Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Similar documents
Sterile Neutrinos. Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Status of the Sterile Neutrino(s) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

C. Giunti Sterile Neutrino Mixing NOW Sep /25

Status of Light Sterile Neutrinos Carlo Giunti

Critical Review on Neutrino Anomalies. Carlo Giunti

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Sterile Neutrinos in July 2010

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Stefano Gariazzo. Light sterile neutrino: the 2018 status. IFIC, Valencia (ES) CSIC Universitat de Valencia

Status of Sterile Neutrinos Carlo Giunti

Short-Baseline Neutrino Anomalies Carlo Giunti. Selected Puzzles in Particle Physics Laboratori Nazionali di Frascati December 2016

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

Impact of light sterile!s in LBL experiments "

Analysis of Neutrino Oscillation experiments

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

Two hot issues in neutrino physics

ev-scale Sterile Neutrinos

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Status and prospects of neutrino oscillations

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

NEUTRINO OSCILLATIONS AND STERILE NEUTRINO C. Giunti

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

The Reactor Antineutrino Anomaly

Solar and atmospheric ν s

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

On indications for sterile neutrinos at the ev scale. Invisibles 14 workshop, July 2014, Paris Thomas Schwetz

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, Guangdong, , China

Neutrino Oscillation Physics

Overview of Reactor Neutrino

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Neutrino Physics: Lecture 12

Neutrino Anomalies & CEνNS

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Sterile neutrinos: to be or not to be?

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Sterile neutrino oscillations

Phenomenological Status of Neutrino Mixing

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech

Short baseline neutrino oscillation experiments at nuclear reactors

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrino Oscillations

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

The Daya Bay Reactor Neutrino Experiment

Updated three-neutrino oscillation parameters from global fits

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

PoS(ICRC2017)1024. First Result of NEOS Experiment. Kim Siyeon. Affiliation:Chung-Ang University. On behalf of NEOS Collaboration

On Minimal Models with Light Sterile Neutrinos

NEUTRINOS II The Sequel

Neutrino Oscillations

- Future Prospects in Oscillation Physics -

Prospects of Reactor ν Oscillation Experiments

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Particle Physics: Neutrinos part II

The future of neutrino physics (at accelerators)


Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources

Reactor Neutrino Oscillation Experiments: Status and Prospects

Recent results from Super-Kamiokande

Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti

Particle Physics: Neutrinos part II

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Grand Unification Theories

arxiv: v1 [hep-ph] 15 Apr 2019

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

The Effect of Cancellation in Neutrinoless Double Beta Decay

Sterile neutrinos at future long-baseline experiments

The ultimate measurement?

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Long baseline experiments

Daya Bay and joint reactor neutrino analysis

PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Introduction to Neutrino Physics

Search for Sterile Neutrinos with the Borexino Detector

Sterile Neutrino Experiments at Accelerator

1 Neutrinos. 1.1 Introduction

Short baseline experiments and sterile neutrinos. Nick van Remortel Solvay-Francqui Workshop on Neutrinos May

The Short Baseline Neutrino Program at Fermilab

Neutrinos in Nuclear Physics

Neutrino Experiments with Reactors

Results from T2K. Alex Finch Lancaster University ND280 T2K

Searching for Sterile Neutrinos with an Isotope β-decay Source: The IsoDAR Experiment

Chapter 2 Neutrino Oscillation

Neutrino oscillation phenomenology

arxiv: v2 [hep-ex] 2 Aug 2017

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017

Neutrino oscillation experiments: Recent results and implications

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Chart of Elementary Particles

Transcription:

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3 Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti INFN, Torino, Italy Moriond Electroweak Interactions and Unified Theories 07 La Thuile, Aosta Valley, Italy, 8-5 March 07

Indications of SBL Oscillations Beyond 3ν C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 3/3 LSND [PRL 75 (995) 650; PRC 54 (996) 685; PRL 77 (996) 308; PRD 64 (00) 07] ν µ ν e 0 MeV E 5.8 MeV Well-known and pure source of ν µ p target π at rest µ ν µ µ at rest e ν e ν µ ν e p n e Well-known detection process of ν e 3.8σ excess L 30 m But signal not seen by KARMEN at L 8 m with the same method [PRD 65 (00) 0]

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 4/3 m (ev /c 4 ) Karmen Bugey CCFR NOMAD - - 90% (L max -L <.3) 99% (L max -L < 4.6) -3 - - sin θ m SBL 3 ev m ATM.5 3 ev m SOL

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 5/3 MiniBooNE L 54 m ν µ ν e [PRL (009) 80] 00 MeV E 3 GeV ν µ ν e [PRL (03) 680] LSND signal LSND signal Purpose: check LSND signal. Different L and E. Similar L/E (oscillations). No money, no Near Detector. LSND signal: E > 475 MeV. Agreement with LSND signal? CP violation? Low-energy anomaly!

Gallium Anomaly Gallium Radioactive Source Experiments: GALLEX and SAGE ν e Sources: e 5 Cr 5 V ν e e 37 Ar 37 Cl ν e E 0.75 MeV E 0.8 MeV Test of Solar ν e Detection: ν e 7 Ga 7 Ge e R =N exp N cal 0.7 0.8 0.9.0. GALLEX SAGE Cr Cr R = 0.84 ± 0.05 L GALLEX =.9 m GALLEX SAGE Cr Ar L SAGE = 0.6 m m SBL ev m ATM m SOL.9σ deficit [SAGE, PRC 73 (006) 045805; PRC 80 (009) 05807; Laveder et al, Nucl.Phys.Proc.Suppl. 68 (007) 344, MPLA (007) 499, PRD 78 (008) 073009, PRC 83 (0) 065504] C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 6/3

Reactor Electron Antineutrino Anomaly C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 7/3 [Mention et al, PRD 83 (0) 073006] New reactor ν e fluxes [Mueller et al, PRC 83 (0) 05465; Huber, PRC 84 (0) 0467] R = N exp N cal 0.70 0.80 0.90.00..0 Bugey 3 Bugey 4 Chooz Daya Bay Double Chooz Gosgen ILL Krasnoyarsk Nucifer 3 L [m].5σ deficit Palo Verde RENO Rovno88 R = 0.940 ± 0.04 Rovno9 SRP

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 8/3 P ν e νe 0.70 0.80 0.90.00..0 Bugey 4 Rovno9 E 4MeV sin ϑ ee = 0. m 4 = 0. ev m 4 = 0.5 ev m 4 =.0 ev Rovno88 Bugey 3 Gosgen ILL 3 L [m] Krasnoyarsk SRP Nucifer R DC DB DC R DB m SBL 0.5 ev m ATM m SOL

ε C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 9/3 NEOS [arxiv:6.0534] Events /day/0 kev Data/Prediction Data/Prediction 60 50 40 30 0..0 (a) (b) Prompt Energy [MeV] Data signal (ON-OFF) Data background (OFF) MC 3ν (H-M-V) MC 3ν (Daya Bay) NEOS/H-M-V Systematic total 7 6 5 4 3 3 4 5 6 7 8 Neutrino Energy [MeV] 0.9. 3 4 5 6 7 (c) NEOS/Daya Prompt BayEnergy [MeV] Systematic total.0 (.73 ev, 0.050) (.3 ev, 0.4) 0.9 3 4 5 6 7 Prompt Energy [MeV] 3 Hanbit Nuclear Power Complex in Yeong-gwang, Korea. Thermal power of.8 GW. Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 4 m from the reactor core. The measured antineutrino event rate is 976 per day with a signal to background ratio of about.

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3 ] 4 [ev m RAA allowed 90% CL 95% CL 99% CL NEOS Spectrum 90% CL 95% CL 99% CL Excluded NEOS 90% CL Bugey-3 90% CL Daya Bay 90% CL s [ev ] m 4 sin θ 4 Raster Scan [NEOS, arxiv:6.0534] Best Fits: m4 =.7 ev sin θ 4 = 0.05 m4 =.3 ev sin θ 4 = 0.04 3 sin ϑ ee -D χ Analysis χ no osc. χ min = 6.5.σ anomaly

Beyond Three-Neutrino Mixing: Sterile Neutrinos C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3 m. ν 5. ν s ν 4 m SBL ν s ev ν 3 ν ν matm msol ν e ν µ ν τ.5 3 ev 7.4 5 ev Terminology: means: a ev-scale sterile neutrino a ev-scale massive neutrino which is mainly sterile

Sterile Neutrinos from Physics Beyond the SM Neutrinos are special in the Standard Model: the only neutral fermions Active left-handed neutrinos can mix with non-sm singlet fermions often called right-handed neutrinos Neutrino Portal [A. Smirnov, arxiv:50.04530] Light left-handed anti-ν R are light sterile neutrinos ν c R ν sl (left-handed) Sterile means no standard model interactions [Pontecorvo, Sov. Phys. JETP 6 (968) 984] Active neutrinos (ν e, ν µ, ν τ ) can oscillate into light sterile neutrinos (ν s ) Observables: Disappearance of active neutrinos (neutral current deficit) Indirect evidence through combined fit of data (current indication) Short-baseline anomalies 3ν-mixing: m m 3 m 4... ν ν ν 3 ν 4... ν e ν µ ν τ ν s... C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 3/3 Effective 3 SBL Oscillation Probabilities Appearance (α β) ( ) m P SBL ( ) sin ϑ ν ( ) αβ sin 4 L α ν β 4E Disappearance ( ) m P SBL ( ) sin ϑ ν ( ) αα sin 4 L α ν α 4E sin ϑ αβ = 4 U α4 U β4 sin ϑ αα = 4 U α4 ( U α4 ) U e U e U e3 U e4 U µ U µ U µ3 U µ4 U = U τ U τ U τ3 U τ4 U s U s U s3 U s4 SBL 6 mixing angles 3 Dirac CP phases 3 Majorana CP phases CP violation is not observable in SBL experiments! Observable in LBL accelerator exp. sensitive to matm [de Gouvea et al, PRD 9 (05) 053005, PRD 9 (05) 0730, arxiv:605.09376; Palazzo et al, PRD 9 (05) 07307, PLB 757 (06) 4; Gandhi et al, JHEP 5 (05) 039] and solar exp. sensitive to m SOL [Long, Li, CG, PRD 87, 3004 (03) 3004]

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 4/3 Global ν e and ν e Disappearance [Gariazzo, CG, Laveder, Li, arxiv:703.00860] [ev ] m 4 ν edis σ σ σ Reactors Gallium ν ec Sun TK KARMENLSND ν e C [Conrad, Shaevitz, PRD 85 (0) 0307] [CG, Laveder, PLB 706 (0) 0] Solar ν e KamLAND ν e [Li et al, PRD 80 (009) 3007, PRD 86 (0) 304] [Palazzo, PRD 83 (0) 303, PRD 85 (0) 07730] TK Near Detector ν e disappearance [TK, PRD 9 (05) 05] sin ϑ ee χ NO = 3.3 3.σ anomaly Best Fit: m 4 =.7 ev sin ϑ ee = 0.066 U e4 = 0.07 χ min /NDF = 6.5/74 GoF = 7% χ PG /NDF PG = 3.8/7 GoF PG = 6%

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 5/3 Global ν e and ν e Disappearance β Decay [Gariazzo, CG, Laveder, Li, arxiv:703.00860] ν edisβ σ σ σ ν edis β Best Fit: m 4 =.7 ev sin ϑ ee = 0.065 U e4 = 0.06 m 4 [ev ] cm Losc 4 8 m at E [MeV] 0.0033 sin ϑ ee 0. at sin ϑ ee

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 6/3 3 The Race for ν e and ν e Disappearance CeSOX shape (95% CL) CeSOX rate (95% CL) CeSOX rateshape (95% CL) BEST (σ) IsoDAR@KamLAND (5yr, ) IsoDAR@C ADS (5yr, ) KATRIN (90% CL) ν edisβ σ σ 3 DANSS (yr, 95% CL) Neutrino 4 (yr, 95% CL) PROSPECT phase (3yr, ) PROSPECT phase (3yr, ) SoLiD phase (yr, 95% CL) SoLiD phase (3yr, ) STEREO (yr, 95% CL) ν edisβ σ σ [ev ] m 4 [ev ] m 4 3 3 sin ϑ ee CeSOX (Gran Sasso, Italy) 44 Ce ν e BOREXINO: L 5-m [Vivier@TAUP05] BEST (Baksan, Russia) 5 Cr ν e L 5-m [PRD 93 (06) 07300] IsoDAR@KamLAND (Kamioka, Japan) 8 Li ν e L 6m [arxiv:5.0530] IsoDAR@C-ADS (Guangdong, China) 8 Li ν e L 5m [JHEP 60 (06) 004] sin ϑ ee DANSS (Kalinin, Russia) L -m [arxiv:606.0896] Neutrino-4 (RIAR, Russia) L 6-m [JETP (05) 578] PROSPECT (ORNL, USA) L 7-m [arxiv:5.00] SoLid (SCK-CEN, Belgium) L 5-8m [arxiv:5.07835] STEREO (ILL, France) L 8-m [arxiv:60.00568] KATRIN (Karlsruhe, Germany) 3 H ν e [Drexlin@NOW06]

ν µ ν e and ν µ ν e Appearance 99% CL LSND MiniBooNE KARMEN NOMAD BNL E776 ICARUS OPERA [ev ] m 4 ν µ ν e 90% CL 95% CL 99% CL 3 sin ϑ eµ C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 7/3

ν µ and ν µ Disappearance [ev ] m 4 99% CL CDHSW: νµ (984) ATM: νµ νµ SciBooNE MiniBooNE: νµ (0) SciBooNE MiniBooNE: νµ (0) MINOS: νµ CCNC (06) IceCube: νµ νµ (06) sin ϑ µµ C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 8/3

3 Appearance-Disappearance Tension ν e DIS sin ϑ ee 4 U e4 ν µ ν e APP ν µ DIS sin ϑ µµ 4 U µ4 sin ϑ eµ = 4 U e4 U µ4 4 sin ϑ ee sin ϑ µµ [Okada, Yasuda, IJMPA (997) 3669; Bilenky, CG, Grimus, EPJC (998) 47] ν µ ν e is quadratically suppressed! [ev ] m 4 PrGlo7 σ σ ν e Dis ν µ Dis Dis App 4 3 PrGlo7 = Pragmatic Global Fit 07 [Gariazzo, CG, Laveder, Li, arxiv:703.00860] χ NO = 46.5 6.0σ anomaly Best Fit: m4 =.7 ev U e4 = 0.09 U µ4 = 0.05 χ min /NDF = 594.8/579 GoF = 3% χ PG /NDF PG = 7.4/ GoF PG = 3% Similar tension in 3, 33,..., 3N s [CG, Zavanin, MPLA 3 (05) 650003] sin ϑ eµ C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 9/3

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 0/3 Effects of MINOS, IceCube and NEOS ( ) ν µ ( ) ν µ ( ) ν e ( ) ν e PrGlo6A PrGlo6A MINOS PrGlo6A IceCube PrGlo6A MINOS IceCube = PrGlo6B PrGlo6A PrGlo6A MINOS IceCube = PrGlo6B PrGlo6A MINOS IceCube NEOS = PrGlo7 [ev ] [ev ] m 4 m 4 MINOS IceCube sin ϑ µµ NEOS sin ϑ ee

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3 The Race for the Light Sterile ( ) ν e ( ) ν e PrGlo7 σ σ PrGlo7 σ σ [ev ] [ev ] m 4 m 4 DANSS (yr, 95% CL) Neutrino 4 (yr, 95% CL) PROSPECT phase (3yr, ) PROSPECT phase (3yr, ) SoLiD phase (yr, 95% CL) SoLiD phase (3yr, ) STEREO (yr, 95% CL) sin ϑ ee CeSOX shape (95% CL) CeSOX rate (95% CL) CeSOX rateshape (95% CL) BEST (σ) IsoDAR@KamLAND (5yr, ) IsoDAR@C ADS (5yr, ) KATRIN (90% CL) sin ϑ ee

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3 ( ) ν µ ( ) ν e ( ) ν µ ( ) ν µ SBN (3yr, ) nuprism () JSNS () SBN (3yr, ) KPipe (3yr, ) [ev ] [ev ] m 4 m 4 PrGlo7 σ σ 4 3 sin ϑ eµ PrGlo7 σ σ sin ϑ µµ

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 3/3 Conclusions Exciting indications of light sterile neutrinos at the ev scale: LSND ν µ ν e signal. Gallium ν e disappearance. Reactor νe disappearance. Vigorous experimental program to check conclusively in a few years: ν e and ν e disappearance with reactors and radioactive sources. ν µ ν e transitions with accelerator neutrinos. ν µ disappearance with accelerator neutrinos. Independent tests through effect of m 4 in β-decay and ββ 0ν -decay. Cosmology: strong tension with N eff = and m 4 ev. It may be solved by a non-standard cosmological mechanism. Possibilities for the next years: Reactor and source experiments νe and ν e observe SBL oscillations: big excitement and explosion of the field. Otherwise: still marginal interest to check the LSND appearance signal. In any case the possibility of the existence of sterile neutrinos related to New Physics beyond the Standard Model will continue to be studied (e.g kev sterile neutrinos).

Backup Slides C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 4/3

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 5/3 MiniBooNE Low-Energy Anomaly m 4 [ev ] ν e&ν µdis ATMSUN OPERA MiniBooNE ICARUS ν edis ν µdis 4 3 sin ϑ eµ * Excess Events / MeV 0. 0.0 0. 0.4 0.6 0.8 00 400 600 800 00 0 400 E MiniBooNE ν e Data Expected Background sin ϑ =.00, m = 0.04 ev (bf) sin ϑ = 0.007, m = 0.5 ev sin ϑ = 0.00, m = 0.9 ev sin ϑ = 0.003, m = 3 ev [MeV] No fit of low-energy excess for realistic sin ϑ eµ 3 3

C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 6/3 ( ) ν µ ( ) ν e ( ) ν e ( ) ν e ( ) ν µ ( ) ν µ [ev ] [ev ] [ev ] m 4 m 4 m 4 Glo6A Glo6B Glo7 PrGlo7 3 sin ϑ eµ Glo6A Glo6B Glo7 PrGlo7 sin ϑ ee Glo6A Glo6B Glo7 PrGlo7 sin ϑ µµ

Another Analysis of SBL IceCube C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 7/3 [Collin, Arguelles, Conrad, Shaevitz, PRL 7 (06) 80 (arxiv:607.000)] SBL SBL IceCube Red: 90% CL Blue: 99% CL 3 m 4 U e4 U µ4 U τ4 N bins χ min χ null χ (dof) SBL.75 0.63 0.7-35 306.8 359.5 5.34 (3) SBLIC.75 0.64 0.9 0.00 54 58.59 568.84 50.6 (4) IC 5.6-0.34-09 07. 09.69.58 ()

Bounds on U τ4 ev m 4 0 MINOS atm MB disapp CDHS worst phases MINOS best phases τ4 U 0.8 0.6 0.4 worst phases best phases 0. 0. 0. 0.3 0.4 0.5 0.6 0.7 4 [Kopp et al, JHEP 305 (03) 050] 99 0. 0 3 U µ4 [Super-Kamiokande, PRD 9 (05) 0509] 4 (ev ) m 3 6 4 LLH8 0.30 0 0.5 99% C.L. 90% C.L. SK (05), 90 % C.L. SK (05), 99 % C.L. IceCube (06), 90 % C.L. 90% C.L. 99% C.L. - - -3 90% CL OPERA NH OPERA IH CHORUS NOMAD Uτ4 = sin θ34 cos θ4 0.0 0.5 0. 0.05 IceCube (06), 99 % C.L. -4-4 -3 - - sin θ µτ ν µ ν τ [OPERA, JHEP 506 (05) 069] 0.00 3 Uµ4 = sin θ4 0 4 6 8 LLH [IceCube DeepCore, arxiv:70.0560] C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 8/3

[Collin et al, PRL 7 (06) 80] 90% CL ϑ 34 < 6 for m 4 6 ev ϑ 34 < 80 for m 4 ev χ 0 3 4 5 6 7 8 9 [Gariazzo, CG, Laveder, Li, arxiv:703.00860] Glo6B Glo7 PrGlo7 U τ4 99.73% CL 99% CL 95.45% CL 90% CL 68.7% CL 3 90% CL Glo6A MINOS: Glo6A IceCube: Glo6B: Glo7: PrGlo7: ϑ 34 < 7 ϑ 34 < 7.3 ϑ 34 < 7.3 ϑ 34 < 5.6 ϑ 34 < 6.0 C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 9/3