Incorporating Effects of Forest Litter in a Snow Process Model

Similar documents
Small-Scale Spatial Variability of Radiant Energy for Snowmelt in a Mid-Latitude Sub-Alpine Forest

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program

Real Time Snow Water Equivalent (SWE) Simulation March 29, 2015 Sierra Nevada Mountains, California

Real Time Snow Water Equivalent (SWE) Simulation February 5, 2014 Sierra Nevada Mountains, California

Energy and Mass Balance Snow Model. Department of Civil and Environmental Engineering University of Washington

Development of High Resolution Gridded Dew Point Data from Regional Networks

Experimental and Theoretical Studies of Ice-Albedo Feedback Processes in the Arctic Basin

Vermont Soil Climate Analysis Network (SCAN) sites at Lye Brook and Mount Mansfield

Multi- Sensor Ground- based Microwave Snow Experiment at Altay, CHINA

A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes.

Lecture 8: Snow Hydrology

Snow ablation modelling in a mature aspen stand of the boreal forest

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

Multifaceted Geocomputation to Support Ecological Modelling in Yellowstone

Comparison of a snowpack on a slope and flat land by focusing on the effect of water infiltration

Snow Melt with the Land Climate Boundary Condition

P. Marsh and J. Pomeroy National Hydrology Research Institute 11 Innovation Blvd., Saskatoon, Sask. S7N 3H5

LIFE12 ENV/FIN/ First Data Document 31/05/2015

Why modelling? Glacier mass balance modelling

Missouri River Flood Task Force River Management Working Group Improving Accuracy of Runoff Forecasts

Instructions for Running the FVS-WRENSS Water Yield Post-processor

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017

Snowcover accumulation and soil temperature at sites in the western Canadian Arctic

September 2018 Weather Summary West Central Research and Outreach Center Morris, MN

Land Surface Processes and Their Impact in Weather Forecasting

Real Time (RT) Snow Water Equivalent (SWE) Simulation May 11, 2014 Sierra Nevada Mountains, California

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters

Land Surface: Snow Emanuel Dutra

1. GLACIER METEOROLOGY - ENERGY BALANCE

November 2018 Weather Summary West Central Research and Outreach Center Morris, MN

Effects of forest cover and environmental variables on snow accumulation and melt

ABSTRACT INTRODUCTION

Snow Modeling and Observations at NOAA S National Operational Hydrologic Remote Sensing Center

Snow II: Snowmelt and energy balance

SEA ICE MICROWAVE EMISSION MODELLING APPLICATIONS

Land surface insulation response to snow depth variability

Proxy-based reconstructions of Arctic paleoclimate

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

A Review of the 2007 Water Year in Colorado

Water Year Day 2010

MODIS True Color Terra image from from NASA WorldView (worldview.earthdata.nasa.gov)

Climatic Change Implications for Hydrologic Systems in the Sierra Nevada

Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016

SNOW COVER DURATION MAPS IN ALPINE REGIONS FROM REMOTE SENSING DATA

Lecture 3A: Interception

Lake Tahoe Watershed Model. Lessons Learned through the Model Development Process

Highlights of the 2006 Water Year in Colorado

How complex should a snow model be?

Oregon Water Conditions Report April 17, 2017

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Inter-linkage case study in Pakistan

2002 Drought History in Colorado A Brief Summary

The Climate of Bryan County

Bugs in JRA-55 snow depth analysis

Figure 2. April 8, 2011 spatial SWE shown for the Weber, UT watershed.

Snow depths and solar radiation before and after partial logging at the Mt. Tom Adaptive Management Trial

Drought in Southeast Colorado

Gateway Trail Project

Snow Model Intercomparison Projects

Southern Sierra Critical Zone Observatory (CZO): hydrochemical characteristics, science & measurement strategy

APPENDIX B Hydrologic Model Spring Event

Evaluation of a MODIS Triangle-based Algorithm for Improving ET Estimates in the Northern Sierra Nevada Mountain Range

Discritnination of a wet snow cover using passive tnicrowa ve satellite data

Snow ablation in an open field and larch forest of the southern mountainous region of eastern Siberia

The Colorado Drought : 2003: A Growing Concern. Roger Pielke, Sr. Colorado Climate Center.

regime on Juncal Norte glacier, dry Andes of central Chile, using melt models of A study of the energy-balance and melt different complexity

Snowcover interaction with climate, topography & vegetation in mountain catchments

CHANGES IN RADIATION PROPERTIES AND HEAT BALANCE WITH SEA ICE GROWTH IN SAROMA LAGOON AND THE GULF OF FINLAND

Missouri River Basin Water Management

National Climatic Data Center DATA DOCUMENTATION FOR DATA SET 6406 (DSI-6406) ASOS SURFACE 1-MINUTE, PAGE 2 DATA. July 12, 2006

EMPORIUM H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R.

Water information system advances American River basin. Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS

Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model

Validation of the SNOWPACK model in five different snow zones in Finland

Spectral surface albedo derived from GOME-2/Metop measurements

Great Lakes Update. Volume 199: 2017 Annual Summary. Background

THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING

1. Evaluation of Flow Regime in the Upper Reaches of Streams Using the Stochastic Flow Duration Curve

Accessing and Using National Long Term Ecological Research (LTER) Climate and Hydrology Data from ClimDB and HydroDB: A Tutorial

The National Operational Hydrologic Remote Sensing Center Operational Snow Analysis

The Importance of Snowmelt Runoff Modeling for Sustainable Development and Disaster Prevention

Flash Droughts: Their Characteristics and A Proposed Definition

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS

Great Lakes Update. Volume 194: 2015 Annual Summary

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Midwest and Great Plains Climate- Drought Outlook 16 April 2015

THE EFFECT OF VEGETATION COVER ON SNOW COVER MAPPING FROM PASSIVE MICROWAVE DATA INTRODUCTION

Scaling snow observations from the point to the grid element: Implications for observation network design

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE

NOAA s NATIONAL SNOW ANALYSES. Tom Carroll and Don Cline

Weather to Climate Investigation: Snow

View angle effects on MODIS snow mapping in forests

Surface energy balance of seasonal snow cover for snow-melt estimation in N W Himalaya

Comparative analysis of data collected by installed automated meteorological stations and manual data in Central Asia.

THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY

Proceedings, International Snow Science Workshop, Banff, 2014

2017/18 WINTER BALANCES OF GLACIERS IN LOMBARDY REGION (CENTRAL ITALIAN ALPS)

Climate Dataset: Aitik Closure Project. November 28 th & 29 th, 2018

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013

Transcription:

57th EASTERN SNOW CONFERENCE Syracuse, New York, USA, 2000 Incorporating Effects of Forest Litter in a Snow Process Model ABSTRACT J. P. H A R D Y, 1 R. MELLOH, 1 P. ROBINSON, 1 AND R. JORDAN 1 N e t s o l a r r a d i a t i o n o f t e n d o m i n a t e s t h e s n o w s u r f a c e e n e r g y e x c h a n g e d u r i n g a b l a t i o n i n m a n y c o n i f e r f o r e s t s. R e f l e c t i o n o f s o l a r r a d i a t i o n f r o m t h e s n o w s u r f a c e d e p e n d s n o t o n l y o n s n o w p r o p e r t i e s, b u t a l s o o n f o r e s t l i t t e r l y i n g o n a n d w i t h i n t h e s n o w p a c k. W e k n o w o f n o v a l i d a t e d m o d e l r e p o r t e d i n t h e l i t e r a t u r e t h a t a c c o u n t s f o r t h e i n f l u e n c e o f f o r e s t l i t t e r o n s n o w s u r f a c e e n e r g y e x c h a n g e s. T h e p u r p o s e o f t h i s w o r k i s t o t e s t a n e x i s t i n g a l g o r i t h m s a b i l i t y t o a c c u m u l a t e f o r e s t l i t t e r i n s n o w l a y e r s a n d t o p r e d i c t t h e s u b s e q u e n t e f f e c t o f l i t t e r o n t h e s n o w s u r f a c e a l b e d o. F i e l d s t u d i e s i n a c o n i f e r s t a n d o f r e d s p r u c e -b a l s a m f i r i n n o r t h e r n V e r m o n t, U S A, p r o v i d e d k e y d a t a f o r v a l i d a t i o n, i n c l u d i n g s u b c a n o p y r a d i a t i o n, m e t e o r o l o g y, s n o w d e p t h, a n d i m a g e s o f l i t t e r a c c u m u l a t i o n. W e r a n t h e l i t t e r a l g o r i t h m c o u p l e d w i t h t h e s n o w m o d e l S N T H E R M f o r t h e a b l a t i o n s e a s o n, a n d p r e d i c t io n s c o m p a r e d w e l l w i t h m e a s u r e m e n t s o f s n o w d e p t h, s n o w s u r f a c e l i t t e r c o v e r a g e, a n d s n o w s u r f a c e a l b e d o b e n e a t h t h e c o n i f e r c a n o p y. M o d e l r e s u l t s s u g g e s t t h a t f o r t h i s f o r e s t a n d a b l a t i o n s e a s o n, t h e c u r r e n t l i t t e r a l g o r i t h m r e a l i s t i c a l l y d i s t r i b u t e s l i t te r i n t h e s n o w p a c k t h r o u g h t i m e w i t h v a l i d a t e d e f f e c t s o n s n o w s u r f a c e l i t t e r c o n c e n t r a t i o n a n d a l b e d o. T h e p o o r r e l a t i o n s h i p b e t w e e n d a i l y t o t a l w i n d s p e e d a n d c h a n g e i n l i t t e r c o v e r a g e o n t h e s n o w s u r f a c e s u g g e s t t h a t, f o r t h i s f o r e s t a n d a b l a t i o n s e a s o n, i n c o r p o r a t i n g w i n d e v e n t s i n t o t h e a l g o r i t h m w i l l n o t i m p r o v e t h e r e s u l t s. K e y W o r d s : A l b e d o, F o r e s t l i t t e r, S n o w m o d e l l i n g 1 U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755-1290, USA email: jhardy@crrel.usace.army.mil

INTRODUCTION F o r e s t s a r e w e l l k n o w n t o a l t e r t h e a c c u m u l a t i o n o f s n o w o n t h e g r o u n d a n d t o m o d i f y n e a r - s u r f a c e m i c r o m e t e o r o l og y, w h i c h c o n t r o l s s n o w m e l t r a t e s. N e t s o l a r r a d i a t i o n ( i n c o m i n g m i n u s r e f l e c t e d ) o f t e n d o m i n a t e s t h e s n o w s u r f a c e e n e r g y e x c h a n g e d u r i n g a b l a t i o n i n m a n y c o n i f e r f o r e s t s ( P r i c e a n d D u n n e 1 9 7 6, M e t c a l f e a n d B u t t l e 1 9 9 5, H a r d i n g a n d P o m e r o y 1 9 9 6, D a v i s e t a l. 1 9 9 7, H a r d y e t a l. 1 9 9 7 ). T h e s o l a r r a d i a t i o n i n c i d e n t o n t h e s n o w s u r f a c e d e p e n d s o n f o r e s t s t r u c t u r e a n d v a r i e s w i t h t r e e s p e c i e s, s k y c o n d i t i o n s, a n d s o l a r a n g l e. R e f l e c t i o n o f s o l a r r a d i a t i o n f r o m t h e s n o w s u r f a c e d e p e n d s n o t o n l y o n s n o w p r o p e r t i e s ( g r a i n s i z e, p a r t i c l e d e n s i t y, a n d l i q u i d w a t e r c o n t e n t ), b u t o n f o r e s t l i t t e r ( l e a v e s, t w i g s, n e e d l e s, b a r k, a n d b r a n c h e s ) l y i n g o n a n d w i t h i n t h e s n o w p a c k a n d p r o t r u d i n g v e g e t a t i o n. L i t t e r d e p o s i t e d o n t h e s n o w s u r f a c e a c c u m u l a t e s i n l i t t e r h o r i z o n s a s t h e s n o w p a c k d e v e l o p s. T h e s e l i t t e r h o r i z o n s, u s u a l l y s e p a r a t e d b y s u b s e q u e n t s n o w f a l l s, a r e r e -e x p o s e d d u r i n g m e l t. N e t s o l a r r a d i a t i o n i n a f o r e s t e n v i r o n m e n t t h u s d e p e n d s o n f o r e s t s t r u c t u r e a n d t i m e o f y e a r, a s w e l l a s t h e a c c u m u l a t i o n a n d r e-e x p o s u r e o f f o r e s t d e b r i s. M a n y i n v e s t i g a t o r s c o n s i d e r a l b e d o o f t h e f o r e s t c a n o p y ( e. g., O t t e r m a n e t a l. 1 9 8 8, L i s t o n 1 9 9 5, B e t t s a n d B a l l 1 9 9 7, N a k a i e t a l. 1 9 9 9, N i a n d W o o d c o c k i n p r e s s ) o r t h e e f f e c t s o f d u s t a n d s o o t o n s n o w s u r f a c e a l b e d o ( e. g., W i s c o m b e a n d W a r r e n 1 9 8 0, G e r l a n d e t a l. 1 9 9 9 ). O t h e r s q u a l i t a t i v e l y d e s c r i b e t h e e f f e c t t h a t p r o t r u d i n g v e g e t a t i o n h a s o n s n o w a l b e d o ( P o m e r o y e t a l. 1 9 9 8 ) o r e v e n m a k e m u l t i p l e m e a s u r e m e n t s o f n e t r a d i a t i o n b e n e a t h a f o r e s t ( P r i c e a n d D u n n e 1 9 7 6, N a d e a u a n d G r a n b e r g 1 9 8 6 ). M e a s u r e m e n t s o f a l b e d o b e n e a t h a f o r e s t c a n o p y a r e r a r e, a n d w h e n t h e y d o e x i s t a r e l i m i t e d ( H a r d i n g a n d P o m e r o y 1 9 9 6, P o m e r o y a n d D i o n 1 9 9 6 ). M o s t s n o w p r o c e s s m o d e l s u s e t h e w e l l-k n o w n f a c t t h a t s n o w a l b e d o d e c r e a s e s a s s n o w m e t a m o r p h o s e s t o l a r ge r g r a i n s, w h i l e i g n o r i n g l i t t e r e f f e c t s, w h i c h c a n b e s u b s t a n t i a l ( J o r d a n 1 9 9 1, D i n g m a n 1 9 9 3, A l b e r t a n d K r a j e s k i 1 9 9 8, P o m e r o y e t a l. 1 9 9 8 ). P r o g r e s s i n t h i s a r e a h a s b e e n s e v e r e l y l i m i t e d d u e t o t h e l a c k o f w i n t e r d a t a o n t h r o u g h -c a n o p y r a d i a t i o n, s n o w a l b e d o, a n d l i t t e r f a l l i n f o r e s t e d e n v i r o n m e n t s. A p r e v i o u s s n o w p a c k e n e r g y b a l a n c e s t u d y i n t h e b o r e a l f o r e s t i n t r o d u c e d a p r o v i s i o n a r y t e c h n i q u e t o e s t i m a t e l i t t e r f a l l a n d i t s i n c o r p o r a t i o n i n t h e s n o w p a c k ( H a r d y e t a l. 1 9 9 8 ). T h e t e c h n i q u e i n c o r p o r a t e s l i t t e r w i t h i n a c c u m u l a t i n g s n o w l a y e r s w i t h c o n t i n u e d d e p o s i t i o n d u r i n g s n o w a b l a t i o n, a n d r e e m e r g e n c e o f l i t t e r a s t h e s n o w p a c k m e l t s. W h e n c o u p l e d w i t h t h e s n o w m o d e l S N T H E R M ( J o r d a n 1 9 9 1 ), t h e l i t t e r m o d e l p r o v i d e d t h e n e c e s s a r y c o r r e c t i o n t o o b t a i n a g r e e m e n t b e t w e e n m o d e l a n d a c t u a l s n o w a b l a t i o n a t t h e b o r e a l f o r e s t s i t e, b u t t h e p r e v i o u s s t u d y l a c k e d q u a n t i t a t i v e l i t t e r a n d a l b e d o d a t a t o v a l i d a t e t h e m o d e l. T h e p u r p o s e o f t h i s r e s e a r c h i s t o p r o v i d e f u r t h e r v a l i d a t i o n o f t h e H a r d y e t a l. ( 1 9 9 8 ) l i t t e r m o d e l, u s i n g a c o m p r e h e n s i v e f o r e s t l i t t e r a n d a l b e d o d a t a s e t c o l l e c t e d i n a t e m p e r a t e f o r e s t i n n o r t h e r n V e r m o n t, U S A ( M e l l o h e t a l. i n p r e p ). S e c o n d a r i l y, o u r o b j e c t i v e i s t o a s s e s s o p p o r t u n i t i e s t o i m p r o v e t h e e q u a t i o n t h a t c o n t r o l s l i t t e r i n p u t r a t e s t o t h e m o d e l, t o a c c o u n t f o r i m p o r t a n t m e t e o r o l o g i c a l e v e n t s, e s p e c i a l l y h i g h w i n d s. STUDY AREA T h e s t u d y a r e a i s l o c a t e d w i t h i n a s m a l l c o n i f e r f o r e s t i n t h e W -9 s u b -w a t e r s h e d ( 0. 4 7 k m 2, 4 4 2 9?2 6?N, 7 2 09?2 8?W ) o f t h e S l e e p e r s R i v e r R e s e a r c h W a t e r s h e d ( 1 1 3 k m 2 ) i n n o r t h e r n V e r m o n t, U S A. R o b i n s o n e t a l. ( i n p r e p ) d e t e r m i n e d t h e f o r e s t c h a r a c t e r i s t i c s o f t h e p l o t. T h e c o n i f e r p l o t m e a s u r e s 2 2 m? 2 2 m a n d i s d o m i n a t e d b y r e d s p r u c e b a l s a m f i r (Picea rubens Abies balsamea ) (Fig. 1). The average tree h e i g h t i s 2 4. 7 m a n d t h e a v e r a g e c r o w n h e i g h t i s 8. 0 m. T o t a l D B H ( D i a m e t e r a t B r e a s t H e i g h t o r 1. 5 m f r o m t h e g r o u n d ) p e r h e c t a r e o f a l l s t a n d i n g t r e e s, l i v i n g a n d d e a d, i s 3 5 8 m. T h e p e r c e n t c o v e r o f t h e b a l s a m f i r c a l c u l a t e d a s B a s a l A r e a ( B A ) o f l i v e t r e e s i s a p p r o x i m a t e l y 6 1 % c o m p a r e d t o 3 9 % f o r t h e r e d s p r u c e. T h e y o u n g r e d s p r u c e a p p e a r t o b e d y i n g u n d e r t h e d e e p s h a d e o f t h e m a t u r e b a l s a m f i r, m a n y n o t l i v i n g b e y o n d 0. 1-m DBH. T h e s h r u b l a y e r i s v o i d o f a n y w o o d y v e g e t a t i o n b e t w e e n 0. 5 m a n d 2. 0 m. T h e g r o u n d c o v e r w a s n o t s u r v e y e d, b u t a n a b u n d a n c e o f f a l l e n t r e e s a n d b a l s a m f i r s e e d l i n g s w a s o b s e r v e d.

Figure 1. Photo taken on 9 April 1999 (day 99) in the conifer forest. Note the litter on the snow surface and the abundance of fallen trees on the ground. A p p r o x i m a t e l y 0. 8 k m f r o m t h e c o n i f e r s i t e i s t h e l o c a t i o n o f a m e t e o r o l o g i c a l s t a t i o n s i t u a t e d i n a l a r g e o p e n a r e a a n d i n o p e r a t i o n s i n c e 1 9 5 8. A t t h e o p e n s i t e, t h e m e a n a n n u a l t e m p e r a t u r e i s a b o u t 4 C a n d t h e m e a n a n n u a l p r e c i p i t a t i o n i s a b o u t 1 0 8 0 m m. S n o w f a l l a v e r a g e s 2 5 4 0 m m w i t h a m a x i m u m s n o w w a t e r e q u i v a l e n t ( S W E ) n o r m a l l y 2 2 5 t o 3 0 0 m m ( P a n g b u r n e t a l. 1 9 9 2 ). METHODS Forest characterization: Meteorological and snow measurements P r i o r t o t h e 1 9 9 8 / 1 9 9 9 s n o w s e a s o n, t h e f o r e s t c o m m u n i ty s u r r o u n d i n g t h e c o n i f e r s i t e w a s q u a n t i f i e d u s i n g s a m p l i n g m e t h o d s d e s c r i b e d i n D a u b e n m i r e ( 1 9 6 8 ) a n d B r o w e r e t a l. ( 1 9 9 0 ). P a r a m e t e r s a n a l y z e d i n c l u d e d s p e c i e s c o m p o s i t i o n, a b u n d a n c e, r e l a t i v e s p e c i e s d e n s i t y, a n d p e r c e n t c o v e r i n s h r u b a n d t r e e l a y e r s. R o b i n s o n e t a l. ( i n p r e p ) p r o v i d e a d e t a i l e d e x p l a n a t i o n o f t h e s e s a m p l i n g m e t h o d s. D u r i n g t h e 1 9 9 9 s n o w a b l a t i o n s e a s o n ( l a t e F e b r u a r y t h r o u g h A p r i l ) M e l l o h e t a l. ( i n p r e p ) c o n t i n u o u s l y m e a s u r e d i n c o m i n g s o l a r a n d l o n g w a v e r a d i a t i o n t h r o u g h t h e c a n o p y a n d r e f l e c t e d s o l a r r a d i a t i o n f r o m t h e s n o w p a c k u s i n g a r r a y s o f f o u r u p - a n d f o u r d o w n l o o k i n g r a d i o m e t e r s ( E p p l e y p y r a n o m e t e r s, P S P ) i n t h e c o n i f e r s i t e. T w o u p l o o k i n g E p p l e y p y r g e o m e t e r s ( P I R ; 8 - t o 5 0 -? m w a v e l e n g t h ) m e a s u r e d i n c o m i n g l o n g w a v e r a d i a t i o n b e n e a t h t h e c o n i f e r c a n o p y. T w o - m e t e r, s u b c a n o p y a i r t e m p e r a t u r e, r e l a t i v e h u m i d i t y, a n d w i n d s p e e d w e r e a l s o m e a s u r e d i n t h e c o n i f e r s i t e. M e a s u r e m e n t a n d d e p l o y m e n t d e t a i l s a r e o u t l i n e d i n M e l l o h e t a l. ( i n p r e p ). T h e m e t e o r o l o g i c a l p a r a m e t e r s m e a s u r e d a t t h e o p e n s i t e c o n s i s t o f a i r t e m p e r a t u r e a n d r e l a t i v e h u m i d i t y, w i n d s p e e d a n d d i r e c t i o n ( 2 -m a n d 6-m h e i g h t ), c o n t i n u o u s s n o w d e p t h, i n c o m i n g a n d r e f l e c t e d s o l a r r a d i a t i o n, i n c o m i n g a n d o u t g o i n g l o n g w a v e r a d i a t i o n, a n d p r e c i p i t a t i o n. T h e s n o w p a c k p r o p e r t i e s w e r e m e a s u r e d a n d m o n i t o r e d t w o w a y s. F i r s t, a n u l t r a s o n i c d e p t h s e n s o r m e a s u r e d s n o w d e p t h f r o m a s i n g l e p o i n t i n t h e f o r e s t. T h i s d e p t h g a u g e m e a s u r e d t h e d i s t a n c e f r o m t h e s e n s o r t o t h e s n o w s u r f a c e a n d p r o v i d e d a c o n t i n u o u s r e c o r d o f s n o w d e p t h f o r v a l i d a t i o n o f o u r m o d e l r u n s. S e c o n d, s n o w d e p t h a n d i t s v a r i a b i l i t y w e r e r e g u l a r l y m e a s u r e d b y m a n u a l s u r v e y s, a s w e r e o c c a s i o n a l m e a s u r e m e n t s o f s n o w d e n s i t y a t t h e s t u d y s i t e d u r i n g t h e a b l a t i o n s e a s o n. A t p e a k a c c u m u l a t i o n a n d t o i n i t i a l i z e t h e s n o w m od e l, t h e s n o w d e n s i t y p r o f i l e a t 0. 0 3 -m v e r t i c a l r e s o l u t i o n u s i n g a 1 0 0 -cm 3 d e n s i t y c u t t e r w a s m e a s u r e d a l o n g w i t h s n o w t e m p e r a t u r e s u s i n g d i a l s t e m t h e r m o m e t e r s.

Snow surface and in-pack litter contamination A n o v e l, r a d i o -l i n k e d c a m e r a s y s t e m c o l l e c t e d a n d t r a n s m i t t e d r e a l -t i m e d i g i t a l i m a g e s o f t h e s n o w s u r f a c e c o n d i t i o n. M e l l o h e t a l. ( i n p r e p ) p r o v i d e s p e c i f i c s o f t h e d e s i g n a n d d e p l o y m e n t o f t h e c a m e r a s y s t e m. T h i s t e c h n i q u e d o c u m e n t e d s n o w s u r f a c e l i t t e r c h r o n o l o g y f r o m F e b r u a r y t h r o u g h A p r i l i t s a c c u m u l a t i o n a n d r e -e x p o s u r e d u r i n g m e l t. T h e d o w n l o a d e d a n d p r o c e s s e d i m a g e s w e r e a n a l y z e d u s i n g i m a g e -p r o c e s s i n g s o f t w a r e t o c r e a t e b i n a r y ( p u r e b l a c k a n d w h i t e ) i m a g e s f o r s t a t i s t i c a l a n a l y s i s. S t e r e o l o g i c p a r a m e t e r s w e r e c o m p u t e d a u t o m a t i c a l l y b y p a s s i n g t e s t l i n e s a c r o s s t h e b i n a r y i m a g e a n d u s i n g e q u a t i o n s f o r c o u n t i n g s t a t i s t i c s, a s d e s c r i b e d b y D o z i e r e t a l. ( 1 9 8 7 ). T h e p o i n t d e n s i t y s t a t i s t i c p r o v i d e d t h e t w o -d i m e n s i o n a l l i t t e r c o v e r a g e ( % ) a t t h e s n o w s u r f a c e, b u t a s i m p l e r a t i o o f b l a c k t o w h i t e a r e a s c o u l d p r o v i d e t h e s a m e r e s u l t s. I n a d d i t i o n t o m e a s u r i n g s n o w p r o p e r t i e s a t p e a k a c c u m u l a t i o n ( s e e a b o v e ), s n o w s a m p l e s a p p r o x i m a t e l y 0. 3 m w i d e, 0. 5 m l o n g, a n d 0. 1 m d e e p w e r e c o l l e c t e d t o q u a n t i f y t h e l i t t e r i n t h e s n o w p a c k ( M e l l o h e t a l. i n p r e p ). Ea c h o f t h e f i v e s a m p l e s w a s m e l t e d t o s e p a r a t e l i t t e r f r o m s n o w a n d d r a i n e d o f e x c e s s w a t e r ; t h e l i t t e r w a s d r i e d i n a s o i l -d r y i n g o v e n f o r 2 4 h o u r s a n d w e i g h e d ( R o b i n s o n e t a l. i n p r e p ). Snow process model S N T H E R M i s a n i n t e r n a t i o n a l l y r e c o g n i z e d, o n e -d i m e n s i o n a l m a s s a n d e n e r g y b a l a n c e m o d e l f o r p r e d i c t i n g s n o w p a c k p r o p e r t i e s a n d p r o c e s s e s ( J o r d a n 1 9 9 1 ), a n d i s t h e f o u n d a t i o n f o r t h i s s n o w m o d e l l i n g e f f o r t. S N T H E R M c a l c u l a t e s e n e r g y e x c h a n g e a t t h e s u r f a c e a n d b o t t o m o f t h e s n o w c o v e r, i n -p a c k p r o c e s s e s, g r a i n g r o w t h, d e n s i f i c a t i o n a n d s e t t l e m e n t, m e l t i n g a n d l i q u i d w a t e r f l o w, h e a t c o n d u c t i o n a n d v a p o r d i f f u s i o n ( J o r d a n 1 9 9 1 ). H a r d y e t a l. ( 1 9 9 7, 1 9 9 8 ) s u c c e s s f u l l y a p p l i e d S N T H E R M t o f o r e s t e d e n v i r o n m e n t s b y l i n k i n g i t t o a g e o m e t r i c-o p t i c, r a d i a t i v e -t r a n s f e r m o d e l ( L i e t a l. 1 9 9 5, N i e t a l. 1 9 9 7 ). S N T H E R M c o m p u t e s r e f l e c t e d s o l a r r a d i a t i o n u s i n g a n a l b e d o r o u t i n e t h a t a c c o u n t s f o r c h a n g e s i n a l b e d o d u e t o g r a i n g r o w t h, s u n a n g l e, a n d c l o u d c o v e r ( M a r k s 1 9 8 8 ) a n d m o s t r e c e n t l y, r e d u c e s a l b e d o t o a c c o u n t fo r t h e o p t i c a l t h i n n i n g o f s n o w ( H a r d y e t a l. 1 9 9 8 ). S i n c e c l e a n s n o w i s u n l i k e l y b e l o w a f o r e s t c a n o p y, H a r d y e t a l. ( 1 9 9 8 ) i n t r o d u c e d a p r o v i s i o n a l r o u t i n e t o e s t i m a t e l i t t e r f a l l o n t h e f o r e s t f l o o r t h a t r e d u c e d t h e s u b c a n o p y s n o w a l b e d o a s f o r e s t l i t t e r a c c u m u l a t e s. T h e r o u t i n e a l l o w s t h e f r a c t i o n a l c o v e r a g e o f l i t t e r i n o r o n t h e s n o w p a c k t o i n c r e a s e t h r o u g h o u t t h e e n t i r e s n o w s e a s o n a c c o r d i n g t o e q. 1 : lc = 1. 0 ( 1. 0 lr ) d a y ( 1 ) w h e r e lc i s t h e f r a c t i o n a l l i t t e r c o v e r a g e ( m 2 m 2 ), lr i s t h e d a i l y l i t t e r r a t e ( m 2 m 2 d 1 ) o f t h e f o r e s t, a n d day i s t h e n u m b e r o f l i t t e r a c c u m u l a t i o n d a y s f o r w h i c h t h e l i t t e r c o v e r a g e i s c a l c u l a t e d. T h e r e s u l t i n g a l b e d o i s a w e i g h t e d a v e r a g e o f l i t t e r a l b e d o a n d c l e a n s n o w a l b e d o i n p r o p o r t i o n t o t h e i r a r e a l c o v e r a g e. T h i s l i t t e r r o u t i n e w a s i n t e n d e d a s a p r e l i m i n a r y a t t e m p t a t c o n s i d e r i n g t h e w e l l-k n o w n e f f e c t l i t t e r h a s o n r e d u c i n g a l b e d o. Snow model initialization W e r a n t h e m o d e l f r o m 1 M a r c h 1 9 9 9 ( d a y 6 0 ) t h r o u g h 2 3 A p r i l 1 9 9 9 ( d a y 1 1 3 ). T h e m e t e o r o l o g i c a l f i l e u s e d f o r t h e d u r a t i o n o f t h e m o d e l r u n i n c l u d e s a i r t e m p e r a t u r e, r e l a t i v e h u m i d i t y, a n d w i n d s p e e d d a t a f r o m t h e c o n i f e r s t a t i o n. W e u s e d a n a i r t e m p e r a t u r e t h r e s h o l d o f 1. 6 5 C t o s e p a r a t e p r e c i p i t a t i o n e v e n t s a s s n o w o r r a i n. U s i n g t h e i n c o m i n g s o l a r r a d i at i o n f r o m t h e o p e n s i t e a n d t h e m e a n o f t h e f o u r -u p l o o k i n g P S P s f r o m t h e c o n i f e r s i t e, w e e s t a b l i s h e d t h e t r a n s m i s s i v i t y f o r e a c h t i m e s t e p. B e c a u s e o f r a p i d l y c h a n g i n g s u n a n g l e s i n t h e s p r i n g, w e d i v i d e d t h e m o d e l l i n g p e r i o d i n t o t w o p e r i o d s a n d m u l t i p l i e d t h e m e a n t r a n s m i s s i v i t y f o r e a c h p e r i o d b y t h e u n o b s t r u c t e d p y r a n o m e t e r d a t a t o o b t a i n a v a l u e f o r t h e s u b c a n o p y i n c o m i n g s o l a r r a d i a t i o n. W e a l l o w e d S N T H E R M t o e s t i m a t e r e f l e c t e d r a d i a t i o n b a s e d o n s n o w g r a i n s i z e, a g e, a n d l i t t e r c o v e r a g e. T h e m e a n o f t h e f o u r-i n v e r t e d P S P s p r o v i d e d r e f l e c t e d r a d i a t i o n d a t a f o r a l b e d o v a l i d a t i o n. W e a v e r a g e d t h e l o n g w a v e d a t a f r o m b o t h P I R s f o r l o n g w a v e i n p u t. D a t a f o r t h e s n o w p r o p e r t i e s r e q u i r e d b y t h e m o d e l ( s n o w l a y e r t h i c k n e s s, t e m p e r a t u r e, d e n s i t y, a n d g r a i n s i ze ) w e r e o b t a i n e d f r o m s n o w p i t o b s e r v a t i o n s o n 9 M a r c h 1 9 9 9 a n d a d j u s t e d t o r e p r e s e n t t h e s n o w c o n d i t i o n s f o r 1 M a r c h. L i t t e r a c c u m u l a t e d o n t h e s n o w s u r f a c e b e g i n n i n g w i t h

t h e f i r s t s n o w f a l l. W h e n a m o d e l r u n b e g i n s a t p e a k a c c u m u l a t i o n, t h e l i t t e r c o n t e n t o f t h e i n i t i a l s n o w l a y e r s a r e c o m p u t e d u s i n g e q. 1 b a s e d o n t h e n u m b e r o f d a y s b e t w e e n s n o w e v e n t s l e a d i n g t o m a x i m u m a c c u m u l a t i o n. I n o r d e r t o r u n t h e l i t t e r a l g o r i t h m w i t h S N T H E R M, S N T H E R M r e q u i r e s a n a d d i t i o n a l c o l u m n c o n t a i n i n g e s t i m a t e s o f l i t t e r c o n t e n t i n t h e s n o w i n p u t f i l e. W e u s e d p r e c i p i t a t i o n d a t a f r o m t h e o p e n s i t e t o d e t e r m i n e t h e t i m i n g o f s n o w f a l l e v e n t s l e a d i n g u p t o 1 M a r c h a n d t h e r e f o r e c o m p u t e d l i t t e r c o v e r a g e f o r e a c h s n o w l a y e r. T o v a l i d a t e t h e m o d e l o u t p u t w e c o m p a r e d m a n u a l a n d c o n t i n u o u s m e a s u r e m e n t s o f s n o w d e p t h i n t h e c o n i f e r f o r e s t ; p e r c e n t l i t t e r c o v e r a g e d e r i v e d f r o m d i g i t a l i m a g e s ; a n d o u r m e a s u r e m e n t s o f f o r e s t a l b e d o, w i t h S N T H E R M o u t p u t. RESULTS D r y s p r i n g w e a t h e r ( i. e., c l e a r r a d i o m e t e r s ) p e r m i t t e d n e a r l y c o n t i n u o u s m e a s u r e m e n t o f t h r o u g h -c a n o p y i n c o m i n g r a d i a t i o n a n d t h a t r e f l e c t e d f r o m t h e s n o w-c o v e r e d f o r e s t f l o o r i n t h e s e s t a n d s f r o m l a t e w i n t e r t h r o u g h t h e s n o w m e l t s e a s o n ( M e l l o h e t a l. i n p r e p. ). S u b c a n o p y i n c o m i n g s o l a r r a d i a t i o n w a s c o m p a r e d w i t h t h a t m e a s u r e d i n t h e o p e n s i t e, l e s s t h a n o n e k i l o m e t e r a w a y. M e a n c o n i f e r t r a n s m i s s i v i t y f o r t h e m o d e l l e d p e r i o d w a s 0. 1 3 3. L o n g w a v e r a d i a t i o n d a t a m e a s u r e d b y t h e t w o P I R s w e r e i n v e r y c l o s e a g r e e m e n t ( r 2 = 0. 9 9 ) a n d w e r e a v e r a g e d t o r e p r e s e n t t h e i n c i d e n t l o n g w a v e c o m p o n e n t i n t h e f o r e s t. A s e x p e c t e d, t h e l o n g w a v e c o m p o n e n t i n t h e f o r e s t h a d h i g h e r v a l u e s b u t m u c h l o w e r t e m p o r a l v a r i a t i o n t h a n m e a s u r e d i n t h e o p e n s i t e. L o w w i n d s p e e d s i n t h e c o n i f e r s i t e s u g g e s t t h a t t h e t u r b u l e n t f l u x e s a r e l o w a n d t h a t t h e r a d i a t i on b a l a n c e d o m i n a t e s t h e s u r f a c e e n e r g y f l u x e s. Photos of snow surface T h e e l e c t r o n i c d i g i t a l c a m e r a s y s t e m s u c c e s s f u l l y m o n i t o r e d s n o w s u r f a c e c o n d i t i o n s r e m o t e l y u s i n g r a d i o c o m m u n i c a t i o n s ( M e l l o h e t a l. i n p r e p ). T h e t w i c e -d a i l y d i g i t a l i m a g e s o f t h e s n ow s u r f a c e d o c u m e n t l i t t e r c o n d i t i o n s f r o m 4 M a r c h t h r o u g h t h e c o m p l e t i o n o f m e l t o n 2 1 A p r i l ( e. g., F i g. 2 ). D u r i n g t h i s p e r i o d, 5 0 i m a g e s w e r e o f s u f f i c i e n t q u a l i t y t o p r o c e s s, o f w h i c h 3 0 p r o v i d e d u s e f u l i n f o r m a t i o n. T w e n t y o f t h e i m a g e s e i t h e r w e r e f r e e o f l i t t e r d u e t o a r e c e n t s n o w f a l l, s u g g e s t e d n o c h a n g e f r o m t h e p r i o r i m a g e, o r c o n t a i n e d b a r e g r o u n d. A n a l y s e s o f t h e d i g i t a l i m a g e s p r o v i d e d p e r c e n t s u r f a c e l i t t e r c o v e r a g e f r o m m a x i m u m s n o w d e p t h t h r o u g h s p r i n g a s l i t t e r l a y e r s w e r e r e-e x p o s e d d u r i n g m e l t o u t. T h e l a t e s t i m a g e w i t h c o m p l e t e s n o w c o v e r w a s t a k e n 1 6 A p r i l w i t h l i t t e r c o v e r a g e o f 2 5 %. T h e n e x t i m a g e w a s f r o m 1 9 A p r i l a n d h a s a l i t t e r c o v e r a g e o f 5 6 % a n d i n c l u d e s s o m e b a r e g r o u n d. B y 2 1 A p r i l a l l b u t 3 % o f t h e i m a g e w a s s n o w - f r e e. T h e r e l a t i o n s h i p b e t w e e n l i t t e r c o v e r a g e d e r i v e d f r o m t h e d i g i t a l i m a g e s a n d t h e d a i l y a v e r a g e a l b e d o m e a s u r e d i n t h e f o r e s t e d s t a n d i s d e s c r i b e d b y a s e c o n d o r d e r p o l y n o m i a l ( r 2 = 0. 8 7 ) ( M e l l o h e t a l. i n p r e p. ). a b

Figure 2. Two examples of digital images obtained from the remote camera system and the corresponding binary image. The images were obtained on 1 April (a) and 12 April (b) and represent 7% and 24% litter coverage, respectively. Model run using litter routine W e c o m p a r e d m e a s u r e m e n t s o f s n o w d e p t h, s n o w s u r f a c e l i t t e r c o v e r a g e, a n d s n o w s u r f a c e a l b e d o b e n e a t h t h e c o n i f e r c a n o p y w i t h r e s u l t s o f a S N T H E R M m o d e l r u n u s i n g t h e l i t t e r e q u a t i o n ( e q. 1 ). W e a s s u m e d a l i t t e r r a t e o f 0. 0 0 6 d 1 f o r t h i s c o n i f e r s i t e ( a n i n c r e a s e o f 0. 0 0 1 d 1 a s p r e vi o u s l y u s e d f o r a b l a c k s p r u c e s t a n d ). T h e a l b e d o o f t h e c o n i f e r l i t t e r ( 0. 1 5 ) w a s b a s e d o n r e s u l t s o f O k e ( 1 9 8 7 ) a n d a l b e d o m e a s u r e m e n t s o f t h e f o r e s t f l o o r a f t e r c o m p l e t e s n o w m e l t ( M e l l o h e t a l. i n p r e p ). T h e g r o u n d i n t h e c o n i f e r s i t e w a s c o n t i n u o u s l y s n o w c o v e r e d f o r approximately 125 d a y s, o f w h i c h 4 8 d a y s w e r e m o d e l l e d. T h e s n o w i n p u t f i l e c o n t a i n e d e s t i m a t e s o f l i t t e r c o v e r a g e, c o m p u t e d f r o m e q. 1, i n e a c h e x i s t i n g s n o w l a y e r f r o m d a y 3 5 0, 1 9 9 8, t o d a y 6 0, 1 9 9 9 ( T a b l e 1 ). T h e s u m o f t h e l i t t e r c o v e r a g e i n T a b l e 1 i s 0. 4 5, w h i c h e q u a l s t h e d a i l y l i t t e r r a t e ( 0. 0 0 6 d 1 ) m u l t i p l i e d b y t h e n u m b e r o f s n o w d a y s ( 7 5 ) b e t w e e n d a y 3 5 0, 1 9 9 8, a n d d a y 6 0, 1 9 9 9. T h e r e a r e t w o w a y s t h e f r a c t i o n o f l i t t e r o n t h e s n o w s u r f a c e i n c r e a s e s. E i t h e r e x i s t i n g s n o w l a y e r s me l t, l e a v i n g b e h i n d t h e i r l i t t e r o n t h e s n o w s u r f a c e, o r a d d i t i o n a l l i t t e r a c c u m u l a t e s o n t h e s n o w s u r f a c e t h r o u g h t i m e. S i m i l a r l y, l i t t e r l e a v e s t h e s n o w p a c k l a t e i n t h e a b l a t i o n s e a s o n a s t h e l o w e s t s n o w l a y e r s m e l t a n d l i t t e r b e c o m e s p a r t o f t h e f o r e s t f l o o r. T h e l i t t e r e q u a t i o n e s t i m a t e s t o t a l l i t t e r c o v e r a g e o f 5 3 % i n t h i s c o n i f e r f o r e s t a t t h e e n d o f t h e s n o w a b l a t i o n p e r i o d. O n 9 M a r c h, w h i l e a n a l y z i n g t h e s n o w p a c k p r o f i l e i n t h e c o n i f e r f o r e s t, s i g n i f i c a n t l i t t e r h o r i z o n s w e r e n o t e d a t s n o w h e i g h t s o f a p p r o x i m a t e l y 3 1 c m, 3 9 c m, a n d 4 4. 5 c m, w i t h t h e m o s t p r o n o u n c e d l i t t e r h o r i z o n a t 3 1 c m. T h e c o l l e c t e d s n o w a n d l i t t e r s a m p l e s t h a t w e r e s e p a r a t e d, d r i e d, a n d w e i g h e d c o n f i r m e d t h o s e o b s e r v a t i o n s ( F i g. 3 a ). F o r c o m p a r i s o n, w e p l o t t h e m o d e l l e d l i t t e r c o v e r a g e i n t h e s n o w p a c k, a s d e t e r m i n e d b y S N T H E R M f o r d a y 6 8, a n d b i n n e d a c c o r d i n g t o F i g u r e 3 a ( F i g. 3 b ). T h e m o d e l l e d l i t t e r c o v e r a g e s h o w s a s i m i l a r p r o f i l e o f l i t t e r a c c u m u l a t i o n a s t h e m e a s u r e d s a m p l e s w i t h t h e g r e a t e s t a c c u m u l a t i o n m i d-s n o w p a c k a n d t h e m o s t s i g n i f i c a n t l i t t e r l a y e r a t b e t w e e n 2 3 - a n d 3 3-c m h e i g h t. T h e m o s t p r o n o u n c e d l i t t e r h o r i z o n s o c c u r w h e n t h e p e r i o d b e t w e e n s n o w e v e n t s i s l o n g e s t. Table 1. Snow property input file used to initialize SNTHERM. The input file is based on snow property measurements made in the conifer site on 9 March and adjusted for 1 March. Litter coverage is the percent coverage for the respective snow layer. The surface snow layer is at the top of the table. Temp. (K) Snow height (m) Density (Kg m 3 ) Grain size (m) Litter coverage (%) 2 7 3 0.42 2 2 0 0. 0 0 2 0.07 2 7 3 0.41 2 4 0 0. 0 0 2 0. 0 2 4 2 7 3 0.39 2 0 0 0. 0 0 2 0. 0 2 4 2 7 2 0.36 1 7 0 0. 0 0 3 0. 0 4 1 2 7 2 0.33 2 3 0 0. 0 0 2 0. 0 4 7 2 7 1 0.30 2 3 0 0. 0 0 2 0. 0 3 5 2 7 1 0.27 2 5 0 0. 0 0 2 0. 0 4 1 2 7 0 0.24 2 5 0 0. 0 0 2 0. 0 0 6 2 7 0 0.21 3 0 0 0. 0 0 2 0. 0 3 5 2 7 0 0.18 3 3 0 0. 0 0 2 0. 0 1 8 2 7 1 0.15 2 9 0 0. 0 0 2 0. 0 0 6 2 7 2 0.12 3 2 5 0. 0 0 2 5 0. 0 1 8 2 7 2 0.09 3 4 0 0. 0 0 3 0. 0 1 8 2 7 3 0.06 2 2 0 0. 0 0 2 0. 0 5 8 2 7 3 0.03 4 0 0 0. 0 0 3 0. 0 1 8

43-59 Day 68 33-43 23-33 13-23 7-13 0 1 2 3 Weight of Dry Litter (g) 43-59 Day 68 33-43 23-33 13-23 7-13 0 0.05 0.1 0.15 Litter Coverage % Figure 3. Profile of dry litter weights in the snowpack as collected on day 68 and processed by Robinson et al. (in prep) (Fig. 3a). Profile of SNTHERM-determined litter in the snowpack on day 68 (Fig. 3b). These data were binned to compare with field data. L i t t e r c o v e r a g e p r o f i l e s d e t e r m i n e d b y S N T H E R M d u r i n g t h e m o d e l r u n w e r e b i n n e d i n t o 5-cm i n t e r v a l s a n d p l o t t e d f o r e v e r y t e n d a y s o f m o d e l o u t p u t ( F i g. 4 ). T h e s e r i e s o f p l o t s s h o w s t h e d i s t r i b u t i o n o f l i t t e r i n t h e s n o w p a c k t h r o u g h t i m e a n d t h e i n c r e a s e i n l i t t e r c o n c e n t r a t i o n a s t h e s n o w m e l t s. S n o w d e p t h s f o r d a y s 6 0, 7 0, 8 0, 9 0, a n d 1 0 0 w e r e 4 2. 1, 5 0. 2, 4 0. 1, 2 3. 6, a n d 4. 5 c m, r e s p e c t i v e l y. B e c a u s e S N T H E R M o u t p u t s l i t t e r i n n o d e s o f v a r y i n g t h i c k n e s s a n d c o m b i n e s a n d d i v i d e s n o d e s, i t i s n o t p r a c t i c a l t o t r a c k i n d i v i d u a l l i t t e r h o ri z o n s. F i g u r e 4 e s u g g e s t s a s u r f a c e l i t t e r c o v e r a g e o f 6 2 % o n d a y 1 0 0, c o m p a r e d w i t h m o d e l e s t i m a t e o f t o t a l l i t t e r c o v e r a g e o f 5 3 % a t t h e e n d o f t h e s n o w a b l a t i o n p e r i o d. T h i s d i s c r e p a n c y i s e a s i l y e x p l a i n e d b y t h e w a y S N T H E R M a c c o u n t s f o r l i t t e r i n a m e l t i n g s n o w p a c k. O n d a y 1 0 0 t h e s n o w p a c k i s 4. 5 c m d e e p a n d c o n t a i n s a s u m o f 6 2 % l i t t e r i n f i v e r e m a i n i n g s n o w l a y e r s. J u s t b e f o r e c o m p l e t e a b l a t i o n o n d a y 1 0 7, t h e s n o w s u r f a c e l i t t e r c o n t e n t i s 5 3 %. T h e m i s s i n g l i t t e r i s i n c o r p o r a t e d i n t o t h e f o r e s t f l o o r a n d n o t c o n s i d e r e d snow surface l i t t e r.

Snow Height (cm 50-55 40-45 30-35 20-25 10-15 Day 60 Snow Height (cm 50-55 40-45 30-35 20-25 10-15 Day 70 0-5 0-5 0 0.2 0.4 0.6 Litter Coverage (%) 0 0.2 0.4 0.6 Litter Coverage (%) Snow Height (cm 50-55 40-45 30-35 20-25 10-15 Day 80 Snow Height (cm) 50-55 40-45 30-35 20-25 10-15 Day 90 0-5 0-5 0 0.2 0.4 0.6 Litter Coverage (%) 0 0.2 0.4 0.6 Litter Coverage (%) 50-55 40-45 Day 100 Snow Height (cm) 30-35 20-25 10-15 0-5 0 0.2 0.4 0.6 Litter Coverage (%) Figure 4. Time series of modelled litter coverage in the snowpack from day 60 to day 100, in 10-day intervals. F i g u r e 5 c o m p a r e s m e a s u r e m e n t s o f s n o w d e p t h, s n o w s u r f a c e l i t t e r c o v e r a g e, a n d a l b e d o i n t h e c o n i f e r f o r e s t t o r e s u l t s f r o m S N T H E R M. M o d e l l e d s n o w d e p t h c o m p a r e s f a v o r a b l y w i t h s n o w s e n s o r d a t a a n d m a n u a l m e a s u r e m e n t s ( F i g. 5 a ), b u t m e l t e d t h r e e d a y s e a r l i e r. M o d e l l e d s n o w s u r f a c e l i t t e r c o v e r a g e t r a c k e d t h e m e a s u r e d l i t t e r c o v e r a g e e x t r e m e l y w e l l t h r o u g h t h e a b l a t i o n s e a s o n ( F i g. 5 b ). J u s t p r i o r t o t h e m o d e l p r e d i c t i n g c o m p l e t e s n o w a b l a t i o n, t h e l i t t e r c o v e r a g e i n c r e a s e d d r a m a t i c a l l y t o c l o s e l y m a t c h t h e m e a s u r e d l i t t e r c o v e r a g e. F i n a l l y, S N T H E R M - p r e d i c t e d s n o w s u r f a c e a l b e d o g r a d u a l l y d e c r e a s e s a s l i t t e r a c c u m u l a t e s o n t h e s n o w s u r f a c e, r e a c h i n g t h e a l b e d o o f t h e l i t t e r ( 0. 1 5 ) a t t h e t i m e o f c o m p l e t e s n o w a b l a t i o n a n d t h r e e t o f o u r d a y s e a r l i e r t h a n t h e s n o w u n d e r t h e c a m e r a ( F i g. 5 c ). E a r l y i n t h e m o d e l l i n g p e r i o d ( d a y s 6 0 t o 7 5 ), t h e m e a s u r e d a l b e d o s h o w s m u c h v a r i a b i l i t y a s i t r e s p o n d s t o s n o w e v e n t s, w h i l e t h e m o d e l l e d

r e s p o n s e i s l e s s p r o n o u n c e d. B e t w e e n d a y s 8 9 a n d 1 0 3, S N T H E R M p r e d i c t s a h i g h e r -t h a n - m e a s u r e d a l b e d o b e n e a t h t h e c o n i f e r c a n o p y, a l t h o u g h f o r m u c h o f t h a t t i m e t h e m o d e l i s w i t h i n t h e range of the 15 -m i n u t e m e a s u r e m e n t s. Figure 5. Results from SNTHERM model runs incorporating the litter algorithm and compared with a) measured snow depth, b) snow surface litter coverage, and c) measured albedo from the snow surface.

Influence of winds on litter coverage W e i n v e s t i g a t e d t h e i n f l u e n c e o f w i n d s o n s n o w s u r f a c e l i t t e r c o v e r a g e t o a s s e s s t h e i m p o r t a n c e o f i n c l u d i n g t h i s m e t e o r o l o g i c a l p a r a m e t e r i n t h e l i t t e r a l g o r i t h m. W e c o n d u c t e d t h i s a n a l y s i s o n l y f o r t h e p e r i o d p r i o r t o r a p i d s n o w ab l a t i o n ( u p t o d a y 8 8 ), a t w h i c h p o i n t i t i s d i f f i c u l t t o s e p a r a t e t h e r e -e x p o s u r e o f b u r i e d l i t t e r l a y e r s d u r i n g s n o w a b l a t i o n f r o m t h e a c c u m u l a t i o n o f a d d i t i o n a l l i t t e r. T w o-m e t e r w i n d s p e e d s a v e r a g e d o v e r t h e 1 5 -m i n u t e i n t e r v a l s i n t h e c o n i f e r s i t e d u r i ng the s n o w a b l a t i o n s e a s o n n e v e r e x c e e d 3. 5 -m s 1. B y s u m m i n g t h e s u b c a n o p y w i n d s p e e d s f o r d a y s b e t w e e n l i t t e r o b s e r v a t i o n s, v i a s n o w s u r f a c e p h o t o s ( u s u a l l y e v e r y o n e t o t h r e e d a y s ), a n d d i v i d i n g b y t h e n u m b e r o f d a y s b e t w e e n l i t t e r o b s e r v a t i o n s, w e o b t a i n e d a m e a n d a i l y t o t a l w i n d s p e e d. T h i s d a i l y t o t a l w i n d s p e e d w a s c o m p a r e d w i t h t h e c o r r e s p o n d i n g c h a n g e i n p e r c e n t l i t t e r c o v e r a g e ( F i g. 6 ), w h e r e p o s i t i v e v a l u e s r e p r e s e n t e d a n i n c r e a s e i n l i t t e r c o v e r a g e s i n c e t h e l a s t o b s e r v a t i o n a n d n e g a t i v e v a l u e s r e p r e s e n t a d e c r e a s e. N o t e t h e t i m e s c a l e d o e s n o t r e p r e s e n t c o n s e c u t i v e d a y s, b u t r a t h e r w a s b a s e d o n d a y s w i t h o b s e r v a t i o n s o f l i t t e r a c c u m u l a t i o n o n t h e s n o w s u r f a c e. F o r d a y s 6 5 t h r o u g h 6 7, w i n d s w e r e s t e a d y w h i l e l i t t e r a c c u m u l a t e d. F o r d a y s 6 8, 7 0, a n d 7 1, t h e i n c r e a s i n g w i n d s c o r r e s p o n d e d t o l e s s l i t t e r o n t h e s n o w s u r f a c e b e c a u s e o f t h e p r e v i o u s p r e c i p i t a t i o n e v e n t. D a y s 7 7 a n d 7 8, a s w e l l a s d a y s 8 5 t h r o u g h 8 7, s h o w e d t h e o p p o s i t e i n f l u e n c e e x p e c t e d i f t h e s e w i n d s w e r e t o s i g n i f i c a n t l y i n c r e a s e l i t t e r f a l l o n t h e s n o w s u r f a c e. A l e a s t s q u a r e s r e g r e s s i o n t h r o u g h a s c a t t e r d i a g r a m o f l i t t e r c h a n g e v s. d a i l y w i n d s p e e d y i e l d s a n r 2 = 0. 2 4, c o n f i r m i n g t h i s w e a k r e l a t i o n s h i p. 4 3 2 1 0-1 -2-3 -4 65 66 67 68 70 71 74 76 77 78 79 81 84 85 86 87 Day in Year 1999 80 70 60 50 40 30 20 10 0 Change in Litter Coverage Daily Total Wind Speed Figure 6. Mean daily total wind speed in the conifer forest compared to change in litter accumulation for the days prior to the onset of rapid snow ablation. DISCUSSION M e a s u r e m e n t s o f s n o w s u r f a c e l i t t e r c o v e r a g e a n d s u b c a n o p y a l b e d o f r o m a c o n i f e r f o r e s t i n n o r t h e r n V e r m o n t, U S A ( M e l l o h e t a l. i n p r e p ) p r o v i d e d v a l i d a t i o n d a t a f o r t h e l i t t e r a l g o r i t h m d e v e l o p e d b y H a r d y e t a l. ( 1 9 9 8 ). I m a g e s o b t a i n e d f r o m t h e d i g i t a l c a m e r a s y s t e m w e r e k e y t o p r o v i d i n g n e a r -d a i l y i n f o r m a t i o n o n t h e s n o w s u r f a c e l i t t e r a c c u m u l a t i o n f o r m o d e l v a l i d a t i o n. M u l t i p l e m ea s u r e m e n t s o f t h e s u b c a n o p y s n o w a l b e d o w e r e r e q u i r e d t o h a v e c o n f i d e n c e i n t h e s o l a r c o m p o n e n t s b e n e a t h a f o r e s t c a n o p y. S N T H E R M, c o u p l e d w i t h t h e l i t t e r a l g o r i t h m, e s t i m a t e d f o r e s t l i t t e r c o n c e n t r a t i o n s i n a l l s n o w l a y e r s, f o r e v e r y t i m e s t e p a s o u t p u t b y t h e m o d e l. S N T H E R M e s t i m a t e s o f i n -p a c k f o r e s t l i t t e r c o m p a r e d f a v o r a b l y w i t h m e a s u r e d l i t t e r i n t h e s n o w p a c k o n 9 M a r c h, a n d s h o w a l o g i c a l p r o g r e s s i o n o f c o n c e n t r a t i o n s t h r o u g h t h e a b l a t i o n s e a s o n. T h e l i t t e r a l g o r i t h m, a s c o u p l e d w i t h S N T H E R M, p r e d i c t e d s n o w d e p t h, l i t t e r c o v e r a g e, a n d s n o w s u r f a c e a l b e d o b e n e a t h t h i s f o r e s t c a n o p y. B o t h t h e p r e d i c t e d s n o w d e p t h a n d l i t t e r c o v e r a g e

c o m p a r e d w e l l w i t h m e a s u r e m e n t s a n d f i e l d o b s e r v a t i o n s. S n o w d e p t h p r e d i c t i o n s m a y i m p r o v e b y c o n s i d e r i n g t h e s h a d i n g e f f e c t s o f l i t t e r o n t h e s n o w s u r f a c e l a t e i n t h e a b l a t i o n s e a s o n. S n o w s u r f a c e a l b e d o p r e d i c t i o n s d u r i n g t h e e a r l y p o r t i o n o f t h e m o d e l r u n a r e l e s s v a r i a b l e t h a n t h e m e a s u r e m e n t s. D u r i n g t h i s p e r i o d, s n o w o n t h e r a d i o m e t e r s r e q u i r e d r e m o v a l o f s o m e a l b e d o d a t a, s o t h e s e d a i l y a v e r a g e v a l u e s i n c l u d e s o m e m i s s i n g t i m e s t e p s. T h e h i g h e r m o d e l p r e d i c t i o n s o f s n o w s u r f a c e a l b e d o i n t h e f o r e s t f r o m d a y s 8 9 t o 1 0 3 i s e x p l a i n e d b y t h e n a t u r e o f t h i s p a r t i c u l a r c o n i f e r f o r e s t. T h e c a m e r a c a p t u r i n g s n o w s u r f a c e l i t t e r i m a g e s v i e w s a 1 -? 1 -m a r e a t h a t i s c l e a r o f f a l l e n t r e e s t e m s. T h e p r e d i c t e d l i t t e r c o v e r a g e o n t h e s n o w s u r f a c e c a p t u r e s t h a t c o n d i t i o n w e l l. H o w e v e r, t h r e e o f t h e f o u r d o w n l o o k i n g P S P s h a d o n e o r m o r e l a r g e f a l l e n t r e e s t e m ( s ) i n t h e f i e l d o f v i e w ( s e e F i g. 1 ), t h e r e b y r e d u c i n g t h e a l b e d o s i g n i f i c a n t l y c o m p a r e d t o s n o w w i t h o u t p r o t r u d i n g l o g s ( P o m e r o y e t a l. 1 9 9 8 ). T h e a b s e n c e o f t h e s e l o g s w o u l d i n c r e a s e m e a s u r e d a l b e d o a s v i e w e d b y t h e d o w n l o o k i n g P S P s. A d d i t i o n a l l y, t h e m o d e l p r e d i c t s a t h i n ( l e s s t ha n 1 0 -c m ) s n o w p a c k f r o m d a y 9 6 o n, y e t f o r t h e a l b e d o e s t i m a t e s, t h e m o d e l c o n s i d e r s l i t t e r o n t h e s n o w s u r f a c e o n l y. R a d i a t i o n p e n e t r a t i o n a n d s u b s u r f a c e l i t t e r c o v e r a g e c o n s i d e r a t i o n s w o u l d f u r t h e r r e d u c e a l b e d o p r e d i c t i o n s a n d a r e p a r t o f f u t u r e m o d e l re f i n e m e n t s. I n i t i a l l y, o u r i n t e n t w a s t o t e s t t h e l i t t e r e q u a t i o n ( e q. 1 ), w h i c h p r e v i o u s l y w a s n o t v a l i d a t e d w i t h f o r e s t l i t t e r a n d a l b e d o d a t a. W e t h e n p l a n n e d t o m o d i f y t h e r o u t i n e b y i n c o r p o r a t i n g e f f e c t s o f w e a t h e r e v e n t s t o i m p r o v e t h e l i t t e r a l g o r i t h m. T h i s c o m p l e x, y e t p o o r r e l a t i o n s h i p ( r 2 = 0. 2 3 ; m = 0. 0 4 2 ) b e t w e e n d a i l y t o t a l w i n d s p e e d u n d e r t h e c a n o p y a n d c h a n g e i n l i t t e r c o v e r a g e o n t h e s n o w s u r f a c e s u g g e s t t h a t, f o r t h i s f o r e s t a n d a b l a t i o n s e a s o n, i n c o r p o r a t i n g w i n d e v e n t s i n t o t h e a l g o r i th m w i l l n o t i m p r o v e t h e r e s u l t s. CONCLUSIONS T h e f i e l d d a t a p r o v i d e d b y M e l l o h e t a l. ( i n p r e p ) a l l o w e d t h e f i r s t v a l i d a t i o n o f a p r e v i o u s l y p r o p o s e d a l g o r i t h m t o i n c o r p o r a t e t h e e f f e c t s o f f o r e s t l i t t e r o n s n o w s u r f a c e a l b e d o i n t o a s n o w m e l t m o d e l. T h e s i m p l e a l g o r i t h m a l l o w s l i t t e r t o a c c u m u l a t e o n t h e s n o w s u r f a c e a s a f u n c t i o n o f t i m e a n d a g i v e n l i t t e r r a t e. O u r m o d e l l i n g r e s u l t s s u g g e s t t h e a l g o r i t h m i s s u c c e s s f u l i n a c c u r a t e l y e s t i m a t i n g t h e f r a c t i o n a l c o v e r a g e o f f o r e s t l i t t e r o n a s n o w s u r f a c e. T h i s e s t i m a t e improved SNTHERM s a b i l i t y t o p r e d i c t t h e s n o w s u r f a c e a l b e d o a n d s u b s e q u e n t r a t e o f s n o w a b l a t i o n. T o f u r t h e r v a l i d a t e t h e a l g o r i t h m, t h e m o d e l s h o u l d r u n f o r a v a r i e t y o f f o r e s t t y p e s a n d w i t h m o r e P S P s t o c a t c h t h e i n h e r e n t v a r i a b i l i t y o f t h e s o l a r c o m p o n e n t s b e n e a t h a f o r e s t c a n o p y. C u r r e n t r e s e a r c h ( a b l a t i o n s e a s o n 2 0 0 0 ) e x t e n d s t h e w o r k o f M e l l o h e t a l. ( i n p r e p ) b y i n s t a l l i n g 2 0 E p p l e y P S P s ( 1 0 u p l o o k i n g a n d 1 0 d o w n l o o k i n g ) i n o n e m i x e d s p e c i e s s t a n d, a n d r e p e a t i n g t h e m e a s u r e m e n t s e q u e n c e d e s c r i b e d a b o v e. W e w i l l f u r t h e r t e s t t h e l i t t e r a l g o r i t h m i n t h e m i x e d s p e c i e s s t a n d. ACKNOWLEDGMENTS T h i s w o r k i s f u n d e d b y D e p a r t m e n t o f t h e A r m y p r o j e c t n u m b e r A T 2 4 -SP -0 0 3, Interaction of Solar Radiation, Litter, and Albedo in the Forest During Snowmelt, f o r R. M e l l o h, J. H a r d y, a n d P. R o b i n s o n. W e a p p r e c i a t e h e l p f u l d i s c u s s i o n s a n d r e v i e w s b y B. D a v i s a n d G. K o e n i g. REFERENCES A l b e r t, M., a n d G. K r a j e s k i ( 1 9 9 8 ) A f a s t, p h y s i c a l l y b a s e d p o i n t s n o w m e l t m o d e l f o r u s e i n d i s t r i b u t e d a p p l i c a t i o n s. Hydrological Processes, 1 2 ( 1 0 / 1 1 ) : 1 8 0 9 1 8 2 4. B e t t s, A. K., a n d J. H. B a l l ( 1 9 9 7 ) A l b e d o o v e r t h e b o r e a l f o r e s t. Journal of Geophysical Research, 1 0 2 ( D 2 4 ) : 2 8, 9 0 1 2 8, 9 0 9.

B r o w e r, J. E., J. Z a r, a n d C. N. v o n E n d e ( 1 9 9 0 ) Field and Laboratory Methods for General Ecology. D u b u q u e, I o w a : W i l l a m C. B r o w n P u b l i s h e r s, 2 3 7 p. D a u b e n m i r e, R. ( 1 9 6 8 ) Plant Communities. N e w Y o r k : H a r p e r a n d R o w, 3 0 0 p. D a v i s, R. E., J. P. H a r d y, W. N i, C. W o o d c o c k, J. C. M c K e n z i e, R. J o r d a n, a n d X. L i ( 1 9 9 7 ) V a r i a t i o n o f s n o w c o v e r a b l a t io n i n t h e b o r e a l f o r e s t : A s e n s i t i v i t y s t u d y o n t h e e f f e c t s o f c o n i f e r c a n o p y. Journal of Geophysical Research, 1 0 2 ( N 2 4 ) : 2 9, 3 8 9 2 9, 3 9 6. D i n g m a n, S. L. ( 1 9 9 3 ) P h y s i c a l H y d r o l o g y. E n g l e w o o d C l i f f s, N e w J e r s e y : P r e n t i c e H a l l. D o z i e r, J., R. D a v i s, a n d R. P e r l a ( 1 9 8 7 ) O n t h e o b j e c t i v e a n a l y s i s o f s n o w m i c r o s t r u c t u r e, a v a l a n c h e, f o r m a t i o n, m o v e m e n t, a n d e f f e c t s. I n Proceedings of the Davos Symposium, September 1986. I A H S P u b l i c a t i o n n o. 1 6 7, p. 4 9 5 9. G e r l a n d, S., J. -G. W i n t h e r, J. B. O r b a e k, G. E. L i s t o n, N. A. Or i t s a n d, A. B l a n c o, a n d B. I v a n o v ( 1 9 9 9 ) P h y s i c a l a n d o p t i c a l p r o p e r t i e s o f s n o w c o v e r i n g a r c t i c t u n d r a o n S v a l b a r d. I n Snow Hydrology: The Integration of Physical, Chemical and Biological Systems (J.P. Hardy, M.R. A l b e r t, a n d P. M a r s h, E d. ). C h i c h e s t e r : J o h n W i l e y a n d S o n s, L t d., 3 7 3 p. H a r d i n g, R. J., a n d J. W. P o m e r o y ( 1 9 9 6 ) T h e e n e r g y b a l a n c e o f t h e w i n t e r b o r e a l l a n d s c a p e. Journal of Climate, 9 : 2 7 7 8 2 7 8 7. H a r d y, J. P., R. E. D a v i s, R. J o r d a n, X. L i, C. W o o d c o c k, W. N i, a n d J. C. M c K e n z i e ( 1 9 9 7 ) S n o w a b l a t i o n m o d e l l i n g a t t h e s t a n d s c a l e i n a b o r e a l j a c k p i n e f o r e s t. Journal of Geophysical Research, 1 0 2 ( N 2 4 ) : 2 9, 3 9 7 2 9, 4 0 6. H a r d y, J. P., R. E. D a v i s, R. J o r d a n, W. N i, a n d C. W o o d c o c k ( 1 9 9 8 ) S n o w a b l a t i o n m o d e l l i n g i n a m a t u r e a s p e n s t a n d o f t h e b o r e a l f o r e s t. Hydrological Processes, 1 2 ( 1 0 / 1 1 ) : 1 7 6 3 1 7 7 8. J o r d a n, R. ( 1 9 9 1 ) A o n e -d i m e n s i o n a l t e m p e r a t u r e m o d e l f o r a s n o w c o v e r : T e c h n i c a l d o c u m e n t a t i o n f o r S N T H E R M. 8 9. U S A C o l d R e g i o n s R e s e a r c h a n d E n g i n e e r i n g L a b o r a t o r y, H a n o v e r, N e w H a m p s h i r e, S p e c i a l R e p o r t 9 1-1 6. L i, X., A. H. S t r a h l e r, a n d C. E. W o o d c o c k ( 1 9 9 5 ) A h y b r i d g e o m e t r i c o p t i c a l -r a d i a t i v e t r a n s f e r a p p r o a c h f o r m o d e l l i n g a l b e d o a n d d i r e c t i o n a l r e f l e c t a n c e o f d i s c o n t i n u o u s c a n o p i e s. IEEE Transactions on Geoscience and Remote Sensing, 3 3 ( 2 ) : 4 6 6 4 8 0. L i s t on, G. E. ( 1 9 9 5 ) L o c a l a d v e c t i o n o f m o m e n t u m, h e a t, a n d m o i s t u r e d u r i n g t h e m e l t o f p a t c h y s n o w c o v e r s. Journal of Applied Meteorology, 3 4 ( 7 ) : 1 7 0 5 1 7 1 5. M a r k s, D. ( 1 9 8 8 ) C l i m a t e, e n e r g y e x c h a n g e, a n d s n o w m e l t i n E m e r a l d L a k e W a t e r s h e d, S i e r r a N e v a d a. P h. D. D i s s e r t a t i o n, U n i v e r s i t y o f C a l i f o r n i a a t S a n t a B a r b a r a. M e l l o h, R., J. P. H a r d y, P. R o b i n s o n, a n d F. P e r r o n ( I n p r e p ) I n t e r a c t i o n o f s o l a r r a d i a t i o n, l i t t e r, a n d a l b e d o i n t h e f o r e s t d u r i n g s n o w m e l t, E R D C-CRREL Technical Report. M e t c a l f e, R. A., a n d J. M. B u t t l e ( 1 9 9 5 ) C o n t r o l s o f c a n o p y s t r u c t u r e o n s n o w m e l t r a t e s i n t h e b o r e a l f o r e s t. I n Proceedings of the 52nd Eastern Snow Conference, T o r o n t o, O n t a r i o, p. 2 4 9 2 5 7. N a d e a u, C. A., a n d H. G r a n b e r g ( 1 9 8 6 ) V a r i a t i o n s i n n e t r a d i a t i o n o v e r s n o w a t a b o r e a l f o r es t edge. In Proceedings of the 43rd Eastern Snow Conference, p. 1 9 8 2 0 3. N a k a i, Y., T. S a k a m o t o, T. T e r a j i m a, K. K i t a m u r a, a n d T. S h i r a i ( 1 9 9 9 ) T h e e f f e c t o f c a n o p y- s n o w o n t h e e n e r g y b a l a n c e a b o v e a c o n i f e r o u s f o r e s t. I n Snow Hydrology: The Integration of Physical, Chemical and Biological Systems ( J. P. H a r d y, M. R. A l b e r t, a n d P. M a r s h, E d. ). C h i c h e s t e r : J o h n W i l e y a n d S o n s, L t d., 3 7 3 p. N i, W., X. L i, C. E. W o o d c o c k, J. L. R o u j e a n, a n d R. E. D a v i s ( 1 9 9 7 ) T r a n s m i s s i o n o f s o l a r r a d i a t i o n i n b o r e a l c o n i f e r f o r es t s : M e a s u r e m e n t s a n d m o d e l s. Journal of Geophysical Research, 1 0 2 ( N 2 4 ) : 2 9, 5 5 5 2 9, 5 6 6. N i, W., a n d C. E. W o o d c o c k ( I n p r e s s ) T h e e f f e c t o f c a n o p y s t r u c t u r e a n d t h e p r e s e n c e o f s n o w o n t h e a l b e d o o f b o r e a l c o n i f e r f o r e s t s. Journal of Geophysical Research. O k e, T. R. ( 1 9 8 7 ) Boundary Layer Climates, 2nd edition. N e w Y o r k : M e t h u e n & C o. L t d., 4 3 4 p. O t t e r m a n, J., K. S t a e n z, K. I t t e n, a n d G. K u k l a ( 1 9 8 8 ) D e p e n d e n c e o f s n o w m e l t i n g a n d s u r f a c e a t m o s p h e r e i n t e r a c t i o n s o n t h e f o r e s t s t r u c t u r e. Boundary-Layer Meteorology, 4 5 : 1 8. P a n g b u r n, T., M. R. A l b e r t, J. P. H a r d y, W. R. M c G i l v a r y, a n d J. B. S h a n l e y ( 1 9 9 2 ) C h a r a c t e r i z a t i o n o f h i l l s l o p e t h e r m a l a n d h y d r o l o g i c p r o c e s s e s a t t h e S l e e p e r s R i v e r R e s e a r c h W a t e r s h e d. I n Proceedings of the 49 th Eastern Snow Conference, 3 4 June 1992, Oswego, New York, USA, p. 1 6 1 1 6 8.