Any first year text, sections on atomic structure, spectral lines and spectrometers

Similar documents
The Quantum Model of the Hydrogen Atom

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra

Physics 23 Fall 1998 Lab 4 - The Hydrogen Spectrum

Laboratory #29: Spectrometer

THE DIFFRACTION GRATING SPECTROMETER

HYDROGEN SPECTRUM. Figure 1 shows the energy level scheme for the hydrogen atom as calculated from equation. Figure 1 Figure 2

The Grating Spectrometer and Atomic Spectra

The Grating Spectrometer and Atomic Spectra

PC1144 Physics IV. Atomic Spectra

Physics 24, Spring 2007 Lab 2 - Complex Spectra

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

The Emission Spectra of Light

ATOMIC SPECTRA. Objective:

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

EXPERIMENT 14. The Atomic Spectrum of Hydrogen

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION

Atomic Spectra. d sin θ = mλ (1)

DISPERSION OF A GLASS PRISM

HYDROGEN SPECTRUM = 2

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp.

Pre-lab Quiz/PHYS 224. Your name Lab section

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008

10. Wavelength measurement using prism spectroscopy

University of Massachusetts, Amherst

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 14. The Atomic Spectrum of Hydrogen

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction

Visible Spectrometer

Rydberg constant from atomic spectra of gases

LAB 12 ATOMIC SPECTRA

Atomic Spectra 1. Name Date Partners ATOMIC SPECTRA

Visible Spectrometer

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

Atomic Spectroscopy. Absorption and Emission Spectra. Lodovico Lappetito. SpettroscopiaAtomica - 15/07/2015 Pag. 1

Experiment #5: Cauchy s Formula

Atomic spectra of one and two-electron systems

Experiment 24: Spectroscopy

high energy state for the electron in the atom low energy state for the electron in the atom

Atomic emission spectra experiment

Atomic Spectra HISTORY AND THEORY

Department of Physics, Colorado State University PH 425 Advanced Physics Laboratory The Zeeman Effect. 1 Introduction. 2 Origin of the Zeeman Effect

EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer

Experiment #9. Atomic Emission Spectroscopy

Observation of Atomic Spectra

Dispersion of light by a prism

n(λ) = c/v(λ). Figure 1: Dispersion curves for some common optical glass types.

LAB 10: OPTICAL MATERIALS AND DISPERSION I

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

Atomic Spectra & Electron Energy Levels

Dispersion and resolving power of the prism and grating spectroscope (Item No.: P )

Optical Spectroscopy and Atomic Structure. PHYS 0219 Optical Spectroscopy and Atomic Structure 1

Atomic Spectra. Eric Reichwein David Steinberg Department of Physics University of California, Santa Cruz. August 30, 2012

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

EXPERIMENT 17: Atomic Emission

Experiment #4: Optical Spectrometer and the Prism Deviation

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps

Lab report 30 EXPERIMENT 4. REFRACTION OF LIGHT

Atomic Emission Spectra

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Emission Spectrum of Atomic Gases. Prelab Questions

Operating Instructions Spectro-Goniometer Student. 1 Functional Elements. 2 Safety Precautions. Figure 1: Spectro-Goniometer Student

Stellar Astrophysics: The Interaction of Light and Matter

THE ZEEMAN EFFECT PHYSICS 359E

EMISSION SPECTROSCOPY

Spectrum of Hydrogen. Physics 227 Lab

Note: Common units for visible light wavelengths are the Angstrom (Å) and the nanometer (nm).

Emission Spectroscopy

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 133 PROFESSOR: SHER. Atomic Spectra. Benjamin Stahl

Diffraction of light by a grating

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY

Determination of Cauchy s Contants

Note to 8.13 students:

Instruction Manual and Experiment Guide for the PASCO scientific Model SP E 2/96 STUDENT SPECTROMETER. Copyright January 1991 $7.

For more sample papers visit :

Atomic Spectroscopy. Objectives

where n = (an integer) =

Experiment 7: Spectrum of the Hydrogen Atom

10.1 Introduction: The Bohr Hydrogen Atom

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

Geometric Optics. Scott Freese. Physics 262

Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone

Chemistry 212 ATOMIC SPECTROSCOPY

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Quantum Physics Objective: Apparatus:

Chapter 37 Early Quantum Theory and Models of the Atom

Experiment O-2. The Michelson Interferometer

Laboratory Exercise. Quantum Mechanics

Introduction. Procedure and Data

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

PHYSICS PAPER 1 (THEORY)

DISPERSION AND SPECTRA CHAPTER 20

ARC SPECTRUM OF IRON /COPPER / BRASS

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating.

Early Quantum Theory and Models of the Atom

Transcription:

Physics 33 Experiment 5 Atomic Spectra References Any first year text, sections on atomic structure, spectral lines and spectrometers Any modern physics text, eg F.K. Richtmeyer, E.H. Kennard and J.N. Cooper, Introduction to Modern Physics, 6th ed., McGraw-Hill (1969) pp. 33-39 Gaertner-Peck Spectrometer Manual (available in the lab). Introduction The emission of light from atoms only at definite spectral frequencies demonstrates that atomic electrons exist in distinct energy levels. In the Bohr model of the atom the energy of an electron in an energy level designated by a principal quantum number n (n = 1,,3,...) is given by: E n = µe4 Z 8ε o h n where µ is the reduced mass of the electron µ = m 1+ m / M for an electron of mass m in orbit about a nucleus of mass M, e is the electron charge, Z is the atomic number of the atom, ε o is the permittivity of free space and h is Planck's constant. When an electron makes a transition from a higher to a lower energy level it may give off energy in the form of a quantum of radiation whose energy h ν is equal to the difference in energy of the two energy levels. If the quantum numbers of the lower and higher energy levels are n and respectively (n < ), then hν = E n1 E n = µe4 Z 1 8ε o h n 1 where ν is the frequency of the radiation emitted.

Physics 33 Quite often the frequency of the emitted spectral line is measured in wavenumbers ν, where ν = 1 λ = ν c = µe4 Z 1 8ε o h 3 c n 1 = R Z 1+ m M 1 n 1 = R M Z 1 n 1 The factor R is called the Rydberg constant and would be correct if the mass of the nucleus were infinite; R M is the Rydberg constant corrected for the reduced mass of the system. The energy level diagram of hydrogen, for which Z = 1, is shown in Figure 1. We see here that the wavelengths (or wavenumbers) of the hydrogen spectrum can be grouped into series, each characterized by the quantum number n of the lowest energy level. The Lyman series corresponds to n =1, the Balmer series to n =, etc. n= n=4 n=3 n= continuum Paschen (i.r.) Balmer series (visible) 0, Energy, ev -0.85-1.5-3.39 Balmer Series λ α = 656.8 nm λ β = 486.13 nm λ γ = 434.05 nm λ = 410.17 nm δ Lyman series (u.v.) n=1-13.6 Fig. 1 Energy level diagram for hydrogen.

Physics 33 3 In this experiment you will use a grating spectrometer to measure the hydrogen spectrum and so to determine the Rydberg constant. If parallel light of wavelength λ is incident normally on a diffraction grating, then the transmitted light has a diffraction pattern which consists of a number of sharp beams at angles θ such that d sin(θ) = m λ, where m is defined as the order of the spectrum and d is the spacing between the grating rulings. Knowing d and measuring θ allows you to determine the wavelengths in the spectrum. Apparatus Spectrometer and diffraction grating Gauss eyepiece and mirror sodium lamp discharge tube power supply and gas discharge tubes: hydrogen and unknown elements Experiment 1. Alignment of the spectrometer The spectrometer used in this experiment is shown in Figure. It consists of a collimator, a telescope, a rotatable table, and a scale. Careful alignment is essential to the success of the experiment. When making measurements the table must be locked so that it is fixed relative to the scale and the scale must be locked so that it is fixed relative to the base. There is a screw which permits fine adjustments of the scale position once the scale is locked. The telescope may be rotated about a central vertical axis. This rotation can be measured precisely by means of the scale. The telescope may be rotated by hand or locked and rotated by means of a screw for fine positioning. Rotatable table Collimator Slit Focussing knob Grating mount Telescope Scale Focussing knob Eyepiece Locking screws Fig. The spectrometer.

4 Physics 33 Setting up the spectrometer before taking data involves: a) focussing the telescope for parallel light, b) focussing the collimator for parallel light, c) adjusting the collimator and telescope so that their axes are coincident and perpendicular to the axis of rotation, d) mounting the diffraction grating, e) illuminating the slit a) Focussing the telescope Focussing the telescope can be done with the regular eyepiece used while taking data (see the spectrometer manual), but a better procedure involves using a Gauss eyepiece and a flat mirror. After the spectrometer has been aligned the Gauss eyepiece should be removed and replaced with the regular eyepiece. The Gauss eyepiece is shown in Figure 3. A thin piece of glass, D, is located between the lenses of the eyepiece, L1 and L, at an angle of 45 degrees to the optic axis. This acts as a partial mirror which reflects light from the small lamp along the telescope axis towards the objective. This illuminates the crosshairs. lens L1 telescope crosshairs D lens L eye lamp Fig. 3 The Gauss eyepiece in the telescope. Place the mirror in the grating mount on the spectrometer table. Remove the regular eyepiece and insert the Gauss eyepiece. Focus the Gauss eyepiece on the crosshairs by sliding it in or out of its holder. The eyepiece may be regarded as a simple magnifier. The telescope must now be adjusted so that the crosshairs are in the focal plane of the objective lens. This is a critical adjustment. The position of the focal plane relative to the crosshairs is adjusted by means of the focussing knob on the telescope. The objective lens will form an image of the crosshairs. When the light from this image is reflected from the mirror an image of the crosshairs will be reflected back through the objective lens of the telescope. If the crosshairs are positioned in the focal plane of the objective lens then the reflected image will also be in the focal plane. Thus an observer will see the crosshairs and their image approximately superposed. If the crosshairs are closer to the objective than the focal plane the image will be further from the objective and vice versa. Whether the crosshairs and their image lie in the same plane can be determined by moving the eye across the eyepiece and watching for any relative motion (parallax) of

Physics 33 5 the image and the crosshairs. No relative motion means that the telescope is correctly focussed. Adjust the focussing knob until there is no parallax between the crosshairs and the image. b) Focussing the collimator The Gauss eyepiece is not needed for this adjustment but it may be left in the instrument. Remove the mirror from the grating mount. Make the slit narrow and illuminate it. Aim the telescope so that the fixed edge of the slit is lined up with the crosshairs. The collimator is focussed by moving the slit by means of the focussing knob on the collimator. Correct focus occurs when there is no parallax between the slit image and the crosshairs. c) Setting the telescope axis in a horizontal plane and levelling the collimator The student may assume that these operations have already been done. d) Mounting the diffraction grating HANDLE THE GRATING CAREFULLY, DO NOT TOUCH THE RULED SURFACE. Place the grating in the mount on the rotating table. The table must then be adjusted so that light from the collimator is incident normally on the grating. This is accomplished by rotating and tilting the table. There are three screws on the table which allow tilting. Arrange the telescope to look directly at the slit and lock it in this position. Using the Gauss eyepiece adjust the screws so that the image of the crosshairs, reflected from the grating surface, is at the same height as the crosshairs. The image may be difficult to see but it is there. Then rotate the table until the crosshairs and the image are coincident. Lock the table and scale in this position. e) Illuminating the slit The light source should be positioned so that the slit is completely illuminated. The width of the spectral lines seen through the telescope is determined by the width of the slit. A narrow slit makes setting of the crosshairs more accurate. A wider slit allows more light through and gives brighter lines. This is useful when looking at weaker lines. Remove the Gauss eyepiece and slide the original eyepiece in until the crosshairs are in focus. This will not affect the focus of the telescope.. Measurement of the grating spacing Using the sodium lamp as a light source measure the position of the sodium lines in first and second order on both sides of the zero order line. If the angles on the two sides are not the same you should check the alignment of the spectrometer. Using the known value for the wavelengths of the sodium doublet, determine the grating spacing by using d sin(θ) = m λ.

6 Physics 33 3. Determination of the Rydberg constant DISCHARGE TUBES SHOULD BE OPERATED ONLY WHEN OBSERVING THE SPECTRUM. The tubes have a short life if operated continuously. Replace the sodium lamp with the hydrogen discharge tube and measure the spectrum. The Balmer series lines are given by: 1 ν = 1 λ = R H 1 n A plot of 1 λ versus ( 1 1 n ) should yield a straight line. Fit the best straight line to the points and determine R H from the slope of this line. 4. Identifying the unknown elements from their spectra Measure the spectra of the two sources, Unknown A and Unknown B, and identify them. A list of prominent wavelengths is given in the Handbook of Chemistry and Physics.