CMOS ANANLOG INTEGRATED FILTERS

Similar documents
Discrete-Time Filter (Switched-Capacitor Filter) IC Lab

Flyback Converter in DCM

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Why working at higher frequencies?

Electrical Engineering Department Network Lab.

Copyright 2004 by Oxford University Press, Inc.

University of Toronto. Final Exam

55:041 Electronic Circuits

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

EE 508 Lecture 7. Degrees of Freedom The Approximation Problem

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.

Physics Courseware Electronics

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

Transfer Characteristic

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

55:041 Electronic Circuits

EE C245 ME C218 Introduction to MEMS Design

ELEN 610 Data Converters

Week 11: Differential Amplifiers

Lectures on APPLICATIONS

Prof. Paolo Colantonio a.a

Lecture 27 Bipolar Junction Transistors

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Homework Assignment 11

Multiple-input-multiple-output log-domain universal biquad filter

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Chapter 7: IIR Filter Design Techniques

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

ECE503: Digital Signal Processing Lecture 5

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014

Monolithic N-Channel JFET Dual

Deliyannis, Theodore L. et al "Two Integrator Loop OTA-C Filters" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999

Reliable Power Delivery for 3D ICs

Differential Phase Shift Keying (DPSK)

Electronic Circuits EE359A

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

2N5545/46/47/JANTX/JANTXV

Op-Amp Circuits: Part 3

College of Engineering Department of Electronics and Communication Engineering. Test 2

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

55:141 Advanced Circuit Techniques Two-Port Theory

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

EE482: Digital Signal Processing Applications

Electronic Circuits EE359A

II. PASSIVE FILTERS. H(j ω) Pass. Stop

Design of Analog Integrated Circuits

Graphical Analysis of a BJT Amplifier

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

VI. Transistor Amplifiers

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book

Monolithic N-Channel JFET Duals

Lecture 5: Operational Amplifiers and Op Amp Circuits

Microgrid Fundamentals and Control. Jian Sun, Professor and Director New York State Center for Future Energy Systems (518)

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

V V. This calculation is repeated now for each current I.

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

Energy Storage Elements: Capacitors and Inductors

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

Key component in Operational Amplifiers

ELG3336: Op Amp-based Active Filters

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Circuit Noise Interference on Sampling Clock and Its Effect on A/D Conversion

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

MPSA13 MPSA14 CASE 29-02, STYLE 1 TO-92 (TO-226AA) DARLINGTON TRANSISTOR MAXIMUM RATINGS THERMAL CHARACTERISTICS ON CHARACTERISTICS) 1) NPN SILICON

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz.

Homework Assignment 08

SYNTHESIS OF MICROWAVE RESONATOR DIPLEX- ERS USING LINEAR FREQUENCY TRANSFORMATION AND OPTIMIZATION

Monolithic N-Channel JFET Dual

ELCT 503: Semiconductors. Fall 2014

55:141 Advanced Circuit Techniques Two-Port Theory

( ) = ( ) + ( 0) ) ( )

Logic effort and gate sizing

Highly-Efficient Multi-Coil Wireless Power Transfer (WPT)

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Monolithic N-Channel JFET Dual

DESIGN AND ANALYSIS OF NEGATIVE VALUE CIRCUIT COMPONENTS IN PSPICE SIMULATION SOFTWARE

NON-LINEAR CONVOLUTION: A NEW APPROACH FOR THE AURALIZATION OF DISTORTING SYSTEMS

Oversampling Converters

Pulse Coded Modulation

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions

I 2 V V. = 0 write 1 loop equation for each loop with a voltage not in the current set of equations. or I using Ohm s Law V 1 5.

Neuromorphic Cochlear Implant

FFT Based Spectrum Analysis of Three Phase Signals in Park (d-q) Plane

Introduction to Surface Acoustic Wave (SAW) Devices

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

A random variable is a function which associates a real number to each element of the sample space

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

Coarse-Grain MTCMOS Sleep

LM148 Low Power Quad 741 Operational Amplifier

Grades will be determined by the correctness of your answers (explanations are not required).

Transcription:

MOS ANANLO INTERATED FILTERS. 7. 5. JOONHO HOI Department of Electrcal Engeerg Unversty of Seoul jcho@ee.uos.ac.kr

OUTLINE Introducton to Analog Integrated Flters Introducton to Transconductance (m)- Flters Transconductance rcuts Hgh-Order m- Flters Desgn Issues for m- Flters Desgn Examples Introducton to Swtched-apactor (S) Flters Swtched-apactor Integrators Hgh-Order S Flters Desgn Issues for S Flters Desgn Examples Smulaton Exercses

Introducton

Mxed-Sgnal Systems Pre-Amp Rx-Flter Analog Meda A A AD DA DSP & MU Dgtal Data Drver Tx-Flter AFE Performance Performance Requrements Requrements Pre-Amp Rx-Flter AFE AFE < AFE AFE AD D Analog Meda DA D DSP & MU Dgtal Data Drver AFE Tx-Flter

Analog Integrated Flters Analog Flters vs Dgtal Flters :-) Speed, Power Dsspaton, Slcon Area :-( Dynamc Range, Programmablty, ontrollablty ontuous-tme Flters m- Flter, MOSFET- Flter, Actve R- Flter, No Pre- & Post- Processg Requred Tung rcuts Requred Dscrete-Tme Flters Swtched-apactor (S) Flter, Swtched-urrent Flter Pre- & Post- Processg Requred Desrably Accurate

Flter Frequency Response Magntude haracterstcs H(f) A S A P f Phase haracterstcs f S f P f P f S Operatg Types Lowpass, Hghpass, Bandpass, Bandreject, Allpass Frequency Transformaton from LPF Prototype Response Types Butterworth, hebyshev (I,II), Ellptc, Equrpple

Hgh- Order Flter Implementaton ascadg of Bquad Blocks X(z) H (z)... H (z)... H N/ (z) Y(z) H(z) H (z)...h (z)...h N/ (z) H N ( z ) H ( z ) N b a z a z b z z b a Easy Adjustment of Frequency haracterstcs Pole/Zero Par Matchg Bquad Permutaton a Dstrbuton

Hgh- Order Flter Implementaton RL Prototype X(s) R S I L L 4 V V 3 I I 4 3 R L Y(s) I 4 I I V V 3 ( X V ) R S ( I I ) s ( V V 3 ) sl ( I I ) s 4 3 ( V I R ) sl 3 4 L Implemented wth Many Integrators Less Senstve to Varatons of omponents Easy to Obta Frequency Transformaton Impedance Transformaton

ontuous- Tme Flter Response H(s) X(s) Y(s) b a s s M N b a s s M N L L b a M N s b s a M N 5 H(f) [db] - -4-6 -8 - - 4 6 8 f [Hz] magary f [MHz] 4 3 - - -3-4 -5 -.5.5 real f [MHz]

Dscrete- Tme Flter Response H ( z) N D M M- ( z) b z b z L b z b M M N ( z) a z a z N- L a z a M M H( ω) [db] - -4-6 -8 - magary ω.8.6.4. -. -.4 -.6 -.8 -.p.4p.6p.8p p ω - - -.5.5 real ω

ontuous-tme Flter (m- Flter)

m Amplfer Bascs Transconductance (m) Amplfer v v - - m v v - - m - Sgle-Ended Fully-Dfferental Transconductance Amplfer haracterstcs Learty I/O Impedances v Operatg (Dynamc) Range Frequency haracterstcs Electrcally Programmable m Value R m, R m ( v v )

m Amp rcut Examples Smple Dfferental Par Example v M M v x v - β β ( v v V ) ( v v V ) x x TH TH I SS I SS β v ISS β v o - I SS for large I SS, small β & v m v v -v - βi SS β m I SS v -I SS

Dfferental Par w/ Degenerate Resstor Example - v M M v V R R I B I B R R I B R IB M R v v gs R R R v gs { v ( v v )} v gs gs for large β and small - ( V β) ( V β) β( ) v v gs gs TH TH m v v R

Dfferental Par w/ Degenerate Resstor & Feedback Example V DD I B I B M 5 M 6 v M M v - I B - o V I B o M 9 o M 7 M 3 M 4 M 8 I B I B V SS Negatve feedback loops (M -M 5 -M 3 & M -M 6 -M 4 ) forces constant currents I B to flow through M and M v gs v gs

T Amp usg MOS Saturaton urrent Saturaton MOSFET ds β ( v V ) gs TH Basc Prcple A B ( A B) ( A B) k ( v v ) omposte Transstor I D β eq ( V V ) Seq THeq M M v v V Seq - M n M p I D V V β Seq THeq eq V V SN THN N P ( β β ) N V β V SP β THP P M - 3 M 4 β eq - V FV V FV [ V V ] ( v v ) FV THeq

T Amp usg MOS Lear urrent Saturaton MOSFET ds β ( v V ) v v gs TH ds ds Basc Prcple ( A ) ( B ) A B v v Example p m p m ( ) ( ) ( ) ( ) 3 4 4 3 V 3 4 M M M V 3 M 4 A V A M A V A V 4 B β ( V V V )( V V ) ( V V ) B B TH B B B B I BIAS V B V B M B V B I BIAS 3 A β ( V V V )( V V ) ( V V ) A A TH A A A A V SS

m- Integrator KL H(ω) v v - - m v -6dB/dec ω unty db ω H(s) ω unty v v m m s <H(ω) o ω crtcal crtcal parameters parameters to to determe determe flter flter frequency frequency characterstcs characterstcs -9 o

st - Order m- Flter X m - V (s) - m A KL V (s) ( ) H s V V X s ( s) A X A X k s k ( s) s ω s A m X m m m X k ω k k ( ) A X ( ) A A X

nd - Order m- Flter (Bquad) KL V (s) - m4 A A m - - m B m3 - V (s) X B KL - m5 ( ) H s V V ( s) ( s) B X m 5 s s X B X A m 3 m s s B X A B ( ) ( ) m m B X m 4 X k s s k s k ω s ω Q

haracterstc Functon Flterg Operatons Lowpass k k Hghpass k k Bandpass k k s Q s r denomato ω ω ( ) X B A m m ω A X B m 3 m m Q ( ) X B A m 4 m X B m 5 X B X k k k

Hgh- Order m- Flter w/ Bquads 6th-order Ellptc BPF Passband : 48kHz~5kHz Passband Rpple : <.5dB Stopband Attenuaton : > 8dB - -4-6 -8-4 5 6 7 H (s) m m 7.6µ, m3.8µ m4 4.8µ, m5 µ A B 5p, X.39p H (s) m m 6.9µ, m3.5µ m4.µ, m5 µ A B 5p, X.39p H 3 (s) m m 4.89µ, m3.67µ m4 µ, m5.89µ A B 5p, X p

Hgh- Order m- Flter from RL R S L L 4 X(s) V V 3 Y(s) X(s) I V V 3 I I 4 3 R L Y(s) - - - t A S - t - t 3 t 4 V V V 4 I 4 I I V V 3 ( X V ) R V A ( X V ) S S ( I I ) s V ( V V ) sτ ( V ) V3 sl V ( ) V V3 sτ ( I ) I4 s ( ) 3 V 3 V V4 sτ ( V ) 3 I 4R L sl ( ) V 4 V 3 Y sτ4 3 Frequency Transformaton & Impedance Transformaton Requred

Non- Idealtes Fte Output Resstance ( ) H s R m sr Fte D a : BPF, HPF Reduced Phase (>-9 o ): Q decreases ascode Output Stage & ompensaton Technque Fte Parastc Pole Frequency ( ) H s m R sr s p t ernal Increased Phase (<-9 o ): Q creases areful Desgn Input apactance Loadg Frequency hange ( ) H s s m ( ) put Dummy ells

Learty Problems Nonlearty I 3 ( t) a V ( t) a [ V ( t) ] a [ V ( t) ] L 3 Harmonc Dstorton ( t) A s ( ω t) V ( t) I s ( ω t) I s ( ω t) I s ( 3ω t) L I 3 THD [db] I I I L 3 4 log I Inter Modulaton Dstorton V ( t) A[ s ( ω t) s ( ω t) ], ω ω IMD ω ω, ω -ω IMD3 ω ω, ω ω, ω -ω, ω -ω,

Dynamc Range Performance IIP3 : Input-Referred Thrd-Order Intercept Pot IP db : Input-Referred -db ompresson Pot SFDR : Spurous-Free Dynamc Range V OUT [dbm] db Fundamental IIP3 V IN [dbm] SFDR IP db N O IMD3

m Varatons Values of m mght change due to process varaton, temperature, agg,. Notch Flter - - -3 TT : SS : FF : freq. freq. change change Q change change [db] -4-5 -6 5 6 7 8 9 Freq. [MHz] Trmmg after chp fabrcaton possble, but one-tme event.

On- hp Tung Example for Bquad H (s ) s D (s ) ω s Q ω V IN phase comparator LPF V ωo ω REF PLL w ω O VO flter H(s ; ω O,Q) ampltude comparator LPF V Q V REF MLL Q V O Q reference ckt. V OUT

Recent Advance Example 55 Mbps Equalzer for Magnetc Storage Read hannels. mm 4-pole & -zero Equalzaton for Peak-Detect Scheme.8 mm.-µm MOS Technology SNR > 57 db, THD < % Power 4 mw ULA ( IEEE JSS, 994)

Recent Advance Example 7-th Order Equrpple m- Flter.4-µm MOS Technology f cutoff 5 MHz THD < %, Power mw (3 V) Htach ( IEEE ISS, 997)

Recent Advance Example 3 Rased-ose Matched Flter for 48 MHz QPSK Demodulator for DBS Analog Devces ( IEEE ISS, 997)

Recent Advance Example 4 6th-order BPF for J-PD x 8th-order BPF Average of f o : 45.5kHz σ of f o :.5kHz Tung Range of f o : 4~77kHz.35-µm MOS Power : 4.8mA @.5V Actve Area :.5mm Fujtsu ( IEEE ISS, 999)

Recent Advance Example 5 7th-order Equrpple roup Delay LPF 3 x Bquads f 3dB : 45.5kHz f 3dB Accuracy: % roup Delay Acc. : 5%.5-µm MOS Power Supply :.5V hp Area : 3mm Texas Instruments ( IEEE ISS, 999)