CAP 5415 Computer Vision Fall 2011

Similar documents
CAP 5415 Computer Vision

Edge Detection. Image Processing - Computer Vision

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009

Machine vision, spring 2018 Summary 4

Image Gradients and Gradient Filtering Computer Vision

Machine vision. Summary # 4. The mask for Laplacian is given

Midterm Summary Fall 08. Yao Wang Polytechnic University, Brooklyn, NY 11201

MATH1901 Differential Calculus (Advanced)

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news

Lab 3: The FFT and Digital Filtering. Slides prepared by: Chun-Te (Randy) Chu

Lecture 04 Image Filtering

Local Enhancement. Local enhancement

Enhancement Using Local Histogram

Image Enhancement (Spatial Filtering 2)

Lecture 7: Edge Detection

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Edge Detection. CS 650: Computer Vision

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

Introduction to Computer Vision. 2D Linear Systems

Chap. 19: Numerical Differentiation

3. Several Random Variables

Colorado School of Mines Image and Multidimensional Signal Processing

Image preprocessing in spatial domain

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Gaussian derivatives

ECE Digital Image Processing and Introduction to Computer Vision. Outline

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain:

The Fourier Transform

Computer Vision & Digital Image Processing

The Derivative as a Function

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example

Computer Vision & Digital Image Processing

Chapter 3: Image Enhancement in the. Office room : 841

Introduction to the Discrete Fourier Transform

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is:

Digital Image Processing

Chapter 2 Section 3. Partial Derivatives

Least-Squares Spectral Analysis Theory Summary

Products and Convolutions of Gaussian Probability Density Functions

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ]

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( )

Linear Diffusion and Image Processing. Outline

Computer Vision Lecture 3

COMP344 Digital Image Processing Fall 2007 Final Examination

Prof. Mohd Zaid Abdullah Room No:

EDGES AND CONTOURS(1)

Fourier Transforms 1D

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Calculus I, Fall Solutions to Review Problems II

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Signals & Linear Systems Analysis Chapter 2&3, Part II

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

= h. Geometrically this quantity represents the slope of the secant line connecting the points

Lecture 13: Applications of Fourier transforms (Recipes, Chapter 13)

Higher Derivatives. Differentiable Functions

Filtering in Frequency Domain

Basics on 2-D 2 D Random Signal

Lecture 12. Local Feature Detection. Matching with Invariant Features. Why extract features? Why extract features? Why extract features?

WORCESTER POLYTECHNIC INSTITUTE

Continuity and Differentiability

ENGI Gradient, Divergence, Curl Page 5.01

Part I: Thin Converging Lens

(4.2) -Richardson Extrapolation

Section 15.6 Directional Derivatives and the Gradient Vector

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is:

MA3232 Numerical Analysis Week 9. James Cooley (1926-)

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Chapter 4 Image Enhancement in the Frequency Domain

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1.

Mat 267 Engineering Calculus III Updated on 9/19/2010

Ultra Fast Calculation of Temperature Profiles of VLSI ICs in Thermal Packages Considering Parameter Variations

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Filtering and Edge Detection

In many diverse fields physical data is collected or analysed as Fourier components.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Histogram Processing

TFY4102 Exam Fall 2015

EXAMINATION QUESTION PAPER

Click here to see an animation of the derivative

Problem Session #5. EE368/CS232 Digital Image Processing

Linear Quadratic Regulator (LQR) II

CITS 4402 Computer Vision

Chapter 16. Local Operations

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods

18-660: Numerical Methods for Engineering Design and Optimization

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008

Ex x xf xdx. Ex+ a = x+ a f x dx= xf x dx+ a f xdx= xˆ. E H x H x H x f x dx ˆ ( ) ( ) ( ) μ is actually the first moment of the random ( )

CS9840 Learning and Computer Vision Prof. Olga Veksler. Lecture 2. Some Concepts from Computer Vision Curse of Dimensionality PCA

Filtering, Frequency, and Edges

Additional Pointers. Introduction to Computer Vision. Convolution. Area operations: Linear filtering

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

Outline. Convolution. Filtering

Vector Calculus. A primer

Probabilistic Model of Error in Fixed-Point Arithmetic Gaussian Pyramid

Transcription:

CAP 545 Computer Vision Fall 2 Dr. Mubarak Sa Univ. o Central Florida www.cs.uc.edu/~vision/courses/cap545/all22 Oice 247-F HEC

Filtering Lecture-2

General Binary Gray Scale Color

Binary Images Y Row X q : Black : Wite Row q p

Gray Level Image 5 9

Gray Scale Image

Color Image Red, Green, Blue Cannels

Image Histogram

Image Noise Ligt Variations Camera Electronics Surace Relectance Lens

Image Noise I,y) : te true piel values n,y) : te noise at piel,y) I ˆ,, y I, y n y

Gaussian Noise n n 2, y e 2 2

Image Derivatives & Averages

Deinitions Derivative: Rate o cange Speed is a rate o cange o a distance Acceleration is a rate o cange o speed Average Mean) Dividing te sum o N values by N

Derivative d d lim ) ) ) v ds dt speed a dv dt acceleration

Eamples y dy d 2 4 2 4 3 y dy d sin cos e ) e

Discrete Derivative ) ) ) lim d d ) ) ) d d ) ) ) d d

Discrete Derivative Finite Dierence d d ) ) ) Backward dierence d d ) ) ) Forward dierence d d ) ) ) Central dierence

Eample ) 5 25 2 2 2 ) 5 5 5 5 ) 5 5 5 2 5 Derivative Masks Backward dierence Forward dierence Central dierence [- ] [ -] [- ]

Derivatives in 2 Dimensions ), y Given unction y y y y y ), ), ), Gradient vector 2 2 ), y y Gradient magnitude y tan Gradient direction

Derivatives o Images 3 Derivative masks 3 y 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 I I

Derivatives o Images I y 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 I

Correlation k l l j k i l k,, Kernel Image 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 *

Convolution k, li k j l *, k l Image 7 8 9 X lip Kernel 4 5 6 2 3 2 3 4 5 6 7 8 9 Y lip 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 * 4 7 9 6 3 2 5 8 8 5 2 3 6 9 7 4

Convolution,) ),,) ),,) ),,) ),,) ),,) ), ), ), ), ), ), ), ), y y y y y y y y y y ), ), i j j i i y i -,,, -,,, -,-,-,- Coordinates

Averages Mean n I n I I I I n i i n 2 Weigted mean n w I n I w I w w I I n i i i n n 2 2

Gaussian Filter g 2 2 2 ) e g y 2 2, y) e 2 2 g )..3.6.6.3.

Properties o Gaussian Most common natural model Smoot unction, it as ininite number o derivatives Fourier Transorm o Gaussian is Gaussian. Convolution o a Gaussian wit itsel is a Gaussian. Tere are cells in eye tat perorm Gaussian iltering.

Filtering Modiy piels based on some unction o te neigborood 3 2 2 9 p 5.7 Alper Yilmaz, Mubarak Sa, UCF

Linear Filtering Te output is te linear combination o te neigborood piels 3-2 2. - = 5 4 - Image Kernel Filter Output Alper Yilmaz, Mubarak Sa, UCF

Filtering Eamples * Alper Yilmaz, Mubarak Sa, UCF

Filtering Eamples * Alper Yilmaz, Mubarak Sa, UCF

Filtering Eamples * 9 Alper Yilmaz, Mubarak Sa, UCF

Filtering Eamples * 25 Alper Yilmaz, Mubarak Sa, UCF

Blurring Eamples 8.3 2.4 original piel oset iltered 8 4.3 8 6 4.8 4 original piel oset iltered

Filtering Gaussian * Alper Yilmaz, Mubarak Sa, UCF

Gaussian vs. Smooting Gaussian Smooting Smooting by Averaging Alper Yilmaz, Mubarak Sa, UCF

Noise Filtering Ater Averaging Gaussian Noise Ater Gaussian Smooting Alper Yilmaz, Mubarak Sa, UCF

MATLAB Functions conv: -D Convolution. C = conva, B) convolves vectors A and B. conv2: Two dimensional convolution. C = conv2a, B) perorms te 2-D convolution o matrices A and B.

MATLAB Functions ilter2: Two-dimensional digital ilter. Y = ilter2b,x) ilters te data in X wit te 2-D FIR ilter in te matri B. Te result, Y, is computed using 2-D correlation and is te same size as X. ilter2 uses CONV2 to do most o te work. 2- D correlation is related to 2-D convolution by a 8 degree rotation o te ilter matri.

MATLAB Functions gradient: Approimate gradient. [FX,FY] = gradientf) returns te numerical gradient o te matri F. FX corresponds to df/d, FY corresponds to df/dy. mean: Average or mean value. For vectors, meanx) is te mean value average) o te elements in X.

MATLAB Functions special: Create predeined 2-D ilters H = specialtype) creates a two-dimensional ilter H o te speciied type. Possible values or TYPE are: 'average' averaging ilter; 'gaussian' Gaussian lowpass ilter 'laplacian' ilter approimating te 2-D Laplacian operator 'log' Laplacian o Gaussian ilter 'prewitt' Prewitt orizontal edge-empasizing ilter 'sobel' Sobel orizontal edge-empasizing ilter Eample: H=special'gaussian',7,) creates a 77 Gaussian ilter wit variance.