General Aspects I: What is a cloud?

Similar documents
CLAVR-x is the Clouds from AVHRR Extended Processing System. Responsible for AVHRR cloud products and other products at various times.

SAFNWC/MSG SEVIRI CLOUD PRODUCTS

Applications of the SEVIRI window channels in the infrared.

Cloud screening and snow detection with MERIS. Rene Preusker, Jürgen Fischer, Carsten Brockmann, Marco Zühlke, Uwe krämer, Anja Hünerbein

Cloud masking as cross-cutting issue

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) Mireya Etxaluze (STFC RAL Space)

Comparison of cloud statistics from Meteosat with regional climate model data

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI

Cloud detection using SEVIRI IR channels

Lecture 4: Radiation Transfer

MSI aerosol retrieval algorithm for the Multi- Spectral Imager (MSI) on EarthCare

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Satellite observation of atmospheric dust

MSG/SEVIRI CHANNEL 4 Short-Wave IR 3.9 m IR3.9 Tutorial

Cloud analysis from METEOSAT data using image segmentation for climate model verification

OPERATIONAL CLOUD MASKING FOR THE OSI SAF GLOBAL METOP/AVHRR SST PRODUCT

ITSC-16 Conference. May 2008 Using AVHRR radiances analysis for retrieving atmospheric profiles with IASI in cloudy conditions

MSG system over view

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

In-flight Spectral Calibration of MERIS/OLCI. Jürgen Fischer, Rene Preusker, Rasmus Lindstrot Institute for Space Science Free University Berlin

Climate Dynamics (PCC 587): Feedbacks & Clouds

P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION

Steve Ackerman, R. Holz, R Frey, S. Platnick, A. Heidinger, and a bunch of others.

Recent Update on MODIS C6 and VIIRS Deep Blue Aerosol Products

An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Marine Stratus Regions

The water vapour channels of SEVIRI (Meteosat). An introduction

Status of Land Surface Temperature Product Development for JPSS Mission

OSI SAF SST Products and Services

Hyperspectral Atmospheric Correction

Cloud detection for IASI/AIRS using imagery

In-flight Calibration Techniques Using Natural Targets. CNES Activities on Calibration of Space Sensors

Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data

Remote Sensing of Precipitation

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel

Improving the CALIPSO VFM product with Aqua MODIS measurements

A unified, global aerosol dataset from MERIS, (A)ATSR and SEVIRI

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction

Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C.

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Course outline, objectives, workload, projects, expectations

How to display RGB imagery by SATAID

ESA Cloud-CCI Phase 1 Results Climate Research Perspective

TEMPO Aerosols. Need for TEMPO-ABI Synergy

Bayesian Cloud Detection for 37 Years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Data

SNOW COVER MAPPING USING METOP/AVHRR DATA

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS

Lecture 3: Atmospheric Radiative Transfer and Climate

VERIFICATION OF MERIS LEVEL 2 PRODUCTS: CLOUD TOP PRESSURE AND CLOUD OPTICAL THICKNESS

MAIA a software package for cloud detection and characterization for VIIRS and AVHRR imagers

Product User Manual for Cloud. Products (CMa-PGE01 v3.2, CT-

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Day Microphysics RGB Nephanalysis in daytime. Meteorological Satellite Center, JMA

ECNU WORKSHOP LAB ONE 2011/05/25)

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

Ice fog: T~<-10C RHi>100%

Lectures 7 and 8: 13, 18 Feb Sea Surface Temperature

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Preparation for Himawari 8

Probability of Cloud-Free-Line-of-Sight (PCFLOS) Derived From CloudSat and CALIPSO Cloud Observations

Cloud properties & bulk microphysical properties of semi-transparent cirrus from AIRS & IASI

The EarthCARE mission: An active view on aerosols, clouds and radiation

RTTOV 10 Theory & Exercise

CHAPTER 6 CLOUDS. 6.1 RTE in Cloudy Conditions

Title: The Impact of Convection on the Transport and Redistribution of Dust Aerosols

Operational systems for SST products. Prof. Chris Merchant University of Reading UK

REMOTE SENSING TEST!!

A Method for MERIS Aerosol Correction : Principles and validation. David Béal, Frédéric Baret, Cédric Bacour, Kathy Pavageau

Projects in the Remote Sensing of Aerosols with focus on Air Quality

SAFNWC/MSG Dust flag.

PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY

Title Slide: AWIPS screengrab of AVHRR data fog product, cloud products, and POES sounding locations.

ESTIMATION OF ATMOSPHERIC COLUMN AND NEAR SURFACE WATER VAPOR CONTENT USING THE RADIANCE VALUES OF MODIS

SATELLITE RETRIEVAL OF AEROSOL PROPERTIES OVER BRIGHT REFLECTING DESERT REGIONS

Rain rate retrieval using the 183-WSL algorithm

Algorithm Theoretical Basis Document for Cloud Products (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2)

MTG imaging channels in the solar domain and 3.7 microns for retrieval of cloud and aerosol microphysical properties

GMES: calibration of remote sensing datasets

Radiation and the atmosphere

The LSA-SAF Albedo products

Operational Uses of Bands on the GOES-R Advanced Baseline Imager (ABI) Presented by: Kaba Bah

IMPACT OF IN-LINE CLEAR-SKY SIMULATIONS EXPECTED FOR THE NWCSAF GEO CLOUD MASK

Land Surface Temperature in the EUMETSAT LSA SAF: Current Service and Perspectives. Isabel Trigo

C. Jimenez, C. Prigent, F. Aires, S. Ermida. Estellus, Paris, France Observatoire de Paris, France IPMA, Lisbon, Portugal

Recommendation proposed: CGMS-39 WGII to take note.

Atmospheric Measurements from Space

CLOUD MASKING FOR THE O&SI SAF GLOBAL METOP/AVHRR SST PRODUCT

Journal of the Meteorological Society of Japan, Vol. 75, No. 1, pp , Day-to-Night Cloudiness Change of Cloud Types Inferred from

Fog Detection(FOG) Algorithm Theoretical Basis Document

ATMOS 5140 Lecture 1 Chapter 1

INTERCOMPARISON OF METEOSAT-8 DERIVED LST WITH MODIS AND AATSR SIMILAR PRODUCTS

EUMETSAT Satellite Application Facility on Climate Monitoring

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA

REMOTE SENSING KEY!!

Clouds, Haze, and Climate Change

Authors response to the reviewers comments

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

CCI achievements atmosphere / surface

Transcription:

Cloud Detection

General Aspects I: What is a cloud? I can tell you, if I see... A visible aggregate of minute water droplets and/or ice particles in the atmosphere above the earth s surface Global total cloud amount (fractional cloud cover) is about 0.68 (±0.03), when considering clouds with optical depth > 0.1. The value increases to 0.74 when considering clouds with optical depth < 0.01 (e.g., CALIPSO) and decreases to about 0.56 when clouds with optical depth > 2 are considered (e.g., POLDER) [GEWEX Cloud assessment 2012 Stubenrauch et.al]

General Aspects II: Naming Cloud detection: the full process that results in a perpixel cloud or cloud free (probability or portion) quantification. This could be binary (cloudy/cloud free), multi class categorical (yes/unknown/no or yes/propbaly/probably_not/no) or continuous measure (probability of cloud contamination or probability of cloud free or cloud coverage or...)

General Aspects II: Naming Cloud mask: a binary mask (in the same projection of the satellite image) where pixel with a distinct cloud incidence (e.g. probably cloudy or cloud contaminated or cloud free or probably cloud free or...) are masked out. Cloud masks are sometimes classified as cloud free conservative for applications that do not allow cloud contamination (e.g. the remote sensing of land-, sea- and ice surface temperatures, of total column water vapour or of aerosol optical properties), cloud conservative for most cloud remote sensing applications and climatologically conservative which means that they should not be biased in particular with respect to instrumental improvements or calibration changes within decades.

General Aspects II: Naming Cloud test: A cloud test is a test for a distinct physical cloud feature, e.g. brightness or temperature or specific emissions which results in a single measure. (((However, it is difficult to follow this discrimination too strictly, since many cloud tests use combinations of more features (e.g. temperature and emissivity) to calculate their measure.)))

General Aspects II: Naming Cloud test-combination-methodologies: The methods to combine the outcome of the respective tests.

General Aspects III: some heritage missions AVHRR / CLAVR / PATMOS [Saunders &Kriebel 1988, AVHRR 2004, Lavanant 2002, Dybbroe 2005 (1,2), Heidinger 2012, Pavolonis et al. 2004]: since 1978, an AVHRR like cloud detection might be needed for consistent climate observations. MODIS / VIIRS [Ack2010, Bak2012]: MTG / MSG /GOES-R: SEVIRI, FCI, ABI: descent from AVHRR. But viewing and illumination geometry differ. Additionally radiometry will be inferior. (A)ATSR(2) / SLSTR [Donlon et al., 2012] descent from AVHRR, but SST focused. MERIS / OLCI [Donlon et al., 2012]: Ocean and Land Colour Imager Unique channel in the oxygen absorption band at 0.76 μm, which is sensitive to the effective scattering scaling height [Preusker et al 2006, Lindstrot et al. 2010]

General Aspects IV: cloud tests rely on a contrast between a cloud free, a cloud contaminated and/or a cloudy feature set: Spectral features. : brightness and whiteness in the VIS/NIR, obscured atmospheric absorption in the VIS/NIR/SWIR obscured spectral surface features (e.g. NDVI) obscured atmospheric or surface emission in TIR spectral features of scattering, absorption (dust vs. water clouds vs. ice clouds) spectral features of emission ( split window )

General Aspects IV: cloud tests Spatial features like standard deviation of apparent brightness temperatures above sea surfaces within a macro pixel linear features for detecting contrails (Mannstein et al., 1999) more sophisticate texture measures (Schroeder et al., 2002 ) Temporal features, (only applicable, if the same object is observed several times): on geostationary orbits when investigating time series at high latitudes for polar orbiter

General Aspects IV: cloud tests Indirect tests, that do not directly use cloud features polar night cloud detection. Some tests are using the suppressed radiative cooling of the surface, if clouds are present non converging downstream retrievals. Here the presence of a cloud is assumed, if a L2 algorithm (e.g. sea surface temperature) is not converging or produces unlikely results. (avoid logical traps!)

General Aspects V: test combinations threshold based decision trees. The classical way and used in the majority of all operational agencies. Cumulative measures, where the individual test results are cumulated (weighted sums, multiplied...) to calculate a final measure. Eventually all these methods are based on the mathematical theory of fuzzy measures (e.g. MODIS) Maximum likelihood methods, where the probability of a class membership (e.g cloudy) is calculated from the probability density functions of the individual cloud tests Brute force supervised and unsupervised learning methods (artificial neural networks, support vector machines, cluster analyses,...)

Some Tests examples

Solar Brightness Thresholds What the test detects and in what conditions: visible contrast of a bright cloud to a darker background. The basic physics of the test cloudy if ρ o -ρ b > ρt ρb: climatology, knowledge (e.g. Ocean), albedomaps RTM (Rayleigh, Glint...) Limitations: thin/broken clouds, bright surfaces, bad illuminations

Solar Brightness Thresholds

R1.38 water vapor What the test detects and in what conditions: The test detects all clouds above a certain height during day The basic physics of the test cloudy if ρ o 1.38 > ρ t 1.38 ρt: sea/land Limitations: high elevation, dry atmospheres, bad illumination

R1.38 water vapor Gao, Bo-Cai, Yoram J. Kaufman, 1995: Selection of the 1.375-µm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric Aerosols from Space. J. Atmos. Sci., 52, 4231 4237.

R1.38 water vapor Gao, Bo-Cai, Yoram J. Kaufman, 1995: Selection of the 1.375-µm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric Aerosols from Space. J. Atmos. Sci., 52, 4231 4237.

R1.38 water vapor 1.2µm

R1.38 water vapor 1.38µm

BT11 (Gross-IR) Test What the test detects and in what conditions: The test detects opaque cold clouds above all surfaces during day and night. The basic physics of the test cloudy if BTb-BTo > BTt or BTb > BTo Limitations: low level warm cloud, thin clouds and strong inversions

BT11 (Gross-IR) Test

BT11 (Gross-IR) Test

BT7, high clouds What the test detects and in what conditions: The test detects clouds with high tops, over all surface types, during day and night.. The basic physics of the test: BT6.7µm and BT7.3µm peak around 300hPa and 500hPa cloudy if BTcalc_clear_sky-BTo > BTt or BTcalc_clear_sky > BTo or BTo-BTrefference < BTt or BTo BTreference (reference e.g. BT11) Limitations: low level clouds, low water vapor (high elevations, )

BT7, high clouds

Split window What the test detects and in what conditions: The test detects semitransparent high clouds under all conditions The basic physics of the test: Different water emission/absorption at 8.6µm, 11µm, 12µm thin cloud if BT o > BTt Limitations: restricted to cold BT11, (low water vapour (BT12!), non desert (BT8.6) )

Split window

pos. BT37 -BT11 night, mixed scene test What the test detects and in what conditions: The test detects broken or thin clouds above warm surfaces during night The basic physics of the test: Nonlinearity of Planck, BT39 responds more to the warm fraction of the FOV than BT11. Small diff. only for clear or opaque scenes. broken cloud if BT37o-BT11o > BTt Limitations: significant thermal contrast between surface and cloud is needed. Low level warm clouds, moist warm atmospheres, cold surfaces reduce the discriminating power.

BT37-BT4 What the test detects and in what conditions: The test detects opaque clouds during day above dark surfaces (sun glint free ocean or green vegetation). The basic physics of the test: The brightness temperature difference between 3.7µm and 4µm eliminates the emissive part. The residual difference emanates from the solar part cloud if BT37o-BT4o > BTt Limitations: Ice, snow, sand (coastline, deserts), glint can produce ambiguous results

CO2 What the test detects and in what conditions: The test detects middle and high clouds over all surfaces during day and night. The basic physics of the test: The test detects the thermal contrast of a high (cold) cloud to the warmer thermal emission of carbon dioxide around 13.5µm. cloud if BT11calculated_clear_sky > BT11o Limitations: Misses low level clouds and very thin clouds, is sensitive to thermal inversions Is more used for cloud characterisation than for cloud detection (it is e.g. not part of the NWC SAF)

O2 What the test detects and in what conditions: The test detects opaque clouds over bright surfaces and opaque and semitransparent clouds over dark surfaces (ocean) during day light conditions. The basic physics of the test: Simplified models( no-scattering for Polder, single scattering and Rayleigh corrected for MERIS/OLCI) are used to estimate the apparent height/pressure of a scatterer. Cloud if p surf - p app > pt Limitations: No discrimination between high aerosol layers and thin clouds bright surfaces dominate the signal if cloud has a low optical depth. Clean atmospheres above dark ground may have a low apparent pressure (see later)

Example II: Oxygen absorption test (0.76µm) RGB

Example II: Oxygen absorption test (0.76µm) Apparent O2 transmission

Uniformity tests What the test detects and in what conditions: The tests detect small broken clouds, thin cirrus or cloud edges. The basic physics of the test: spatial variability of spectral features is often higher above clouds than above natural surfaces Commonly used spectral features are: BT11-Tsurface, r06, BT37-BT12 and... Standard deviation σ from a 3x3 or 5x5 field is computed. Used in conjunctions: Cloudy if σ a o > σ a t and σ b o > σ b t (using generic spectral features a, b ) Limitations: heterogeneous regions, thermal fronts over ocean, can produce false positives.

Snow detection, NDSI What the test detects and in what conditions: Detects snow The basic physics of the test: The normalized difference snow index (NDSI) uses VIS (0.55µm) and SWIR (1.6μm or 2.1µm, where snow absorbs more than clouds) snow if cold and : NDSI = (RVIS - RSWIR) / (RVIS + RSWIR) > NDSIT Limitations: Ambiguity with ice clouds and different sand.

Generalised Bayesian What the test detects and in what conditions: All types of clouds under all conditions The basic physics of the test: Calculates the probability c (of cloud free or cloudy) under the condition of a measurement Y P(c Y)= P(Y c) * P(c) / P(Y) Needs the probability of a measurement Y under the condition c. P(Y c) requires many RTM calculations. Limitations: Seems to have a high potential, but this has not yet been substantiated in an operational environment. (SST!)

Optimum cloud analysis /Grape... What the test detects and in what conditions: All types of clouds under all conditions The basic physics of the test: OCA is a cloud optical parameter retrieval. If optical thickness is <ε, then there is no cloud Limitations: A converging cloud algorithm does not guaranty a cloud ((A non-converging cloud algorithm does not mean that there is no cloud. (Could be a deficit in the forward operator)))

Cloud detection scheemes with channel subsetting for historically consistent time series!!

Active Instruments (RADAR LIDAR): Almost perfect, if spatial and temporal overlap Examples : Caliop, CloudSat, Earthcare No viewing angle dependency Ground based: CloudNet super sites, Aeronet, Arm good to find deficits, but not for global accuracy quantification Different satellite missions Clouds are too fast for different orbiter L3 is very difficult to interpret but indispensable to detect deficits Geos Manually selected data Best if hyper spectral multi instrument... Images are used Select Charact vs Charact Select!! Glint detection Use AATSR/MISR/POLDER to learn (not done until now) Measures: POD,FAR, depend on selected test data (*SkillScores)??? Validation