EE247 Lecture 18. EECS 247 Lecture 18: Data Converters 2005 H.K. Page 1. Sampling Distortion Effect of Supply Voltage

Similar documents
EE247 Lecture 17. EECS 247 Lecture 17: Data Converters- ADC Design, Sampling 2009 Page 1. Practical Sampling Summary So Far! v IN

EE247 Lecture 18. Practical Sampling Issues

EE247 Lecture 16. Serial Charge Redistribution DAC

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture

Chapter 6 MOSFET in the On-state

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Chapter 7 Response of First-order RL and RC Circuits

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling

Lecture 28: Single Stage Frequency response. Context

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

Summary Last Lecture

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

System-On-Chip. Embedding A/D Converters in SoC Applications. Overview. Nyquist Rate Converters. ADC Fundamentals Operations

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

ES 250 Practice Final Exam

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Introduction to Digital Circuits

The problem with linear regulators

EECS 141: FALL 00 MIDTERM 2

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6

Non Linear Op Amp Circuits.

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

EE100 Lab 3 Experiment Guide: RC Circuits

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Analog Multiplexer Demultiplexer High-Performance Silicon-Gate CMOS

non-linear oscillators

ECEN 610 Mixed-Signal Interfaces

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

CHAPTER 12 DIRECT CURRENT CIRCUITS

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

AO V Complementary Enhancement Mode Field Effect Transistor

Physical Limitations of Logic Gates Week 10a

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

EE 435 Lecture 42. Phased Locked Loops and VCOs

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Silicon Controlled Rectifiers UNIT-1

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

EEEB113 CIRCUIT ANALYSIS I

8. Basic RL and RC Circuits

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

ELEC Power Electronics

Top View. Top View. V DS Gate-Source Voltage ±8 ±8 Continuous Drain Current Pulsed Drain Current C V GS I D -2.5 I DM P D 0.

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Pulse Generators. Any of the following calculations may be asked in the midterms/exam.

Chapter 4. Circuit Characterization and Performance Estimation

S G V DS V GS Pulsed Drain Current B -15 Schottky reverse voltage Continuous Forward Current A F I DM V KA

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC

2.4 Cuk converter example

Top View. Top View S2 G2 S1 G1

Lecture -14: Chopper fed DC Drives

Chapter 2: Principles of steady-state converter analysis

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

Chapter 5-4 Operational amplifier Department of Mechanical Engineering

First Order RC and RL Transient Circuits

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder

EEC 118 Lecture #15: Interconnect. Rajeevan Amirtharajah University of California, Davis

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

Basic Circuit Elements Professor J R Lucas November 2001

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

INDEX. Transient analysis 1 Initial Conditions 1

CHAPTER 6: FIRST-ORDER CIRCUITS

Zhihan Xu, Matt Proctor, Ilia Voloh

Phase Noise in CMOS Differential LC Oscillators

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

Experimental Buck Converter

Chapter 5: Control Volume Approach and Continuity Principle Dr Ali Jawarneh

ECE 2100 Circuit Analysis

Chapter 1 Fundamental Concepts

Design of Analog Integrated Circuits

LabQuest 24. Capacitors

Basic Principles of Sinusoidal Oscillators

Chapter 10 INDUCTANCE Recommended Problems:

Phys1112: DC and RC circuits

Chapter 8 The Complete Response of RL and RC Circuits

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies

Chapter 4 AC Network Analysis

V DS. 100% UIS Tested 100% R g Tested. Top View. Top View S2 G2

Cosmic Feb 06, 2007 by Raja Reddy P

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

RC, RL and RLC circuits

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Chapter 28 - Circuits

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

Lab 10: RC, RL, and RLC Circuits

( ) = Q 0. ( ) R = R dq. ( t) = I t

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

IXFK120N65X2 IXFX120N65X2

University of Toronto. Final Exam

Optimized Stage Ratio of Tapered CMOS Inverters for Minimum Power and Mismatch Jitter Product

Lecture 15: Differential Pairs (Part 2)

Transcription:

EE247 Lecure 18 ADC Converers Sampling Sampling swich induced disorion Sampling swich conducance dependence on inpu volage Sampling swich charge injecion Complemenary swich Use of dummy device Boom-plae swiching Track & hold circui T/H circui incorporaing gain EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 1 Sampling Disorion Effec of Supply Volage 10bi ADC & T/τ = 10 V DD V h = 2V V FS = 1V Effec of lower supply volage on sampling disorion HD3 increases by (V DD1 /V DD2 ) 2 HD2 increases by (V DD1 /V DD2 ) 10bi ADC & T/τ = 10 V DD V h = 4V V FS = 1V EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 2

Sampling Disorion SFDR sensiive o sampling disorion - improve lineariy by: Larger VDD Higher sampling bandwidh Soluions: Overdesign Larger swiches Increased swich charge injecion Increased nonlinear S & D juncion cap. Maximize VDD/VFS Decreased dynamic range if VDD cons. Complemenary swich Consan & max. S? f(n ) 10bi ADC T/τ = 20 V DD V h = 2V V FS = 1V EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 3 Pracical Sampling kt/c noise B 2 1 C 12kT B VFS Finie R sw limied bandwidh 1 1 R << 2 fcln 2 1 s 2 B ( ) g sw = f(n ) disorion v IN M1 Vin W g = g 1 for g µ C V V VDD V = h L ( ) ON o o ox DD h v OUT C Swich charge injecion Clock jier EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 4

Complemenary Swich g o g n o g o T =g on + g o p B g o p B Complemenary n & p swich advanages: Increase in he overall conducance Linearize he swich conducance for he range V hp < Vin < Vdd - V hn EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 5 Complemenary Swich Issues Supply Volage Evoluion Supply volage scales down wih echnology scaling Threshold volages do no scale accordingly Ref: A. Abo e al, A 1.5-V, 10-bi, 14.3-MS/s CMOS Pipeline Analog-o-Digial Converer, JSSC May 1999, pp. 599. EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 6

Complemenary Swich Effec of Supply Volage Scaling g o g o n g o T =g o n + g o p g o p B B As supply volage scales down inpu volage range for consan g o shrinks Complemenary swich no effecive when V DD becomes comparable o V h EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 7 Boosed & Consan S Sampling S =cons. OFF ON Gae volage S =low Device off Beware of signal feedhrough due o parasiic capaciors Increase gae overdrive volage as much as possible + keep S consan Swich overdrive volage independen of signal level Error due o finie R ON linear (o 1s order) Lower R on lower ime consan EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 8

Consan S Sampling (= volage @ he swich inpu erminal) EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 9 Consan S Sampling Circui VDD=3V P_N M1 M2 M3 M8 M6 VP1 100ns P C1 PB C2 C3 M12 P M4 M5 M9 VS1 1.5V 1MHz Va Vg M11 Vb Chold Sampling swich & C This Example: All device sizes:10µ/0.35µ All capacior size: 1pF EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 10

VDD=0 3V M1 0ff C1 PB 0 3V Clock Volage Doubler C2 M2 Sauraion mode 0 3V 0 (3V-V h M2 ) 0 0 M1 Triode Acquire charge C1 C2 PB 3V 0 VDD=3V M2 off 3V 0 3V (3V-V h M2 ) (6V-V h M2 ) 0 3V P P VP1 0 3V VP1 3V 0 a) Sar up b) Nex clock phase EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 11 Clock Volage Doubler M1 0ff 3V ~6V VDD=3V C1 PB 0 3V M2 C2 3V 0 M2 Triode (6V-V h M2 ) (3V-V h M2 ) ~ 3V Acquires charge Boh C1 & C2 charged o VDD afer one clock cycle P VP1 0 3V c) Nex clock phase EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 12

Clock Volage Doubler VDD=3V 2VDD M1 M2 P_Boos R1 R2 VDD C1 C2 PB P 0 VP1 Clock period: 100ns *R1 & R2=1GOhm dummy resisors added for simulaion only EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 13 Consan S Sampler: Φ LOW VDD=3V ~ 2 VDD (boosed clock) M3 Triode OFF VDD C3 M4 Sampling swich M11 is OFF VDD M12 Triode Inpu volage source OFF M11 OFF VS1 1.5V 1MHz Chold 1pF Device OFF C3 charged o VDD EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 14

Consan S Sampler: Φ HIGH M8 C3 previously charged o VDD VDD C3 1pF M9 VS1 1.5V 1MHz M11 Chold 1pF M8 & M9 are on: C3 across G-S of M11 M11 on wih consan VGS = VDD EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 15 Consan S Sampling Inpu Swich ae Chold Signal Inpu Signal EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 16

Complee Circui Clock Muliplier M7 & M13 for reliabiliy Remaining issues: -S consan only for n <V ou -Nonlineariy due o Vh dependance of M11on bodysource volage Swich Ref: A. Abo e al, A 1.5-V, 10-bi, 14.3-MS/s CMOS Pipeline Analog-o-Digial Converer, JSSC May 1999, pp. 599. EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 17 Consan Conducance Swich Ref: H. Pan e al., "A 3.3-V 12-b 50-MS/s A/D converer in 0.6um CMOS wih over 80-dB SFDR," IEEE J. Solid-Sae Circuis, pp. 1769-1780, Dec. 2000 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 18

Consan Conducance Swich OFF Ref: H. Pan e al., "A 3.3-V 12-b 50-MS/s A/D converer in 0.6um CMOS wih over 80-dB SFDR," IEEE J. Solid-Sae Circuis, pp. 1769-1780, Dec. 2000 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 19 Consan Conducance Swich M2 Consan curren consan g ds ON M1 replica of M2 & same VGS as M2 M1 also consan g ds Ref: H. Pan e al., "A 3.3-V 12-b 50-MS/s A/D converer in 0.6um CMOS wih over 80-dB SFDR," IEEE J. Solid-Sae Circuis, pp. 1769-1780, Dec. 2000 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 20

Advanced Clock Boosing Technique Ref: M. Walari e al., "A self-calibraed pipeline ADC wih 200MHz IFsampling fronend," ISSCC 2002, Dig. Tech. Papers, pp. 314 Sampling Swich EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 21 Advanced Clock Boosing Technique clk low Sampling Swich clk low Capaciors C1a & C1b charged o VDD MS off Hold mode EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 22

Advanced Clock Boosing Technique clk high Sampling Swich clk high Top plae of C1a & C1b conneced o gae of sampling swich Boom plae of C1a conneced o V IN Boom plae of C1b conneced o V OUT VGS & VGD of MS boh @ VDD & ac signal on n3 average of V IN & V OUT EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 23 Advanced Clock Boosing Technique Ref: M. Walari e al., "A self-calibraed pipeline ADC wih 200MHz IFsampling fronend," ISSCC 2002, Dig. Tech. Papers, pp. 314 Sampling Swich Gae racks average of inpu and oupu, reduces effec of I R drop a high frequencies Bulk also racks signal reduced body effec (echnology used allows connecing bulk o S) Repored measured SFDR = 76.5dB a f in =200MHz EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 24

Swich Off-Mode Feedhrough Cancellaion Ref: M. Walari e al., "A self-calibraed pipeline ADC wih 200MHz IF-sampling fronend," ISSCC 2002, Dig. Techn. Papers, pp. 314 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 25 Pracical Sampling M1 C V o R sw = f( ) disorion Swich charge injecion EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 26

Sampling Swich Charge Injecion V H +V h M1 V O V L V O DV C s off Firs assume is a DC volage When swich urns off offse volage induced on C s Why? EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 27 Sampling Swich Charge Injecion MOS xor operaing in riode region Cross secion view L D C ov Disribued channel resisance & gae & juncion capaciances G C ov L S D C HOLD C j sb B C j db Channel disribued RC nework Channel o subsrae juncion capaciance disribued & variable Over-lap capaciance C ov = L D xwxc ox associaed wih GS & GD overlap EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 28

Swich Charge Injecion Slow Clock V H +V h V L - off Slow clock clock fall ime >> device speed During he period (- o off ) curren in channel discharges channel charge ino low impedance signal source Only source of error Charge ransfer from C ov ino C s EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 29 Swich Charge Injecion Slow Clock VG V H C ov +V h D ov s C s Cov V = V + V V C + C ( ) i h L V L V O DV Cov V h V L Cs ( ε ) ( ) + V = V 1+ + V o i os - off Cov C where ε = ;V = V V C s ( ) ov os h L Cs EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 30

Swich Charge Injecion Slow Clock- Example 12m/0.35m M1 VO V H +V h C s =1pF ' 2 ov µ ox µ h C = 0.3fF/ C = 5fF/ V = 0.5V V L V O DV Cov 12µ x0.3ff/ µ ε = = =.36% 7 bi C 1pF s Cov Vos = ( Vh VL) = 1.8mV C s - off EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 31 Swich Charge Injecion Fas Clock M1 VO V H +V h C s =1pF V L V O DV Sudden gae volage drop no gae volage o esablish curren in channel channel charge has no choice bu o escape ou owards S & D off EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 32

Swich Charge Injecion Fas Clock Cov 1 Q Vo= ( VH VL) C + C 2 C ov s s Cov 1 WCox( L 2LD )(( VH Vi Vh) ) ( VH VL) C + C 2 C ov s s V = V ( 1+ ε ) + V o i os 1 WCoxL whereε = 2 C s ch V H V L V O +V h DV Cov 1 WCoxLV ( H Vh) Vos = ( VH VL) C 2 C s s Assumpion channel charge divided equally beween S & D Source of error channel charge ransfer + charge ransfer from C ov ino C s off EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 33 Swich Charge Injecion Fas Clock- Example 12m/0.35m M1 VO C s =1pF V H V IN +V h 2 ov µ ox µ h DD C = 0.3fF/ C = 5fF/ V = 0.5VV = 3V WLCox 12µ x0.35x5ff/ µ ε = 1/2 = = 2.1% 4.5 bi C 1pF s Cov 1 WCoxLV ( H Vh) Vos = ( VH VL) = 9mV 26.3mV = 45.3mV C 2 C s s V L V O off DV EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 34

Swich Charge Injecion Example-Summary 2.1% e 45mV V OS.36% Clock fall ime 1.8mV Clock fall ime Error funcion of: Clock fall ime Inpu volage level Source impedance Sampling capaciance Swich size EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 35 How do we reduce he error? Reduce swich size? 1Qch Vo = 2Cs Cs τ = RONCs = W µ Cox ( VGS Vh) L Swich Charge Injecion Error Reducion Consider he figure of meri (FOM): Cs 1 WCoxL( ( VH Vi Vh) ) FOM = τ Vo W µ Cox ( VGS Vh) 2 Cs L 2 L FOM µ Reducing swich size increases τ increased disorion no a viable soluion Small τ and small V use minimum chanel lengh For a given echnology τ x V=cons. EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 36

Sampling Swich Charge Injecion Summary Exra charge injeced ono sampling capacior @ swich device urn-off Charge sharing wih C ov Channel charge ransfer Issues: DC offse Inpu dependan error volage disorion Soluions: Complemenary swich? Addiion of dummy swiches? Boom-plae sampling? EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 37 Swich Charge Injecion Complemenary Swich V H B V L B In slow clock case if area of n & p devices are equal effec of overlap capacior for n & p devices o firs order cancel (maching n & p widh and L) EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 38

Swich Charge Injecion Complemenary Swich Fas Clock ( ) Q = WC L V V V ch n n ox n H i h n ch p p ox p i L ( Vh p) Q = WC L V V V H 1 Q Q Vo 2 Cs Cs ch p ch n V L V = V ( 1+ ε ) + V o i os 1 WC L + WC L ε 2 C n ox n p ox p s In fas clock case Offse cancelled for equal device widh Inpu volage dependan error worse! B EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 39 Swich Charge Injecion Dummy Swich B M1 M2 V O V H B W M2 =1/2W M1 C s V L Dummy swich same L as main swich bu half W Main device clock goes low, dummy device goes high dummy swich acquires same amoun of channel charge main swich needs o lose Effecive only if exacly half of he charge ransferred o M2 and requires good maching beween clock fall/rise EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 40

Swich Charge Injecion Dummy Swich R M1 B M2 W M2 =1/2W M1 VO C s C s To guaranee half of charge goes o each side creae he same environmen on boh sides Add capacior equal o sampling capacior o he oher side of he swich + add fixed resisor o emulae inpu resisance of nex circui Issues: Degrades sampling bandwidh EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 41 Dummy Swich Effeciveness Tes Dummy swich W=1/2W main Noe large Ls good device area maching Ref: L. A. BIENSTMAN e al, An Eigh-Channel 8 13i Microprocessor Compaible NMOS D/A Converer wih Programmable Scaling, IEEE JSSC, VOL. SC-15, NO. 6, DECEMBER 1980 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 42

Swich Charge Injecion Boom Plae Sampling b M1A V O+ + Cs a V H V L b M2A V O- - M1B Cs a M2B Swiches M2A@ B are opened slighly earlier compared o M1A&B Injeced charge by he opening of M2AB is consan & eliminaed when used differenially Since boom plae of C s is open when M1A&B are opened no charge injeced on C s EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 43 Flip-Around Track & Hold S2A D D D C S3 v IN S1A S2 v OUT S1 Concep based on boomplae sampling v CM EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 44

Flip-Around T/H S2A D D D C S3 v IN S1A S2 v OUT S1 v CM Concep based on boom-plae sampling EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 45 Flip-Around T/H S2A D D D C S3 Charging C v IN S1A S2 v OUT S1 v CM EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 46

Flip-Around T/H S2A D D D C S3 Holding v IN S1A S2 v OUT S1 v CM EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 47 Flip-Around T/H - Timing S2A D D D C S3 Sampling v IN S1A S2 v OUT S1 S1 opens earlier han S1A "Boom Plae Sampling" v CM EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 48

Charge Injecion A he insan of sampling, some of he charge sored in sampling swich S1 is dumped ono C Wih "Boom Plae Sampling", charge injecion comes only from S1 and is o firs-order independen of v IN Only a dc offse is added o he inpu signal This dc offse can be removed wih a differenial archiecure EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 49 Flip-Around T/H Consan swich S o minimize disorion S2A D D D C S3 v IN S1A S2 v OUT S1 v CM EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 50

Small Nch-only Flip-Around T/H S2A D D D C S3 v IN S1A S2 v OUT S1 v CM EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 51 Flip-Around T/H S1 is an n-channel MOSFET Since i always swiches he same volage, i s onresisance, R S1, is signal-independen (o firs order) Choosing R S1 >> R S1A minimizes he non-linear componen of R = R S1A + R S1 S1A is a wide (much lower resisance han S1) consan S swich In pracice size of S1A is limied by he (nonlinear) S/D capaciance ha also adds disorion If S1A s resisance is negligible delay depends only on S1 resisance S1 resisance is independen of v IN delay is independen of v IN EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 52

Differenial Flip-Around T/H S11 S12 Offse volage associaed wih charge injecion of S11 & S12 cancelled by differenial naure of he circui Ref: W. Yang, e al. A 3-V 340-mW 14-b 75-Msample/s CMOS ADC Wih 85-dB SFDR a Nyquis Inpu, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001 1931 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 53 Differenial Flip-Around T/H Gain=1 f2 Feedback facor=1 n-cm =V ou_com -V sig_com Amplifier needs o have large inpu common-mode compliance EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 54

Differenial Flip-Around T/H Choice of Sampling Swich Size THD simulaed w/o sampling swich boosed clock -45dB THD simulaed wih sampling swich boosed clock (see figure) Ref: K. Vleugels e al, A 2.5-V Sigma Dela Modulaor for Broadband Communicaions Applicaions IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001, pp. 1887 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 55 Inpu Common-Mode Cancellaion Ref: R. Yen, e al. A MOS Swiched-Capacior Insrumenaion Amplifier, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-17, NO. 6,, DECEMBER 1982 1008 EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 56

Inpu Common-Mode Cancellaion Track mode (φ high) V C1 =V I1, V C2 =V I2 V o1 =V o2 =0 Hold mode (φ low) V o1 +V o2 =0 V o1 -V o2 = -(V I1 -V I2 )(C 1 /(C 1 +C 3 )) Inpu common-mode level removed EECS 247 Lecure 18: Daa Converers 2005 H.K. Page 57