The E166 Experiment: Undulator-Based Production of Polarized Positrons

Similar documents
E166: Polarized Positrons & Polarimetry

The E166 Experiment: Undulator-Based Production of Polarized Positrons

Polarimetry. POSIPOL 2011 Beijing Peter Schuler (DESY) - Polarimetry

Polarized positrons with the E-166 Experiment

A Test Experiment for a Polarized Positron Source - E-166 at SLAC

Undulator-Based Production of Polarized Positrons. Project Name LCRD Contact Person William Bugg, University of Tennessee

A Talk presented at Snowmass 2005, August 14, 2005 CBN E-166 STATUS. Snowmass Alexander Mikhailichenko collaboration:

Low energy Positron Polarimetry at the ILC

Jan. 5, 2006 Development of a Helical Undulator for ILC Positron Source

Magnetic fields of the optical matching devices used in the positron source of the ILC

Overview on Compton Polarimetry

Polarised Geant4 Applications at the ILC

Linear Collider Collaboration Tech Notes

Linear Collider Beam Instrumentation Overview

IPBI-TN June 30, 2004

Towards an Undulator Based NLC Positron Source

Letter of Intent to Submit 2 Proposals to Test Production of Polarized Positrons with the SLAC 50 GeV Beam in the FFTB

The low Q 2 chicane and Compton polarimeter at the JLab EIC

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Status report on parity violation in the (1232) resonance

Positron Source using Channelling for the Baseline of the CLIC study

Undulator-Based Production of Polarized Positrons

Simulation of Laser-wires at CLIC using BDSIM

Acceptance Problems of Positron Capture Optics. Klaus Floettmann DESY Daresbury, April 05

Lepton beam polarisation for the HERA experiments ZEUS and H1

CORNELL ACTIVITIES FOR ILC

Polarimetry in Hall A

Introduction to polarimetry at HERA

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

A Polarized Positron Source for CEBAF

Tools of Particle Physics I Accelerators

Post-Target Beamline Design for Proposed FFTB Experiment with Polarized Positrons

arxiv: v1 [physics.ins-det] 1 Apr 2009

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

BABAR Beam Background Simulation Steven Robertson

FACET-II Design Update

arxiv: v1 [physics.ins-det] 18 Feb 2009

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY

Precision Polarimetry at JLab, 6 GeV Era G. B. Franklin Carnegie Mellon University

E. EROGLU, E. PILICER, I. TAPAN Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle, Bursa, TURKEY.

e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico e+e- Factories

Characterizations and Diagnostics of Compton Light Source


CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

STATUS OF THE HeLiCal CONTRIBUTION TO THE POLARISED POSITRON SOURCE FOR THE INTERNATIONAL LINEAR COLLIDER*

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University)

Beam-plasma Physics Working Group Summary

EIC Electron Beam Polarimetry Workshop Summary

Spin Dynamics at the NLC

Measurement of the e + e - π 0 γ cross section at SND

Part II: Detectors. Peter Schleper Universität Hamburg

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

Particle Acceleration

EICUG Working Group on Polarimetry. Elke Aschenauer BNL Dave Gaskell Jefferson lab

Machine-Detector Interface for the CEPC

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Upstream Polarimetry with 4-Magnet Chicane

arxiv: v2 [physics.ins-det] 17 Jun 2014

- he [I+ P,P,A (~%)l,

e + e - Linear Collider

Validation of EM Part of Geant4

High Energy Photons at HI S

Introduction Polarimeters at MAMI Analysis Future Conclusion. Polarimetry at MAMI. V. Tyukin, Inst. of Nuclear Physics, Mainz, Germany

Status of linear collider designs:

Inverse Compton Scattering Sources from Soft X-rays to γ-rays

Upstream Polarimetry with 4-Magnet Chicane

Beam Instrumentation Tests for the Linear Collider using the SLAC A-Line and End Station A

Simulation study of scintillatorbased

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University

LITHIUM LENS FOR EFFECTIVE CAPTURE OF POSITRONS

Status of PEP-II and BaBar. 1 Introduction. 2 PEP-II Machine

e e Collisions at ELIC

6 Bunch Compressor and Transfer to Main Linac

Building a Tracking Detector for the P2 Experiment

EIC Electron Beam Polarimetry Workshop Summary

FACET-II Design, Parameters and Capabilities

SSA Measurements with Primary Beam at J-PARC

Luminosity Energy Polarization Status. Documentation Status of Linear Collider Beam Instrumentation Design, D. Cinabro, E. Torrence and M.

PoS(PSTP 2013)034. Precession Polarimetry at JLab, 6 GeV. G.B. Franklin Carnegie Mellon University

Overview of accelerator science opportunities with FACET ASF

Top Quark Precision Physics at Linear Colliders

Current status and results of the experiments at VEPP-2000

Beam Dump Experiments at JLab and SLAC

Study of Baryon Form factor and Collins effect at BESIII

BIG A Gamma Ray Source at FACET-II

WG2 on ERL light sources CHESS & LEPP

The UCLA/LLNL Inverse Compton Scattering Experiment: PLEIADES

Sub-percent precision Møller polarimetry in experimental Hall C

The HERA ep Interaction Regions Learned Lessons

An Optimization of Positron Injector of ILC

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

1 Introduction The SLAC B Factory asymmetric B-factories was approved by President Clinton in October B-factories The inaugural meeting of the d

Electron Beam Polarimetry at Jefferson Lab Dave Gaskell Jefferson Lab (Hall C)

Searching for at Jefferson Lab. Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017

SLAC National Accelerator Laboratory. Persis S. Drell Director August 30, 2010

PADME dump proposal. Mauro Raggi, and V. Kozhuharov. What Next LNF, Frascati, November 11 th 2014

Search for Dark Matter with LHC proton Beam Dump

An Overview of the Activities of ICS Sources in China

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

The P2 Experiment at MESA

Transcription:

The E166 Experiment: Undulator-Based Production of Polarized Positrons Hermann Kolanoski (Humboldt-Universität Berlin) for the E166 Collaboration ILC: - physics with polarised e + e - - undulator source scheme for ILC E166 proof-of-principle of the undulator method - undulator basics - transmission polarimetry - Geant4 upgrade with (de)polarisation results & conclusions SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 1

Physics with Polarised e + e - Polarized e + -beams in addition to polarized e - -beams offer*: Example: SUSY physics Separation of selectron pairs + e~ i R e~ + e e, L L, R Higher effective polarization Reduction of background Selective enhancement of processes Access to non-sm couplings New physics, e.g. extra dimensions. *G. A. Moortgat-Pick et al.: The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider. Phys. Rept. 460:131-243, 2008. (e-print: hep-ph/0507011slac-pub-11087, CERN-PH-TH-2005-036) SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 2

Undulator Source for ILC PRO: target 0.4 X 0 Ti-alloy lower e+ emittance less energy deposition in target and AMD e + e - production by 10 MeV photons polarisation transfer to e + less neutron activation polarized positrons CON: need high-energy electron drive beam (coupled e+/e- operation) long undulator (150-300 m) SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 3

Undulator Source Scheme for ILC auxiliary keep-alive source SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 4

E166 proof-of-principle demonstration of the undulator method SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 5

Undulator Basics E 1 2 2γ hc λ u 1 2 1 + K 23.7 MeV λ / mm u E e 50 GeV K = eb 0λ u 2π mc dn dl γ 4 πα K 3 λ u 2 30.6 K λ / mm u 2 γ' s e m -1 E166 ILC(RDR) electron beam energy (GeV) 46.6 150 field (T) 0.71 0.86 period (mm) 2.54 11.5 K value 0.17 0.92 photon energy E 1 (MeV) 7.9 10.0 beam aperture (mm) 0.89 5.85 active length (m) 1 147 no. of periods 394 12800 SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 6

E166 Photon Spectrum Undulator Basics E166 Photon Polarization E 1 = 7.9 MeV 1st harmonic (dominating) expressions: Spectrum: Angular Distribution: Polarization: E166 Photon Yield: = no. of photons per beam electron SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 7

The E166 Experiment at SLAC FFTB Electron Gun 200 MeV Injector North Damping Ring [1.15 GeV] Linac South Damping Ring [1.15 GeV] Positron Return Line 3 km Positron Source PEP II Low Energy Ring (LER) (3.1 Gev positrons) Beam Switch Yard (BSY) PEP II High Energy Ring (HER) (9 GeV electrons) End Station A (ESA) Final Focus Test Beam (FFTB) End Station B (ESB) PEP II IR-2 Detector SLD 2004/2005 setup and checkout 2005 4 weeks of data taking SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 8

E166 experimental setup < 8 MeV 46.6 GeV POSITRON SPECTR. 4 8 MeV PHOTON ANALYZER POSITRON ANALYZER DM: electron beam dump magnets T1: γ e+ prod. target (0.2 X 0 W) T2: e+ γreconv. target (0.5 X 0 W) P1: e+ flux monitor (Silicon) CsI: CsI calorimeter SL: solenoid lens J: movable jaws C1 C4: photon collimation A1, A2: aerogel detectors S1, S2: silicon detectors GCAL: Si/W-calorimeter SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 9

Undulator Operation Challenge: beam alignment shunt pulse current: 2.3 ka repetition rate 10 Hz current density 6.39 ka/mm 2 pulse duration: of about 12 μs. photon flux for different coolants kicks e - beam 23µrad ferrofluid oil SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 10

E166 photo gallery SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 11

Compton Transmission Polarimetry for Low-Energy Photons relies on spin dependence of Compton effect in magnetized iron: 3 cm Fe 15 cm Fe Compton Crosssection Transmission Asymmetry f (L Fe ) = A γ2 T Photon polarisation Analysing power SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 12

(a) transfer e+ polarization to photons via brems/annihilation processes ( reconversions ) Positron Polarimetry (b) infer e+ polarization from photon polar. by transmission polarimetry (c) calculate analysing power from detailed simulation of spin dependent processes (new Geant4 implementations) SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 13

Analyzer Magnets electron polarization of the iron: M = (B B 0 )/m 0 = magnetization n = electron density μ B = Bohr magneton g = magneto-mechanical factor active volume Photon Analyzer: 50 mm 150 mm long Positron Analyzer: 50 mm 75 mm long P e 0.07 ΔP e /P e < 0.05 (aim of experiment) SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 14

Analyzer Magnet Installation e+ Analyzer γ Analyzer Pickup Coils CsI-Detector e+ Analyzer SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 15

GEANT4 Upgrade for Polarisation Dependent EM Processes Gammas: GammaConversion ComptonScattering PhotoElectricEffect Diagnostics (Polarimetry): Cross sections polarization dependent Compton Scattering Bhabha Scattering MøllerScattering Positron annihilation in Flight... Electrons and Positrons: MultipleScattering Ionisation Bremsstrahlung MAGNETIC FIELD: Polarization transfer to e-/e+ Polarization tracking (depolarization effects?) polarized γ beam from the Helical Undulator SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 16 e + e - e - e + e - e +

Photon Asymmetries transmission polarimetry γ s from undulator conclusion: measured photon asymmetries are in agreement with expectations based on the theor. undulator polarization spectrum and detector response functions. detector asymmetry δ(%) predicted δ(%) S2 (silicon) 3.88 ± 0.12 ± 0.63 3.1 A2 (aerogel) 3.31 ± 0.06 ± 0.16 3.6 GCAL (Si/W) 3.67 ± 0.07 ± 0.40 3.4 no spectral shape analysis possible! SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 17

Positron Analysis O(1%) asymmetry in CsI expected high statistics req d control systematics determine background for each signal: undulator on off change magnet polarity between cycles normalisation to P1 counter γ conversion γ e + data structure: super-run 10 cycles e + reconversion e + γ cycle + cycle - signal background events ( 3000/cy.) SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 18

Energy Deposition in CsI crystals undulator on: signal + background undulator off: background good signal/background separation in central crystal use only central crystal for final results outer crystals as cross check and simulation scrutiny SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 19

Analysis of positron asymmetries difficult tails truncated mean of each on-off combination within one cycle (with given magnet polarity) S CsI+ and S CsI- for each cycle pair 1 asymmetry point S CsI (i,j) distribution (all signal-backgr combinations) SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 20

positron asymmetries central crystal asymmetries for e+ spectrometer setting at 140 A measured asymmetries per energy point 1%!! SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 21

positron asymmetries Results & beam polarizations results for the central CsI crystal = analyzing power from simulations = electron polarization of the iron 85% SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 22

Published in Physics Review Letters: An experiment (E166) at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which a multi-gev electron beam passed through a helical undulator to generate multi- MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter. More detailed description of the experiment in a NIM paper under preparation SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 23

Summary and Conclusions successful demonstration of the undulator method undulator functioned as predicted successful polarimetry of low-energy γ and e + confirmed expected γ e+ spin-transfer mechanism implementation of polarisation dependence in Geant4 measured high positron polarization 85% max. SPIN2008 - Oct. 6-11, 2008 Hermann Kolanoski - E166 Experiment 24