Resistive Switching Mechanism of Single-Crystalline Oxide Schottky Junctions: Macroscopic and Nanoscopic Characterizations

Similar documents
PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

8. Schottky contacts / JFETs

Leakage Mechanisms. Thin films, fully depleted. Thicker films of interest for higher voltage applications. NC State

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier

Schottky diodes. JFETs - MESFETs - MODFETs

Metal Semiconductor Contacts

EECS130 Integrated Circuit Devices

Lecture 9: Metal-semiconductor junctions

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

High-quality all-oxide Schottky junctions fabricated on heavily Nb-doped SrTiO 3 substrates

Schottky Rectifiers Zheng Yang (ERF 3017,

Bipolar resistive switching in amorphous titanium oxide thin films

SUPPLEMENTARY INFORMATION

Probing into the Electrical Double Layer Using a Potential Nano-Probe

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

Electrical Characterization with SPM Application Modules

Surface Transfer Doping of Diamond by Organic Molecules

Chap. 11 Semiconductor Diodes

AFM: Atomic Force Microscopy II

STM spectroscopy (STS)

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger

Current mechanisms Exam January 27, 2012

3. Two-dimensional systems

characterization in solids

Electrical characterization of ZnO: an introduction

Fabrication of a 600V/20A 4H-SiC Schottky Barrier Diode

Semiconductor Devices

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Hussein Ayedh. PhD Studet Department of Physics

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures

Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang

Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope

arxiv: v1 [cond-mat.mtrl-sci] 8 Feb 2013

Theory of Electrical Characterization of Semiconductors

MI 48824, USA ABSTRACT

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires

Novel Devices and Circuits for Computing

Supplementary Information for. Effect of Ag nanoparticle concentration on the electrical and

Microscopical and Microanalytical Methods (NANO3)

Electrical Characteristics of Multilayer MoS 2 FET s

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3

Supplementary Materials for

Preliminary measurements of charge collection and DLTS analysis of p + /n junction SiC detectors and simulations of Schottky diodes

Instrumentation and Operation

CVD-3 LFSIN SiN x Process

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Influence of electrode materials on CeO x based resistive switching

CVD-3 MFSIN-HU-1 SiN x Mixed Frequency Process

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Supplementary Materials for

Stabilizing the forming process in unipolar resistance switching

Module-6: Schottky barrier capacitance-impurity concentration

Center for Integrated Nanostructure Physics (CINAP)

Al/Ti/4H SiC Schottky barrier diodes with inhomogeneous barrier heights

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Semiconductor Device Physics

Section 12: Intro to Devices

CVD-3 MFSIN-HU-2 SiN x Mixed Frequency Process

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Spectroscopy at nanometer scale

CVD-3 SIO-HU SiO 2 Process

Noncontact-AFM (nc-afm)

* motif: a single or repeated design or color

Supplementary Information

SUPPLEMENTARY INFORMATION

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Semiconductor Physics Problems 2015

Electrostatic Force Microscopy (EFM)

Energy Spectroscopy. Ex.: Fe/MgO

M.J. CONDENSED MATTER VOLUME 4, NUMBER 1 1 DECEMBER 2001

Molecular Dynamics on the Angstrom Scale

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering,

Citation for published version (APA): Rana, K. G. (2013). Electron transport across complex oxide heterointerfaces Groningen: s.n.

Fabrication of a One-dimensional Tube-in-tube Polypyrrole/Tin oxide Structure for Highly Sensitive DMMP Sensor Applications

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

Metal Semiconductor Contacts

Half-Integer Quantum Conductance States

Minority-carrier effects in poly-phenylenevinylene as studied by electrical characterization

Figure 3.1 (p. 141) Figure 3.2 (p. 142)

Semiconductor Physics. Lecture 6

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

Scanning Tunneling Microscopy

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

Lecture 17 - p-n Junction. October 11, Ideal p-n junction in equilibrium 2. Ideal p-n junction out of equilibrium

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application

Dual Extraction of Photogenerated Electrons and Holes from a Ferroelectric Sr 0.5 Ba 0.5 Nb 2 O 6 Semiconductor

Creation and annealing of point defects in germanium crystal lattices by subthreshold energy events

Effects of Antimony Near SiO 2 /SiC Interfaces

SUPPLEMENTARY INFORMATION

Transcription:

Resistive Switching Mechanism of SingleCrystalline Oxide Schottky Junctions: Macroscopic and Nanoscopic Characterizations Haeri Kim, Eunsongyi Lee, Minji Gwon, Ahrum Sohn, El Mostafa Bourim, and DongWook Kim Department of Physics Ewha Womans University Seoul 120750, KOREA Email) dwkim@ewha.ac.kr EPIC012 Buenos Aires, Argentina Dec. 13, 2012 URL) http://edpl.ewha.ac.kr Seungbum Hong Materials Science Division Argonne National Laboratory Lemont, Illinois 60439, USA

Buenos Aires and Seoul 2 Seoul 37 33 N 126 58 E 34 36 S 58 22 W Buenos Aires

Pear blossom Every woman respected Ewha Womans University 3 Founded in 1886 Undergraduates: 14,810 Graduates: 5,922 Faculty: 960 The world largest female university Alumni in many firsts in Korean history: Female doctor, doctoral degree, justice, prime minister, Ewha s ranking in Korea: 6 th (2009) Josun Ilbo (a Korean newspaper) and the British Quacquarelli Symonds. 15 out of 32 female ministers graduated from Ewha: 46.8%. 17 out of 40 female members of the 17th parliament graduated from Ewha: 42.5%. Ranked first among universities on the National Customer Satisfaction Index (NSCI) in the overall evaluation category (1995, 2005)

Agenda 4 Motivation Why Single Crystal Schottky Junctions? Approach I: Macroscopic Characterization Conventional IV and CV analyses Internal photoemission spectroscopy Ambient effects AC admittance spectroscopy Approach II: Nanoscopic Characterization Planar metalti metal junctions Ambient effects surface potential measurements Conclusion

Resistive Switching in Metal Oxides 5 Metal/insulator/metal (MIM) structures Sawa, Materials Today 11, 28 (2008). Metal Oxides Oxygen vacancy Mobile dopant bulk resistivity and interface potential profile change Compositional variation suboxides and/or metallic phase formation Local electrical conduction paths Joule heating

Why Single Crystals? 6 Metal/insulator/metal (MIM) structures Park et al., Appl. Phys. Lett. 93, 042102 (2008). Phark et al., Appl. Phys. Lett. 94, 022906 (2009). 11 pads/12 pads 7 pads/16 pads Metal Oxides Oxygen vacancy Mobile dopant bulk resistivity and interface potential profile change Compositional variation suboxides and/or metallic phase formation Single Crystal Junctions Model System for Mechanism Studies Local electrical conduction paths Joule heating

Why Metal/Oxide Contacts? 7 Voltagecurrent characteristics of twoterminal system Three components: series connection of the two contact regions and the bulk layer Exemplary case for rectifying contacts contact 1 Contact 1 Metal 1 Insulator V A bulk Contact 2 Metal 2 contact 2 I Contact 1 Ohmic bulk contribution I Resultant characteristic V V Contact 2

Pt/SrTiO 3 Schottky Junctions 8 Retention Resistance( J J S J Endurance F Resistance ( 10 8 10 7 10 6 10 5 10 0 10 1 10 2 10 3 10 4 10 5 Time (sec.) 10 7 10 6 HRS LRS S * 2 A T HRS exp( qv / nk T) exp( q / k B B B T) J (A/cm 2 ) 10 5 J F : Forward current J S :Saturation current * 10 4 ALRS : Richardson constant n : Ideality factor 10 3 kb : Boltzman constant 0 200 400 600 800 1000 B : Barrier Height # of pulses 10 3 10 1 10 1 10 3 10 5 10 7 Start Ni 1.0 0.5 0.0 0.5 1.0 V (V) Ti Electrode Work function IV Ti 4.33 ev Ohmic Ni Au Pd Pt Park et al., J. Appl. Phys. 103, 054106 (2008). 5.15 ev 5.1 ev 5.12 ev 5.65 ev Rectifying Pt Pd Au

Switching Mechanism? 9 Oxygen vacancy migration Carrier trapping/detrapping Pt STO E C E F E V Fujii et al., Phys. Rev. B 75, 165101 (2007). Fujii et al., Appl. Phys. Lett. 86, 012107 (2005). Jeon et al., Appl. Phys.Lett. 89, 042904 (2006).

Internal Photoemission Spectroscopy (IPES) 10 Photoresponse R, Lee et al., Appl. Phys. Lett. 98, 132905 (2011). hν E Fm Isc (A) 1240(m V) R P (W) (nm) in R( h q ) where IPE qф Bn e q B 2 h B E g Bandtoband excitation e qψ bi R 1/2 (A.U.) E c 0.03 0.02 0.01 0.003 0.002 0.001 0.000 qφ B 1.2 1.3 1.4 1.5 1.6 1.7 E g 0.00 1.0 1.5 2.0 2.5 3.0 3.5 Energy (ev) Internal photoemission 1 V sweep HRS HRS LRS LRS 2 V sweep HRS HRS LRS LRS Bandtoband excitation E g h + E v

Internal Photoemission Spectroscopy (IPES) 11 Lee et al., Appl. Phys. Lett. 98, 132905 (2011). Conventional IV vs. IPES 1.5 q B (ev) 1.2 1.0 0.8 HRS LRS HRS LRS IPES IV IPES IV 1.0 0.5 0.0 E (A.U.) 0.6 1 2 qφ B from IV < qφ B from IPES Sweep Voltage (V) lower barrier dominant in IV mean barrier dominant in IPES

Transport Mechanism 12 Lee et al., Appl. Phys. Lett. 98, 132905 (2011). Inverse slope (=kt) (mev) 70 60 50 40 30 LRS HRS 20 22 24 26 28 30 32 34 36 38 kt (mev) FE TE (=1) HRS qф BM E Fm Pt e e STO Eg E c E v LRS qф BM E Fm Pt e e STO Eg E c E v Thermionic emission (TE) : kt >> E 00 J TE F J TE 0 qv exp kt & ~ 1 Field emisssion near E F (FE) : kt << E 00 Thermionicfield emission (TFE) : combination of TE & FE J J FE F TEF F J FE 0 J TEF 0 exp exp qv E 00 qv E, 0, where E 00 where E 0 q 2 E 00 N * m s E coth kt 00

Air vs. Vacuum 13 Bourim and Kim, Curr. Appl. Phys. (2013). Bipolar switching observed in both air and vacuum (a) Current (A) 10 0 10 2 10 4 10 6 10 8 10 10 10 12 Current (A) 10 1 Air Vacuum Air after Vacuum 10 3 10 5 10 7 10 9 10 11 10 13 Air Vacuum 2 1 2 0 11 02 2 1 1 2 0 1 2 Voltage (V) Voltage (V) (b) Air Vacuum Voltage (V)

Admittance Spectra of Pt/SrTiO 3 14 Interface trap states AC conductance Bourim and Kim, Curr. Appl. Phys. (2013). Nicollian and Goetzberger, The Bell System Technical Journal (1967). [Ref.] Suzuki et al., J. Appl. Phys. 81, 6830 (1997).

Admittance Spectra of Pt/SrTiO 3 15 Bourim and Kim, Curr. Appl. Phys. (2013). G P / (F) 2.0x10 9 1.5x10 9 1.0x10 9, air, vacuum HRS HRS LRS LRS 5.0x10 10 0.0 10 2 10 3 10 4 10 5 10 6 10 7 Frequency, (Hz) Peaks in the conductance spectra interface trap states! G P vs. : 1 exp us ub peak v 1 n th n i

Admittance Spectra of Pt/SrTiO 3 16 1 exp us ub v n th n i Bourim and Kim, Curr. Appl. Phys. (2013). Pt STO Pt STO E C E C u S u B E F E i u S u B E F E i E V E V Less band bending Smaller u S Smaller (higher peak ) LRS and Vacuum More band bending Larger u S Larger (lower peak ) HRS and Air

Planar Junctions for Transport and SPM Studies 17? V V! E F E C m n ev 0 W B Oxide Oxide Ti Pt E V Ohmic contact Schottky contact Issues 1)Contact and bulk contribution 2)Roles of Schottky vs. Ohmic contacts asymmetric Pt/Ti /Ti structures: separation of contact and bulk contribution to the transport 3)Real space observation simultaneous transport and SPM (scanning probe microscopy) measurements V tip A Ti Ti Pt 2 m V R Total = R B + R C,Pt

ElectricFieldInduced Resistance Change 18 Current vs. time during the electrical stress Kim et al., J. Phys. D: Appl. Phys. 50, 505305 (2010). 0.4 Current (na) 0.2 0.0 0.2 0.4 +40 V 40 V 0.6 0.8 0 10 20 30 Time (min.) Planar junction fabrication Ti (100) annealed in N 2 /H 2 (95:5): 450 o C, 1 hr. Photolithography and liftoff patterning of electrodes

Surface Potential Maps KPFM Measurements 19 Kim et al., J. Phys. D: Appl. Phys. 50, 505305 (2010). Ti Ti Pt (Potential)/(Current) (10 12 ) 0.3 0.2 Ti initial R C,Pt Ti +40 V 0.1 initial 40 V R B 0.0 0 2 4 6 8 10 Position (m) Pt initial R Total R Total = R B + R C,Pt 40 V electrical stress R C,Pt < 0 & R B < 0 +40 V electrical stress R C,Pt ~ 0 but R B < 0

Work Function Maps KPFM Measurements 20 H. Kim and D.W. Kim, Appl. Phys. A 102, 949 (2011). Topography 120 nm Ti Work function (W sample ) initial 1 um Pt 0 nm W ( E E ) ev Sample C F S S E l S O 2 O 2 ev S W Sample 40 V for 30 min. 5.1 ev E C (E C E F ) E F E V +40 V for 30 min. 4.7 ev Oxygen chemisorption + e

Scenario for Planar Junctions vacuum 10 5 21 H. Kim and D.W. Kim, Appl. Phys. A 102, 949 (2011). air Current (A) 10 6 10 7 10 8 10 9 vacuum air 5 0 5 Voltage (V) W sample 5.1 ev 4.7 ev

AFM Charge Writing of Ti : Ambient Dependence 22 H. Kim et al., Appl. Phys. Lett. 100, 022091 (2012). Charge writing EFM imaging H 2 /Ar : scanned by the SPM tip with a DC bias of +10 V in contact mode : scanned by the SPM tip with an AC modulation voltage to the tip while vibrating the cantilever at its mechanical resonance. freq. H 2 /Ar Ar 2 V Amplitude Phase 1 m 0 V +20 o 220 o

AFM Charge Writing of Ti : Ambient Dependence 23 H. Kim et al., Appl. Phys. Lett. 100, 022091 (2012). Atomic Force Microscopy (MFP3D, Asylum Research) 1 Control the ambient H 2 /Ar Ar 2 Tip induced stress V DC Closed fluid cell 3 Check result V AC

AFM Charge Writing of Ti : Ambient Dependence 24 H. Kim et al., Appl. Phys. Lett. 100, 022091 (2012). Amplitude (V) 1.5 1.0 0.5 0.0 0 Ar H 2 /Ar Amplitude Phase & Ar H 2 / Ar Phase ( o ) 90 180 0 1 2 3 Position (m) C F1 ( Vdc Vsurf ) V z ac sint Vdc V surf (V) 0 Amplitude = C Vsurf z 0 if 0Vsurf C Phase 0 180 if 0 Vsurf z

Work Function of Ti : Ambient Dependence 25 H. Kim et al., Appl. Phys. Lett. 100, 022091 (2012). W sample (ev) 6.5 6.0 5.5 5.0 4.5 H 2 /Ar Ar E l E F,tip ev surf W tip φ S evs W S Tip Ti Х E l E C E F E V Ned sin s e 34.3 (ev) Δ S = W S [ ] W S [H 2 /Ar] = 1.3 ev 3.8 % coverage in ambient W E E ev S C F S S Oxygen adsorption ambient effects on W sample Surface oxygen vacancy sites are preferential adsorption sites Diebold, Surf. Sci. Rep. 48, 53 (2003) Oxygen vacancy density of 4.3 ~ 9.6 % ML estimated Yim et al., Phys. Rev. Lett. 104, 036806 (2010).

AFM Charge Writing of Ti : Scenario 26 H. Kim et al., Appl. Phys. Lett. 100, 022091 (2012). +V H 2 /Ar V O Ar h + h + h + h + h + h + h + O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2 h + h + h + h + h + h + h + h + h + h + h + h + h + h + Oxygen ( ) chemisorption formation of oxygen ions ( ) and holes (h + ) SPMtipinduced generation an oxygen vacancy ( ) in the lattice desorption of the oxygen ions at the surface V O

Resistive Switching of Pt/SrTiO 3 Nanocontacts 27 (under preparation). 60 40 Current (na) 20 0 20 40 60 1.5 1.0 0.5 0.0 0.5 1.0 1.5 Sample bias (V)

Summary 28 28 Electrical characterization suggested that the charging/discharging of the interface trap states dominated the resistive switching behaviors of the Pt/SrTiO 3 single crystal Schottky junctions. The ambient dependence indicated that the surface trap states were influenced by the oxygen adsorption/desorption. Simultaneous transport and SPM measurements showed that the surface oxygen distribution determined the resistance of the Ti single crystal planar junctions. The SPM tip could modify local surface charge distribution. Pt STO E C u S u B E F E i E V

EDPL Members E. M. Bourim Research Professor Research Funding E. Lee (Ph.D.) H. Kim (Ph.D.) M. Gwon (Ph.D.) A. Sohn (Ph.D.) Pioneer Research Center Program Y. Cho (Ph.D.) Y. Kim (MS) J. Kim (MS) New & Renewable Energy Technology Development Program

Thank You!