L(θ X) s 0 (1 θ 0) m s. (s/m) s (1 s/m) m s

Size: px
Start display at page:

Download "L(θ X) s 0 (1 θ 0) m s. (s/m) s (1 s/m) m s"

Transcription

1 Hw 4 (due March ) 83 The LRT statstcs s λ(x) sup θ θ 0 L(θ X) The lkelhood s L(θ) θ P x ( sup Θ L(θ X) θ) m P x ad ad the log-lkelhood s (θ) x log θ +(m x ) log( θ) Let S X Note that the ucostraed MLE s S/m, whle the MLE uder the ull hy- f S/m θ0, pothess s m(s/m, θ 0 ) Thus, λ(s) θ s 0 ( θ 0) m s θ s 0 ( θ 0) m s else, ad we reject H 0 f <c To shows that ths s equvalet to rejectg f s<b, we could show λ(s) s decreasg s so that λ(s) <coccurs for s>b>mθ 0 It s easer to work wth log λ(s), ad we have log λ(s) s log θ 0 +(m s) log( θ 0 ) s log(s/m) (m s) log((m s)/m) ad d log λ(s) log ds θ0 ( m s m ) s/m( θ 0 ) For s/m > θ 0, s/m (m s)/m < θ 0, so the fracto above s less tha, ad the log s less tha 0 Thus, λ s a decreasg fucto s ad λ(s) <cf ad oly f s>b θ Alteratvely, oe could work through the algebra We reject f s 0 ( θ 0) m s <c Whch correspods to θ0 x log +(m s/m x ) log θ 0 s/m log c x log c m log θ 0 s/m log θ 0 log θ 0 s/m s/m b 87(a) L(θ, λ x) e (P x θ)/λ I [θ, )(x ()) λ whch s creasg θ f x () θ (regardless of λ) So, the MLE of θ s ˆθ x () The log L P + x ˆθ 0 ad thus ˆλ x x λ λ λ 2 () Because log L P 2 λ 2 λ 2 x ˆθ λ 3 ( x x () < 0, we have ˆθ x ) 2 () ad ˆλ x x () as the urestrcted MLEs of θ ad λ Uder the restrcto θ 0, the MLE of θ (regardless of λ) s ˆθ 0 f x () > 0, 0 For else x () 9

2 x () > 0, substtutg ˆθ 0 0 ad maxmzg the lkelhood wth respect to λ, asabove, f yelds ˆλ x() 0, 0 x Therefore, λ(x) f x () > 0 where L( x, 0 x) L(ˆλ, ˆθ x) L( x,0 x) L(ˆλ,ˆθ x) (/ x) e x/ x (/ˆλ) e ( x x ())/( x x () ) So reject f λ(x) c s equvalet to rejectg f x () / x c x () x 85 From the Neyma-Pearso lemma, the UMP test rejects H 0 f f(x σ ) f(x σ 0 ) (2πσ2 ) /2 e P x2 /(2σ2 ) (2πσ 2 0) /2 e P σ0 exp x 2 x2 /(2σ2 0 ) (/σ 2 0 /σ 2 σ 2 ) for some k 0 After some algebra, ths s equvalet to rejectg f x 2 > 2 log(k(σ /σ 0 ) ) (/σ 2 0 /σ 2 ) Ths s the UMP test of sze α, where α P σ0 ( X2 >c) Note that X2 /σ 2 0 χ 2 Thus, c α P σ0 ( X 2 /σ 2 0 >c/σ 2 0)P (χ 2 >c/σ 2 0) So we must have c/σ 2 0 χ 2,α ad c σ 2 0χ 2,α 87 a The lkelhood fucto s L(µ, θ x,y)µ ( x ) µ θ m m θ j j y ad the loglkelhood fucto s (µ, θ) log µ +(µ ) log x + m log θ +(θ ) m j log y j Hece, the (ucostraed) MLEs are ˆµ P ad ˆθ m log x Pj Uder H 0, the lkelhood log y j s L(θ x,y)θ +m x j y j θ ad maxmzg wrt θ yelds the restrcted MLE, θ0 ˆ ˆθ ˆθ +m (+m) 0 P log x + P θˆ Hece the LRT statstc s λ(x,y) 0 j log y j ˆµ ˆθ ( m x θ ) ˆ 0 ˆµ j y j b Substtutg the formulas for ˆθ, ˆµ ad ˆθ 0 yelds ( x θ ) ˆ 0 ˆµ ( j y θ j) ˆ 0 ˆθ, ad λ(x,y) +m θˆ 0 ˆµ ˆθ ˆ m θ 0 θ0 ˆ m ˆµ ˆθ m+ m m+ m m m ( T ) m T Ths s a umodal fucto of T So, rejectg H 0 f λ(x,y) c s equvalet to rejectg f T c or T c 2, where c ad c 2 are approprately chose costats 0

3 c Smple trasformatos yeld log X exp(/µ) ad log Y exp(/θ) Therefore, T W/(W + V ) where W ad V are depedet, W Gamma(, /µ) ad V Gamma(m, /θ) Uder H 0, the scale parameters of W ad V are equal The, a smple geeralzato of Exercse 49b yelds T Beta(, m) The costats c ad c 2 are determed by the two equatos P (T c )+P (T c 2 )α ad ( c ) m c ( c 2 ) m c 2 03 (a)(e) a The ull hypothess s H 0 : p p 2, whch we ca wrte as H 0 : p p 2 0 To costruct the Wald test statstc, look at T mle uder H ŝe 0 Uder H 0, the mle of p p 2 s ˆp ˆp 2 S / + S 2 / 2 The varace of ths uder H 0 s se 2 (p p 2 ) p ( p ) + p 2( p 2 ) 2 p( p)(/ +/ 2 ) where we estmate p p p 2 uder H 0 as ˆp S +S Thus, the Wald test statstc s T ˆp ˆp 2 ˆp( ˆp)(/ +/ 2 ) Next wrte T ˆp ˆp 2 se(p) se(p) We kow that ˆp ˆp 2 se(ˆp) se(p) d T N(0, ) ad se(p) se(ˆp) p Usg Slutsky s Theorem, we have that T d T N(0, ) uder H 0 Usg the cotuous mappg theorem (e, trasformato theorem covergece dstrbuto), we the have that T 2 d χ 2 e We have that ˆp 34/40, ˆp 2 9/35, ˆp , ad T 836 Sce χ , , we ca reject H 0 at α 005 The p-value of the test s a Frst calculate the MLEs uder p p 2 p We have L(p x) p x p x 2 p x 3 3 p x 2p 3 P m x p Takg logs ad dfferetatg yeld the followg equatos for the MLEs: logl p logl p x + x 2 2(m x ) p 2p 3 p x x p 2p 3 p 0 where 3,, The solutos are ˆp x +x 2, ˆp 2m x for 3,,, ad m ˆp (m x )/m Except for the frst ad secod cells, we have expected observed, 0

4 sce both are equal to x Note that ths comes from the statemet the problem that the expected cell frequeces are the MLEs of mp, uder the assumpto that p p 2 Thus, the expected frequecy of a cell s mˆp m x x m,for 3,, For the frst two cells, expected mˆp (x + x 2 )/2 Hece, (obs exp) 2 exp, reduces to (x (x + x 2 )/2) 2 (x + x 2 )/2 + (x 2 (x + x 2 )/2) 2 (x + x 2 )/2 (x x 2 ) 2 x + x 2 b Now the hypothess about the codtoal probabltes s gve by H 0 : P(chage-tal p agree) P(chage-tal dsagree) or, terms of the parameters, H 0 : p +p 3 p 2 p 2 +p 4 Ths s the same as testg p p 4 p 2 p 3 whch s ot the same as p p f(x α, β) x α e x/β Thus, L(β) e x /β Γαβ α ad (β) α log β β α x /β The S(β) (β) α/β + x /β 2 (/β)( x/β α) ad (β) α/β 2 2 x /β 3 (/β 2 )(α 2 x/β) E( (β)) α/β 2 a Solvg S(β) (β) 0forβ gves us ˆβ MLE x Note that α (ˆβ MLE ) α 3 / x 2 < 0 b se(ˆβ MLE ) /I(ˆβ MLE ) x 2 /(α 3 ) Thus, a Wald statstc for testg H 0 : β β 0 s x/α β 0 x 2 /(α 3 ) 038 We wll use the outputs from 036: A score statstc for testg H 0 : β β 0 s S(β 0 ) (/β 0 )( x/β 0 α) ( x αβ 0 ) I(β0 ) α/β 2 0 αβ 2 0 Addtoal HW The lkelhood fucto ad log lkelhood fucto for (θ, σ 2 )are L(θ, σ 2 )(2πσ 2 ) /2 exp (X θ) 2 2σ 2 (θ, σ 2 ) 2 log(2πσ2 ) (X θ) 2 2σ 2 a Uder H 0, (θ 0,σ 2 ) σ 2 b I the whole parameter space, (θ,σ2 ) + 2σ 2 (X θ 0 ) 2 0 Thus, σ 2 2(σ 2 ) 2 (X θ) θ (X ˆθ) 2 (X X) 2 Thus, ˆθ X ad ˆσ 2 c The lkelhood rato statstc, λ( X), s λ( X) L(θ 0, σ 2 0) (2π σ2 ) /2 exp L(ˆθ, ˆσ 2 ) (2πˆσ 2 ) /2 exp 0 ad (θ,σ2 ) σ 2 σ 2 ˆσ 2 σ 2 2ˆσ 2 P (X θ 0 ) 2 2 σ 2 P (X ˆθ) 2 P (X θ 0 ) 2 2σ 2 + (X θ) 2 2(σ 2 ) 2 0 /2 (X X) 2 (X θ 0 ) 2 /2 2

5 d We ca smplfy λ( X) the followg way: λ( X) (X X) 2 /2 (X (X X) 2 /2 θ 0 ) 2 (X X) 2 + ( X θ 0 ) 2 + ( X θ 0 ) 2 P (X X) 2 /2 + T 2 where T (X) X θ 0 Thus, λ( X) <cs equvalet to the followgs: S /2 λ(x) <c + T <c T (X) 2 >k 2 ( )(c 2/ ) T (X) > k (X)2 Thus, rejectg H 0 whe λ(x) <c correspods to rejectg H 0 whe T (X) > k e Uder H 0, T (X) T, T dstrbuto wth parameters (I beleve that you ca prove t, as t s related to stat 607) f The level α lkelhood rato test s as follows : rejectg H 0 whe λ(x) < c where α P ( 2 log λ(x) >c ) uder H 0 Here, λ(x) <cs equvalet to T (X) > kad T (X) T uder H 0 where α P ( T (X) > t,α/2 ) Thus, k t,α/2 /2 3

Chapter 8. Hypothesis Testing. x=560

Chapter 8. Hypothesis Testing. x=560 Chapter 8 Hypothess Testg 8 Let X # of heads out of 000 If the co s far, the X bomal000, / So P X 560 000 x560 x x 000 000085, x where a computer was used to do the calculato For ths bomal, E X 000p 500

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

STAT 400 Homework 09 Spring 2018 Dalpiaz UIUC Due: Friday, April 6, 2:00 PM

STAT 400 Homework 09 Spring 2018 Dalpiaz UIUC Due: Friday, April 6, 2:00 PM STAT Homework 9 Sprg 28 Dalpaz UIUC Due: Fray, Aprl 6, 2: PM Exercse f(x, θ) = θ e x/θ, x >, θ > Note that, the momets of ths strbuto are gve by E[X k ] = Ths wll be a useful fact for Exercses 2 a 3. x

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues Lkelhood Rato, Wald, ad Lagrage Multpler (Score) Tests Soccer Goals Europea Premer Leagues - 4 Statstcal Testg Prcples Goal: Test a Hpothess cocerg parameter value(s) a larger populato (or ature), based

More information

M2S1 - EXERCISES 8: SOLUTIONS

M2S1 - EXERCISES 8: SOLUTIONS MS - EXERCISES 8: SOLUTIONS. As X,..., X P ossoλ, a gve that T ˉX, the usg elemetary propertes of expectatos, we have E ft [T E fx [X λ λ, so that T s a ubase estmator of λ. T X X X Furthermore X X X From

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

MS exam problems Fall 2012

MS exam problems Fall 2012 MS exam problems Fall 01 (From: Rya Mart) 1. (Stat 401) Cosder the followg game wth a box that cotas te balls two red, three blue, ad fve gree. A player selects two balls from the box at radom, wthout

More information

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1 Wu-Hausma Test: Detectg Falure of E( ε X ) Caot drectly test ths assumpto because lack ubased estmator of ε ad the OLS resduals wll be orthogoal to X, by costructo as ca be see from the momet codto X'

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER II STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

STA302/1001-Fall 2008 Midterm Test October 21, 2008

STA302/1001-Fall 2008 Midterm Test October 21, 2008 STA3/-Fall 8 Mdterm Test October, 8 Last Name: Frst Name: Studet Number: Erolled (Crcle oe) STA3 STA INSTRUCTIONS Tme allowed: hour 45 mutes Ads allowed: A o-programmable calculator A table of values from

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 THE ROYAL STATISTICAL SOCIETY 06 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE The Socety s provdg these solutos to assst caddates preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Lecture Notes 15 Hypothesis Testing (Chapter 10)

Lecture Notes 15 Hypothesis Testing (Chapter 10) 1 Itroductio Lecture Notes 15 Hypothesis Testig Chapter 10) Let X 1,..., X p θ x). Suppose we we wat to kow if θ = θ 0 or ot, where θ 0 is a specific value of θ. For example, if we are flippig a coi, we

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE (STATISTICS) STATISTICAL INFERENCE COMPLEMENTARY COURSE B.Sc. MATHEMATICS III SEMESTER ( Admsso) UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY P.O., MALAPPURAM, KERALA, INDIA -

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y. .46. a. The frst varable (X) s the frst umber the par ad s plotted o the horzotal axs, whle the secod varable (Y) s the secod umber the par ad s plotted o the vertcal axs. The scatterplot s show the fgure

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Introduction to F-testing in linear regression models

Introduction to F-testing in linear regression models ECON 43 Harald Goldste, revsed Nov. 4 Itroducto to F-testg lear regso s (Lecture ote to lecture Frday 4..4) Itroducto A F-test usually s a test where several parameters are volved at oce the ull hypothess

More information

Analysis of Variance and Regression

Analysis of Variance and Regression Chapter Aalyss of Varace ad Regresso a The frst order Taylor s seres approxmato s b If we choose gy g y y a Var[gY ] [g θ] VarY [g θ] vθ dg θ dθ dx, the vx d dθ θ a vx dx vθ, by the Fudametal Theorem of

More information

BASIC PRINCIPLES OF STATISTICS

BASIC PRINCIPLES OF STATISTICS BASIC PRINCIPLES OF STATISTICS PROBABILITY DENSITY DISTRIBUTIONS DISCRETE VARIABLES BINOMIAL DISTRIBUTION ~ B 0 0 umber of successes trals Pr E [ ] Var[ ] ; BINOMIAL DISTRIBUTION B7 0. B30 0.3 B50 0.5

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17 Itroucto to Ecoometrcs (3 r Upate Eto) by James H. Stock a Mark W. Watso Solutos to O-Numbere E-of-Chapter Exercses: Chapter 7 (Ths erso August 7, 04) 05 Pearso Eucato, Ic. Stock/Watso - Itroucto to Ecoometrcs

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

ON THE USE OF OBSERVED FISHER INFORMATION IN WALD AND SCORE TEST

ON THE USE OF OBSERVED FISHER INFORMATION IN WALD AND SCORE TEST N THE USE F BSERVED FISHER INFRMATIN IN WALD AND SCRE TEST Vasudeva Guddattu 1 & Arua Rao Abstract I the recet years there s a large alcato of large samle tests may scetfc vestgatos. The commoly used large

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE STATISTICAL INFERENCE The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Chapter 2 Supplemental Text Material

Chapter 2 Supplemental Text Material -. Models for the Data ad the t-test Chapter upplemetal Text Materal The model preseted the text, equato (-3) s more properl called a meas model. ce the mea s a locato parameter, ths tpe of model s also

More information

f X (x i ;θ) = n ( n logx i = 0 = θml = n/ n logx i 1 θ +1 n n 2 < 0 for all θ (θ +1) n logx i 1 ESTIMATOR: = logx i θ n for all θ θ 2 < 0 2θ 2 x 3

f X (x i ;θ) = n ( n logx i = 0 = θml = n/ n logx i 1 θ +1 n n 2 < 0 for all θ (θ +1) n logx i 1 ESTIMATOR: = logx i θ n for all θ θ 2 < 0 2θ 2 x 3 MATH 557 - EXERCISES SOLUTIONS 1 The lkelhoo the orgal parameterzato s ( ( 1 L (θ 1,θ x 1,x = θ x 1 1 x (1 θ 1 1 x 1 θ x 1 x (1 θ x If φ = θ /(1 θ, the θ = φ/(1+φ θ 1 = (φψ/(1+φψ. Ether by wrtg out the

More information

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values of the secod half Biostatistics 6 - Statistical Iferece Lecture 6 Fial Exam & Practice Problems for the Fial Hyu Mi Kag Apil 3rd, 3 Hyu Mi Kag Biostatistics 6 - Lecture 6 Apil 3rd, 3 / 3 Rao-Blackwell

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION Iteratoal Joural of Mathematcs ad Statstcs Studes Vol.4, No.3, pp.5-39, Jue 06 Publshed by Europea Cetre for Research Trag ad Developmet UK (www.eajourals.org BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009 Aswer key to problem set # ECON 34 J. Marcelo Ochoa Sprg, 009 Problem. For T cosder the stadard pael data model: y t x t β + α + ǫ t a Numercally compare the fxed effect ad frst dfferece estmates. b Compare

More information

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3 IOSR Joural of Mathematcs IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume, Issue Ver. II Ja - Feb. 05, PP 4- www.osrjourals.org Bayesa Ifereces for Two Parameter Webull Dstrbuto Kpkoech W. Cheruyot, Abel

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information