CHAPTER 5 INTEGRATION

Similar documents
CHAPTER 5 INTEGRATION

Laboratory I.10 It All Adds Up

ENGI 4430 Numerical Integration Page 5-01

under the curve in the first quadrant.

5 Short Proofs of Simplified Stirling s Approximation

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

Centroids Method of Composite Areas

X ε ) = 0, or equivalently, lim

Lecture 07: Poles and Zeros

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these

Simulation Output Analysis

Centroids & Moments of Inertia of Beam Sections

Chapter 5 Properties of a Random Sample

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Mechanics of Materials CIVL 3322 / MECH 3322

Special Instructions / Useful Data

Mathematics HL and Further mathematics HL Formula booklet

Econometric Methods. Review of Estimation

Chapter 10 Two Stage Sampling (Subsampling)

CHAPTER 3 POSTERIOR DISTRIBUTIONS

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

k 1 in the worst case, and ( k 1) / 2 in the average case The O-notation was apparently The o-notation was apparently

Introduction to local (nonparametric) density estimation. methods

Math 21B-B - Homework Set 2

Summary of the lecture in Biostatistics

Mu Sequences/Series Solutions National Convention 2014

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

GENERALIZATIONS OF CEVA S THEOREM AND APPLICATIONS

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

Maximum Likelihood Estimation

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

7.0 Equality Contraints: Lagrange Multipliers

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers

Complex Numbers and Polynomials pages (d) If A = (6, 1), then A = (1, 6). (c) If A = (3, 5), then A = ( 5, 3).

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

L(θ X) s 0 (1 θ 0) m s. (s/m) s (1 s/m) m s

Algorithms Theory, Solution for Assignment 2

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

16 Homework lecture 16

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

L5 Polynomial / Spline Curves

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

AP Calculus AB Unit 3 Assessment

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

Measures of Central Tendency

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number.

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Computational Geometry

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

is the score of the 1 st student, x

ENGI 3423 Simple Linear Regression Page 12-01

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Centers of Gravity - Centroids

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

MA/CSSE 473 Day 27. Dynamic programming

A Remark on the Uniform Convergence of Some Sequences of Functions

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Statistics MINITAB - Lab 5

1 Onto functions and bijections Applications to Counting

Functions of Random Variables

ESS Line Fitting

Analysis of Lagrange Interpolation Formula

Third handout: On the Gini Index

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Lebesgue Measure of Generalized Cantor Set

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan

D. VQ WITH 1ST-ORDER LOSSLESS CODING

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Law of Large Numbers

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Elementary Algebra and Geometry

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

CHAPTER 4 RADICAL EXPRESSIONS

Transcription:

CHAPTER 5 INTEGRATION 5.1 AREA AND ESTIMATING WITH FINITE SUMS 1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.! )!! ( (!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 )! (a) x ad x x Ê a lower sum s!ˆ Š! ˆ () x ad x x Ê a lower sum s!! & ) 1!! &!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 ˆ (c) x ad x x Ê a upper sum s!ˆ Š ˆ +1 (d) x ad x x Ê a upper sum s +1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.!!! *!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 &! (a) x ad x x Ê a lower sum s!ˆ Š! ˆ () x ad x x Ê a lower sum s!! * * ) 1!!! &!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 & (c) x ad x x Ê a upper sum s!ˆ Š ˆ +1 (d) x ad x x Ê a upper sum s +1 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

58 Chapter 5 Itegrato 3. fax x Sce f s decreasg o Ò1ß 5 Ó, we use left edpots to ota upper sums ad rght edpots to ota lower sums. & x & & & ((! ˆ x &! & )! ˆ x! & &! ˆ x! (a) x ad x x Ê a lower sum s! ˆ () x 1 ad x x Ê a lower sum s (c) x ad x x Ê a upper sum s (d) x 1 ad x x Ê a upper sum s 4. fax x Sce f s creasg o Ò ß!Ó ad decreasg o Ò!ß Ó, we use left edpots o Ò ß!Ó ad rght edpots o Ò!ß Ó to ota lower sums ad use rght edpots o Ò ß!Ó ad left edpots o Ò!ß Ó to ota upper sums. a (a) x ad x x Ê a lower sum s ˆ a a! a () x ad x x Ê a lower sum s! ˆ ax! ˆ ax! ˆ ˆ a ˆ a a a a (c) x ad x x Ê a upper sum s ˆ a! a! a (d) x ad x x Ê a upper sum s! ˆ ax! ˆ ax ˆ ˆ a a! a! a 5. fax x! Usg rectagles Ê x Ê ˆ fˆ fˆ! & Š ˆ ˆ! Usg 4 rectagles Ê x Ê ˆ & ( fˆ fˆ fˆ fˆ ) ) ) ) & ( Š ˆ ˆ ˆ ˆ ) ) ) ) Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

Secto 5.1 Area ad Estmatg wth Fte Sums 59 6. fax x! Usg rectagles Ê x Ê ˆ fˆ fˆ ) ( Š ˆ ˆ! Usg 4 rectagles Ê x Ê ˆ & ( fˆ fˆ fˆ fˆ ) ) ) ) & ( * ) ) ) ) Š 7. fax x & Usg rectagles Ê x Ê afa fa ˆ & Usg 4 rectagles Ê x Ê ˆ ˆ ˆ & ˆ ( f f f fˆ * ˆ )) * * & ( * & ( * & ( * & 8. fax x a Usg rectagles Ê x Ê afa fa a a Usg 4 rectagles Ê x Ê ˆ ˆ ˆ ˆ f f f fˆ ˆ ˆ ˆ ˆ *! Š Š Š Š Š ˆ 9. (a) D (0)(1) (1)(1) ()(1) (10)(1) (5)(1) (13)(1) (11)(1) (6)(1) ()(1) (6)(1) 87 ches () D (1)(1) ()(1) (10)(1) (5)(1) (13)(1) (11)(1) (6)(1) ()(1) (6)(1) (0)(1) 87 ches 10. (a) D (1)(300) (1.)(300) (1.7)(300) (.0)(300) (1.8)(300) (1.6)(300) (1.4)(300) (1.)(300) (1.0)(300) (1.8)(300) (1.5)(300) (1.)(300) 50 meters (NOTE: 5 mutes 300 secods) () D (1.)(300) (1.7)(300) (.0)(300) (1.8)(300) (1.6)(300) (1.4)(300) (1.)(300) (1.0)(300) (1.8)(300) (1.5)(300) (1.)(300) (0)(300) 490 meters (NOTE: 5 mutes 300 secods) 11. (a) D (0)(10) (44)(10) (15)(10) (35)(10) (30)(10) (44)(10) (35)(10) (15)(10) ()(10) (35)(10) (44)(10) (30)(10) 3490 feet 0.66 mles () D (44)(10) (15)(10) (35)(10) (30)(10) (44)(10) (35)(10) (15)(10) ()(10) (35)(10) (44)(10) (30)(10) (35)(10) 3840 feet 0.73 mles 1. (a) The dstace traveled wll e the area uder the curve. We wll use the approxmate veloctes at the mdpots of each tme terval to approxmate ths area usg rectagles. Thus, D (0)(0.001) (50)(0.001) (7)(0.001) (90)(0.001) (10)(0.001) (11)(0.001) (10)(0.001) (18)(0.001) (134)(0.001) (139)(0.001) 0.967 mles () Roughly, after 0.0063 hours, the car would have goe 0.484 mles, where 0.0060 hours.7 sec. At.7 sec, the velocty was approxmately 10 m/hr. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

60 Chapter 5 Itegrato 13. (a) Because the accelerato s decreasg, a upper estmate s otaed usg left ed-pots summg accelerato? t. Thus,? t 1 ad speed [3.00 19.41 11.77 7.14 4.33](1) 74.65 ft/sec () Usg rght ed-pots we ota a lower estmate: speed [19.41 11.77 7.14 4.33.63](1) 45.8 ft/sec (c) Upper estmates for the speed at each secod are: t 0 1 3 4 5 v 0 3.00 51.41 63.18 70.3 74.65 Thus, the dstace falle whe t 3 secods s s [3.00 51.41 63.18](1) 146.59 ft. 14. (a) The speed s a decreasg fucto of tme Ê rght ed-pots gve a lower estmate for the heght (dstace) attaed. Also t 0 1 3 4 5 v 400 368 336 304 7 40 gves the tme-velocty tale y sutractg the costat g 3 from the speed at each tme cremet? t 1 sec. Thus, the speed 40 ft/sec after 5 secods. () A lower estmate for heght attaed s h [368 336 304 7 40](1) 150 ft. 15. Partto [!ß ] to the four sutervals [0ß 0.5], [0.5ß 1], [1ß 1.5], ad [1.5ß ]. The mdpots of these sutervals are m 0.5, m 0.75, m 1.5, ad m 1.75. The heghts of the four approxmatg rectagles are f(m ) (0.5), f(m ) (0.75), f(m ) (1.5), ad f(m ) (1.75) 1 7 15 343 64 64 64 64 ˆ ˆ ˆ 3 ˆ ˆ 5 ˆ ˆ 7 ˆ 4 4 4 4 Notce that the average value s approxmated y approxmate area uder legth of [!ß]. We use ths oservato solvg the ext several exercses. curve f(x) x 16. Partto [1ß 9] to the four sutervals [ß], [3 ß& ], [&ß(], ad [(ß*]. The mdpots of these sutervals are m, m 4, m 6, ad m 8. The heghts of the four approxmatg rectagles are f(m ), f(m ), f(m ), ad f(m ). The wdth of each rectagle s x. Thus, 4 6 8? ˆ 5 4 6 8 1 legth of [ß*] 8 96 Area ˆ ˆ ˆ ˆ 5 area 1 5 Ê average value. 17. Partto [0ß] to the four sutervals [0ß0.5], [0.5ß1], [1ß1.5], ad [1.5ß]. The mdpots of the sutervals are m 0.5, m 0.75, m 1.5, ad m 1.75. The heghts of the four approxmatg rectagles are 1 31 51 4 4 4 È 71 4 Š È? ˆ area Ê legth of [0ß ] f(m ) s 1, f(m ) s 1, f(m ) s Š 1, ad f(m ) s 1. The wdth of each rectagle s x. Thus, Area (1 1 1 1) average value 1. 18. Partto [0ß4] to the four sutervals [0ß1], [1ß ß], [ß3], ad [3ß4]. The mdpots of the sutervals 3 5 7 are m, m, m, ad m. The heghts of the four approxmatg rectagles are 1 ˆ 1 Š 4 8 f(m ) 1 cos Š 1 ˆ cos ˆ 0.7145 (to 5 decmal places), f(m ) 1 Š cos Š 1 ˆ cos ˆ 31 0.97855, f(m ) 1 Š cos Š 1 ˆ cos ˆ 51 1 ˆ 3 1 ˆ 5 4 8 3 4 8 0.97855, ad f(m ) 1 Š cos Š 1 ˆ cos ˆ 7 0.7145. The wdth of each rectagle s 1 ˆ 7 1 4 8? x. Thus, Area (0.7145)(1) (0.97855)(1) (0.97855)(1) (0.7145)(1).5 Ê average area.5 5 legth of [0ß4] 4 8 value. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

Secto 5.1 Area ad Estmatg wth Fte Sums 61 19. Sce the leaage s creasg, a upper estmate uses rght edpots ad a lower estmate uses left edpots: (a) upper estmate (70)(1) (97)(1) (136)(1) (190)(1) (65)(1) 758 gal, lower estmate (50)(1) (70)(1) (97)(1) (136)(1) (190)(1) 543 gal. () upper estmate (70 97 136 190 65 369 516 70) 363 gal, lower estmate (50 70 97 136 190 65 369 516) 1693 gal. (c) worst case: 363 70t 5,000 Ê t 31.4 hrs; est case: 1693 70t 5,000 Ê t 3.4 hrs 0. Sce the pollutat release creases over tme, a upper estmate uses rght edpots ad a lower estmate uses left edpots: (a) upper estmate (0.)(30) (0.5)(30) (0.7)(30) (0.34)(30) (0.45)(30) (0.5)(30) 60.9 tos lower estmate (0.05)(30) (0.)(30) (0.5)(30) (0.7)(30) (0.34)(30) (0.45)(30) 46.8 tos () Usg the lower (est case) estmate: 46.8 (0.5)(30) (0.63)(30) (0.70)(30) (0.81)(30) 16.6 tos, so ear the ed of Septemer 15 tos of pollutats wll have ee released. 1. (a) The dagoal of the square has legth, so the sde legth s È. Area Š È () Th of the octago as a collecto of 16 rght tragles wth a hypoteuse of legth 1 ad a acute agle measurg 1 1 ). Area ˆ ˆ 1 s ˆ 1 cos 1 s È Þ)) ) ) (c) Th of the 16-go as a collecto of 3 rght tragles wth a hypoteuse of legth 1 ad a acute agle measurg 1 1. Area ˆ ˆ 1 s ˆ 1 cos 1 ) s È Þ! ) (d) Each area s less tha the area of the crcle, 1. As creases, the area approaches 1.. (a) Each of the sosceles tragles s made up of two rght tragles havg hypoteuse 1 ad a acute agle measurg 1 1. The area of each sosceles tragle s A ˆ ˆ s 1 ˆ cos 1 s 1. T 1 1 1 s P T 1 Ä_ Ä_ ˆ () The area of the polygo s A A s, so lm s lm 1 1 (c) Multply each area y r. A r s 1 T 1 AP r s lm AP 1r Ä_ 3-6. Example CAS commads: Maple: wth( Studet[Calculus1] ); f := x -> s(x); a := 0; := P; plot( f(x), x=a.., ttle=3(a) (Secto 5.1) ); N := [ 100, 00, 1000 ]; for N do Xlst := [ a+1.*(-a)/* =0.. ]; Ylst := map( f, Xlst ); ed do: for N do () (c) Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

6 Chapter 5 Itegrato Avg[] := evalf(add(y,y=ylst)/ops(ylst)); ed do; avg := FuctoAverage( f(x), x=a.., output=value ); evalf( avg ); FuctoAverage(f(x),x=a..,output=plot); (d) fsolve( f(x)=avg, x=0.5 ); fsolve( f(x)=avg, x=.5 ); fsolve( f(x)=avg[1000], x=0.5 ); fsolve( f(x)=avg[1000], x=.5 ); Mathematca: (assged fucto ad values for a ad may vary): Symols for 1, Ä, powers, roots, fractos, etc. are avalale Palettes (uder Fle). Never sert a space etwee the ame of a fucto ad ts argumet. Clear[x] f[x_]:=x S[1/x] {a,}={ 1/4, 1} Plot[f[x],{x, a, }] The followg code computes the value of the fucto for each terval mdpot ad the fds the average. Each sequece of commads for a dfferet value of (umer of sudvsos) should e placed a separate cell. =100; dx = ( a) /; values = Tale[N[f[x]], {x, a dx/,, dx}] average=sum[values[[]],{, 1, Legth[values]}] / =00; dx = ( a) /; values = Tale[N[f[x]],{x, a + dx/,, dx}] average=sum[values[[]],{, 1, Legth[values]}] / =1000; dx = ( a) /; values = Tale[N[f[x]],{x, a dx/,, dx}] average=sum[values[[]],{, 1, Legth[values]}] / FdRoot[f[x] == average,{x, a}] 5. SIGMA NOTATION AND LIMITS OF FINITE SUMS! 1 6 6(1) 6() 6 1 1 1 1 1 3 1. 7! 3 1 1 1 1 3 1 1 7 1 3 3 6 1. 0! 4 1 3. cos 1 cos(1 1) cos( 1) cos(3 1) cos(4 1) 1 1 1 1 0! 5 1 4. s 1 s(1 1) s( 1) s(3 1) s(4 1) s(5 1) 0 0 0 0 0 0! 3 1 1 1 1 1 È3 È3 1 3 1 5. ( 1) s ( 1) s ( 1) s ( ) s 0 1! 4 1 6. ( 1) cos 1 ( 1) cos (11) ( 1) cos (1) ( 1) cos (31) ( 1) cos (41) ( 1) 1 ( 1) 1 4 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

! 6 1 Secto 5. Sgma Notato ad Lmts of Fte Sums 63 7. (a) c 1 & 1 4 8 16 3 () 1 4 8 16 3! 5 0! 4! & (c) 1 1 4 8 16 3! All of them represet 1 4 8 16 3! 6 1 8. (a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 4 8 16 3 1! 5 & () ( 1) ( 1) Ð ) ( 1) ( 1) ( 1) ( 1) 1 4 8 16 3 0! 3!! & &!! 1 (c) ( 1) Ð ) ( ) ( ) ( 1) ( ) ( 1) 1 4 8 16 3; (a) ad () represet 1 4 8 16 3; (c) s ot equvalet to the other two! 4 ( ) ( 1) ( ) ( ) 1 1 3 1 4 1 3 c c c c 9. (a) 1!! ( ) ( 1) ( ) ( ) 1 0 1 1 1 1 3 0 () 1! 1 c! (c) 1 c ( ) ( 1) ( ) ( ) 1 0 1 3 (a) ad (c) are equvalet; () s ot equvalet to the other two.! 4 1 10. (a) ( 1) (1 1) ( 1) (3 1) (4 1) 0 1 4 9! 3 () ( 1) ( 1 1) (0 1) (1 1) ( 1) (3 1) 0 1 4 9 16 1! (c) ( 3) ( ) ( 1) 9 4 1 3 (a) ad (c) are equvalet to each other; () s ot equvalet to the other two. 6 4 4 1 1 1 11.! 1.! 13.! 5 5 5 1 5 1 1 1 14.! 15.! ( 1) 16.!( 1) 17. (a)! 3a 3! a 3( 5) 15 1 1!! 6 6 6 1 1 () (6) 1 (c)! (a )! a! 5 6 1 1 1 1 (d)!(a )! a! 5 6 11 1 1 1 (e)!( a )!! a 6 ( 5) 16 1 1 1 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

64 Chapter 5 Itegrato 18. (a)! 8a 8! a 8(0) 0 ()! 50 50! 50(1) 50 1 1 1 1 (c)!(a 1)! a! 1 0 (d)!( 1)!! 1 1 1 1 1 1 1 10 10 19. (a)! 10(10 1) 55 ()! 10(10 1)((10) 1) 385 1 1 10! 10(10 1) 1 (c) 55 305 6 13 13 0. (a)! 13(13 1) 91 ()! 13(13 1)((13) 1) 819 1 1 13! 13(13 1) 1 (c) 91 881 6 7 7 5 1 1 5 1 15 15 15 1 1 1 1 1 1.!! 7(7 ) Š 56.!! 5(5 1) Š 6 6 6 3.! 3! 3! 6(6 )((6) 1) a 3(6) 73 1 1 1 6 6 6 6 4.! 5!! 6(6 )((6) 1) a 5 5(6) 61 1 1 1 6 5 5 5 5 5.! (3 5)! a3 5 3! 5! 5(5 1)((5) 1) 3 Š 5(5 1) 5 Š 40 1 1 1 1 6 7 7 7 7 6.! ( 1)! a!! 7(7 1)((7) 1) Š 7(7 1) 308 1 1 1 1 5 5 5 5 7.!!! Œ Œ! 5(5 1) 5(5 1) Š Š 3376 5 5 5 1 1 1 1 7 7 7 7 6 8. Œ!! Œ!! 7(7 1) 7(7 1) Š Š 588 4 4 4 1 1 1 1 7 500 9. (a)! 3 3a 7 1 ()! 7 7a500 3500 1 1 64 6 (c) Let j Ê j ; f 3 Ê j 1 ad f 64 Ê j 6 Ê! 10! 10 10a6 60 3 j1 36 8 8 8 30. (a) Let j 8 Ê j 8; f 9 Ê j 1 ad f 36 Ê j 8 Ê!! aj 8! j! 8 8a8 1 ) a8 630 9 j1 j1 j1 17 15 () Let j Ê j ; f 3 Ê j 1 ad f 17 Ê j 15 Ê!!aj 15 15 15 15 3 j1! j 4j 4! j! 4j! 15a15 1aa15 1 15a15 1 a 4 4 4a15 j1 j1 j1 j1 140 480 60 1780 6 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

Secto 5. Sgma Notato ad Lmts of Fte Sums 65 71 (c) Let j 17 Ê j 17; f 18 Ê j 1 ad f 71 Ê j 54 Ê! a 1 54 54 54 54 54! j 17 j 17 1! j 33j 7! a aa a j! 33j! 7 j1 j1 j1 j1 j1 54a54 1aa54 1 54a54 1 6 33 7a54 53955 49005 14688 117648 31. (a)! 4 4 ()! c c 1 1! a!! a 1 1 1 1 (c) 1 1 3. (a)! ˆ 1 ˆ 1 1 ()! c c c (c)! 1 1 1 1 a 1 1 33. (a) () (c) 3 34. (a) () (c) 35. (a) () (c) Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

66 Chapter 5 Itegrato 36. (a) () (c) 37. x x! 1. 0 1., x x 1.5 1. 0.3, x x.3 1.5 0.8, x x.6.3 0.3, ad x x 3.6 0.4; the largest s lpl 1.. & 38. x x! 1.6 ( ) 0.4, x x 0.5 ( 1.6) 1.1, x x 0 ( 0.5) 0.5, x x 0.8 0 0.8, ad x x 1 0.8 0.; the largest s lpl 1.1. & 39. fax x! Let x ad c x. The rght-had sum s! a c! Š ˆ! a 1 1 1 a a! 1. Thus, lm!a c Ä_ 1 lm Œ Ä_ 40. fax x! Let x ad c x. The rght-had sum s! ˆ! )! ) a * * c lm! * * * lm lm Ä_ ˆ Ä_ * Ä_ * Thus,. 41. fax x!! c! ˆ! * (! ( a a Š Let x ad c x. The rght-had sum s a Š Š ( * * a ) ( * ) lm lm Ä_ Ä_ Þ Thus,!ac Œ *. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

Secto 5. Sgma Notato ad Lmts of Fte Sums 67 4. fax x! Let x ad c x. The rght-had sum s!!! a a c. Thus, lm! c ˆ Ä_ ˆ ˆ ˆ Š lm Œ Ä_. 43. fax x x xa x!! a! Š ˆ!! c c Let x ad c x. The rght-had sum s a a a. Thus, lm!ac c Ä_ Š Š lm Š Œ Ä_ &. 44. fax x x! Let x ad c x. The rght-had sum s! a! Š ˆ!! c c a a a. Thus, lm!a c c Ä_ Š Š lm Š Œ Ä_. 45. fax x 3! Let x ad c x. The rght-had sum s! 3! ˆ 3! 3 a c 4 4 a Š Š a 44. 3 lm!a lm Ä_ Ä_ Thus, c. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

68 Chapter 5 Itegrato 46. fax x x 3! a Let x ad c x. The rght-! a! Š ˆ ˆ 3 1 1 3 3! 5 Š! 5 3 Š 3 4 1 1! 5!! 1! 3 3 4 5 a a a 1 a a Š 3Š 4Š had sum s c c 5 5 4 6 5 4 1 5 6 3 4 3 4 3 Ä_. Thus, lm!ac c lm. Ä_ 5 6 5 4 1 5 4 1 7 3 4 3 4 1 5.3 THE DEFINITE INTEGRAL! & 0 ( 1. x dx. x dx 3. ax 3x dx 4. dx 5. dx 6. È 4 x x 1 x dx 0! 7. (sec x) dx 8. (ta x) dx c1î 9. (a) g(x) dx 0 () g(x) dx g(x) dx 8 & & & 1Î 0 & (c) 3f(x) dx 3 f(x) dx 3( 4) 1 (d) f(x) dx f(x) dx f(x) dx 6 ( 4) 10 & & & (e) [f(x) g(x)] dx f(x) dx g(x) dx 6 8 & & & (f) [4f(x) g(x)] dx 4 f(x) dx g(x) dx 4(6) 8 16 10. (a) f(x) dx f(x) dx ( 1) * * * * * () [f(x) h(x)] dx f(x) dx h(x) dx 5 4 9 ( ( ( * * * (c) [f(x) 3h(x)] dx f(x) dx 3 h(x) dx (5) 3(4) ( ( ( * (d) f(x) dx f(x) dx ( 1) 1 * ( * * (e) f(x) dx f(x) dx f(x) dx 1 5 6 ( ( * * * (f) [h(x) f(x)] dx [f(x) h(x)] dx f(x) dx h(x) dx 5 4 1 * ( ( ( 11. (a) f(u) du f(x) dx 5 () È3 f(z) dz È3 f(z) dz 5È3 (c) f(t) dt f(t) dt 5 (d) [ f(x)] dx f(x) dx 5 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

!!! 1. (a) g(t) dt g(t) dt È () g(u) du g(t) dt È Secto 5.3 The Defte Itegral 69!!!!! È g(r) È È È (c) [ g(x)] dx g(x) dx (d) dr g(t) dt Š Š È 1 13. (a) f(z) dz f(z) dz f(z) dz 7 3 4!! () f(t) dt f(t) dt 4 14. (a) h(r) dr h(r) dr h(r) dr 6 0 6 () h(u) du Œ h(u) du h(u) du 6 15. The area of the trapezod s A (B )h (5 )(6) 1 Ê ˆ x 3 dx 1 square uts 16. The area of the trapezod s A (B )h Î Î (3 1)(1) Ê ( x 4) dx square uts 17. The area of the semcrcle s A 1r 1(3) 9 9 1 Ê È9 x dx 1 square uts Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

70 Chapter 5 Itegrato 4 4 18. The graph of the quarter crcle s A 1r 1(4)! 41 Ê È16 x dx 41 square uts 19. The area of the tragle o the left s A h ()(). The area of the tragle o the rght s A h (1)(1). The, the total area s.5 Ê x dx.5 square uts 0. The area of the tragle s A h ()(1) 1 Ê a1 x dx 1 square ut 1. The area of the tragular pea s A h ()(1) 1. The area of the rectagular ase s S jw ()(1). The the total area s 3 Ê a x dx 3 square uts. y 1 È1 x Ê y 1 È1 x Ê (y 1) 1 x Ê x (y 1) 1, a crcle wth È ceter (!ß ) ad radus of 1 Ê y 1 1 x s the upper semcrcle. The area of ths semcrcle s 1 A 1r 1(1). The area of the rectagular ase s A jw ()(1). The the total area s 1 Ê Š 1 1 x dx square uts È 1 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

x! 4! 3. dx ()( ) 4. 4x dx (4) Secto 5.3 The Defte Itegral 71 5. s ds () a(a) a 6. 3t dt (3) a(3a) a a a 3 a 7. (a) È4 x dx () 4 x 1a 1 È dx 1a 1 0 8. (a) Š 3x È 1 x dx 3x dx È 1 x dx a1a3 a1 1 1 0 0 0 3 1 1 1 4 4 0 0 1 1 Š È È 1 1 1 0 1 a a a a 1a () 3x 1 x dx 3x dx 3x dx 1 x dx 1 3 1 3 1 È Š È Þ& (1) (.5) (0.5)!Þ& 9. x dx 30. x dx 3 1 & È (1) Š 5È Š È 1 31 1 È 31. ) d ) 3. r dr 4 È3 7 Š È3 7!Þ 7 (0.3) 0 3 3! 3 4 33. x dx 34. s ds 0.009 Î ˆ 1Î ˆ 1 1! 3 4! 3 4 35. t dt 36. ) d) a È a (a) Š È3a a 3a a a a 37. x dx 38. x dx a È Š È (3)! 3 3! 3 39. x dx 40. x dx 9 Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

7 Chapter 5 Itegrato 41. 7 dx 7(1 3) 14 4. 5x dx 5 x dx 5 10!! 43. (t 3) dt t dt 3 dt 3( 0) 4 6!! 0 È È È Š È 0 0 44. Š t È dt t dt È dt È È 0 1 1!!! z z 1 3 7 4 45. 1 dz 1 dz dz 1 dz z dz 1[1 ] ˆ ˆ!!!! 46. (z 3) dz z dz 3 dz z dz 3 dz 3[0 3] 9 9 0! 3 0 0 0 1 47. 3u du 3 u du 3 u du u du 3 Š 3 3 ˆ 7 7!! 3 3 3 3 3 3 3 Î Î Î!! 8 48. 4u du 4 u du 4 u du u du 4 3 3 4 3 7 1 ˆ ˆ 7 49. a3x x 5 dx 3 x dx x dx 5 dx 3 5[ 0] (8 ) 10 0!!!! 0 0 3 3! 50. a3x x 5 dx a3x x 5 dx 3 x dx x dx 5 dx!!!! 1 0 1 0 3 7 3 3 3 Š Š 5(1 0) ˆ 5 0 51. Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x 3(? x)? x 3(? x) f(c )? x f(? x)? x 3(? x)? x 3() (? x) f(c )? x f(3? x)? x 3(3? x)? x 3(3) (? x) ã f(c )? x f(? x)? x 3(? x)? x 3() (? x) The S! f(c )? x! 3 (? x) 1 1 3(? x)! ( 1)( 1) 3 Š Š 6 1 ˆ 3 ˆ 3! Ä_ Ê 3x dx lm. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

Secto 5.3 The Defte Itegral 73 0 5. Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x 1 (? x)? x 1 (? x) f(c )? x f(? x)? x 1 (? x)? x 1 () (? x) f(c )? x f(3? x)? x 1 (3? x)? x 1 (3) (? x) ã f(c )? x f(? x)? x 1 (? x)? x 1 () (? x) The S! f(c )? x! 1 (? x) 1 1 1? ( x)! ( 1Š Š 1)( 1) 6 1 1 ˆ 3 1 3 1 6 1 ˆ 6! Ä_ 3 Ê x dx lm. 0 53. Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x (? x)(? x) (? x) f(c )? x f(? x)? x (? x)(? x) ()(? x) f(c )? x f(3? x)? x (3? x)(? x) (3)(? x) ã f(c )? x f(? x)? x (? x)(? x) ()(? x) The S! f(c )? x! (? x) 1 1?! ( Š Š 1) 1! Ä_ ( x) 1 Ê x dx lm 1. 0 54. Let? x ad let x 0, x? x,! x? xßá ßx c ( 1)? x, x? x. Let the c s e the rght ed-pots of the sutervals Ê c x, c x, ad so o. The rectagles defed have areas: f(c )? x f(? x)? x ˆ?x 1 (? x) (? x)? x f(c )? x f(? x)? x ˆ? x 1 (? x) ()(? x)? x f(c )? x f(3? x)? x ˆ 3? x 1 (? x) (3)(? x)? x ã x f(c )? x f(? x)? x ˆ? 1 (? x) ()(? x)? x!!!! ( 1)????? Š Š 1 1 1 1 ˆ 1 1 ˆ x 1 4 dx lm ˆ ˆ 1.! Ä_ 4 4 The S f(c ) x ˆ ( x) x ( x) x 1 ˆ () Ê Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.

74 Chapter 5 Itegrato È È3 0! È È È 3! È3! 55. av(f) Š ax 1 dx Š È3 x dx 1 dx È 3 È Š È3 0 1 1 0. 3 3 56. av(f) ˆ x Š dx ˆ x dx 3 0! 3! 3 3 x 3 6 3 Š ;. 57. av(f) ˆ a 3x 1 dx 1 0! 3 x dx 1 dx 3 Š (1 0).!! 1 3 58. av(f) ˆ a3x 3 dx! 1 0 3 x dx 3 dx 3 Š 3(1 0).!! 1 3 59. av(f) ˆ (t 1) dt! 3! 3! 3! 3 0 t dt t dt 1 dt 3 3 0 3 3 3 3 Š Š (3 0) 1. Copyrght 010 Pearso Educato, Ic. Pulshg as Addso-Wesley.