inputs (i.e., they have settled after change) Sequential: sequence of values must be entered Sequential: remember if an error occurred Finite-state specification clock new value state reset open/ CS 150 - Fall 2005 Lecture #1: Introduction - 35 Sequential Example (cont d): Abstract Control Finite state diagram States: 5 states Represent point in execution of machine Each state has outputs Transitions: 6 from state to state, 5 self transitions, 1 global Changes of state occur when clock says it s ok Based on value of inputs Inputs: reset, new, results of comparisons Output: open/ reset C1!=value C2!=value C3!=value S1 S2 S3 OPEN C1=value C2=value C3=value open ERR not new not new not new CS 150 - Fall 2005 Lecture #1: Introduction - 36

Sequential Example (cont d): Datapath vs. Control Internal structure Data-path Storage for combination Comparators Control Finite state machine controller Control for data-path State changes controlled by clock value comparator C1 C2 C3 multiplexer mux control new equal controller reset clock equal open/ CS 150 - Fall 2005 Lecture #1: Introduction - 37 Sequential Example (cont d): Finite State Machine Finite-state machine Refine state diagram to include internal structure ERR reset mux=c1 not equal not equal not equal S1 S2 S3 OPEN mux=c2 mux=c3 open equal equal equal not new not new not new CS 150 - Fall 2005 Lecture #1: Introduction - 38

Sequential Example (cont d): Finite State Machine Finite State Machine Generate state table (much like a truth-table) reset mux=c1 equal not equal not equal not equal S1 S2 S3 OPEN mux=c2 equal mux=c3 equal open ERR not new next reset new equal state state mux open/ 1 S1 C1 0 0 S1 S1 C1 0 1 0 S1 ERR 0 1 1 S1 S2 C2 0 0 S2 S2 C2 0 1 0 S2 ERR 0 1 1 S2 S3 C3 0 0 S3 S3 C3 0 1 0 S3 ERR 0 1 1 S3 OPEN open 0 OPEN OPEN open 0 ERR ERR CS 150 - Fall 2005 Lecture #1: Introduction - 39 not new not new Sequential Example (cont d): Encoding Encode state table State can be: S1, S2, S3, OPEN, or ERR needs at least 3 bits to encode: 000, 001, 010, 011, 100 and as many as 5: 00001, 00010, 00100, 01000, 10000 choose 4 bits: 0001, 0010, 0100, 1000, 0000 Output mux can be: C1, C2, or C3 needs 2 to 3 bits to encode choose 3 bits: 001, 010, 100 Output open/ can be: open or needs 1 or 2 bits to encode choose 1 bits: 1, 0 CS 150 - Fall 2005 Lecture #1: Introduction - 40

Sequential Example (cont d): Encoding Encode state table State can be: S1, S2, S3, OPEN, or ERR Choose 4 bits: 0001, 0010, 0100, 1000, 0000 Output mux can be: C1, C2, or C3 Choose 3 bits: 001, 010, 100 Output open/ can be: open or Choose 1 bits: 1, 0 next reset new equal state state mux open/ 1 0001 001 0 0 0 0001 0001 001 0 0 1 0 0001 0000 0 good choice of encoding! 0 1 1 0001 0010 010 0 0 0 0010 0010 010 0 mux is identical to 0 1 0 0010 0000 0 last 3 bits of state 0 1 1 0010 0100 100 0 0 0 0100 0100 100 0 open/ is 0 1 0 0100 0000 0 identical to first bit 0 1 1 0100 1000 1 of state 0 1000 1000 1 0 0000 0000 0 CS 150 - Fall 2005 Lecture #1: Introduction - 41 Sequential Example (cont d): Controller Implementation Controller Implementation mux control new equal controller reset clock Special circuit element, called a register, for remembering inputs when told to by clock open/ new equal reset mux control comb. logic state clock open/ CS 150 - Fall 2005 Lecture #1: Introduction - 42

Design Hierarchy system datapath control code registers multiplexer comparator state registers combinational logic register logic switching networks CS 150 - Fall 2005 Lecture #1: Introduction - 43 Summary What the entire course is about Converting solutions to problems into combinational and sequential networks effectively organizing the design hierarchically Doing so with a modern set of design tools that lets us handle large designs effectively Taking advantage of optimization opportunities Now let s do it again this time we'll take the rest of the semester! CS 150 - Fall 2005 Lecture #1: Introduction - 44