STRUCTURAL VERIFICATION OF A 60.7 M DOME ROOF FOR TANK FB 2110

Similar documents
3. Stability of built-up members in compression

Structural Steelwork Eurocodes Development of A Trans-national Approach

Created by Neevia docuprinter LT trial version

PES Institute of Technology

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

Downloaded from Downloaded from / 1

ENG1001 Engineering Design 1

SECTION 7 DESIGN OF COMPRESSION MEMBERS

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Basis of Design, a case study building

Civil & Structural Engineering Design Services Pty. Ltd.

Structural Calculations For:

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Design of reinforced concrete sections according to EN and EN

Design of Beams (Unit - 8)

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

Civil & Structural Engineering Design Services Pty. Ltd.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

[8] Bending and Shear Loading of Beams

Steel Post Load Analysis

SAMPLE PROJECT IN THE MIDDLE EAST DOCUMENT NO. STR-CALC UNITISED CURTAIN WALL 117 ENGINEER PROJECT. Pages REVISION TITLE

Chapter Objectives. Design a beam to resist both bendingand shear loads

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES FOR HELIODYNE, INC. Structural calculations. Gobi 410 at 45 degrees. for WCM HELIODYNE RACK

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

Structural Steelwork Eurocodes Development of A Trans-national Approach

Civil & Structural Engineering Design Services Pty. Ltd.

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

3 Hours/100 Marks Seat No.

Advanced Analysis of Steel Structures

Structural Steelwork Eurocodes Development of A Trans-national Approach

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: PNEUTEK, INC.

National Exams May 2015

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN :2005/AC:2009

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

Project Name Structural Calculation for Feature Pressing

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017

Properties of Sections

Mechanics of Materials Primer

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

Hilti North America Installation Technical Manual Technical Data MI System Version

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

host structure (S.F.D.)

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

For sunshades using the Zee blades wind loads are reduced by 10 psf.

Civil & Structural Engineering Design Services Pty. Ltd.

Metal Structures Lecture XIII Steel trusses

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1

Longitudinal strength standard

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

Lab Exercise #5: Tension and Bending with Strain Gages

Critical Load columns buckling critical load

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Huntly Christie 1/26/2018 Christie Lites 100 Carson Street Toronto, ON M8W3R9

GENERAL GEOMETRY LEFT SIDE BEAM RIGHT SIDE BS :2000/AC:2009. Ratio 0.17

STEEL JOINTS - COMPONENT METHOD APPLICATION

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section

RSTAB. Structural Analysis and Design Dynamic Analysis. Verification Manual. Ing. Software Dlubal Am Zellweg 2 D Tiefenbach

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

7 STATICALLY DETERMINATE PLANE TRUSSES

Civil & Structural Engineering Design Services Pty. Ltd.

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

Entrance exam Master Course

SERVICEABILITY LIMIT STATE DESIGN

KIBÆK TENT BOOK - 12 M WITHOUT GUY LINES. Static calculations of 12 m tent. Prepared for: Kibæk pressening. Revision 0, March 23, 2016

Beam Design and Deflections


2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

Torsion Stresses in Tubes and Rods

The University of Melbourne Engineering Mechanics

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

CHAPTER 5 PROPOSED WARPING CONSTANT

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

PVP BUTANE STORAGE BULLET CALCULATION AND FEA VERIFICATION

Chapter 3. Load and Stress Analysis. Lecture Slides

Advanced Structural Analysis EGF Section Properties and Bending

Matlab Sheet 2. Arrays

COLUMNS: BUCKLING (DIFFERENT ENDS)

Structural Steelwork Eurocodes Development of a Trans-National Approach

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.

Chapter 6: Cross-Sectional Properties of Structural Members

Transcription:

CTS Netherlands B.V. Riga 10 2993 LW Barendrecht The Netherlands Tel.: +31 (0)180 531027 (office) Fax: +31 (0)180 531848 (office) E-mail: info@cts-netherlands.com Website: www.cts-netherlands.com Chamber of commerce 24463775 ING Bank BIC (Swift): INGBNL2A IBAN : NL70 INGB0650071905 VAT: NL8208.95.374.B01 STRUCTURAL VERIFICATION OF A 60.7 M DOME ROOF FOR TANK FB 2110 MG technical solutions Noordkade 64 2741 EZ Waddinxveen The Netherlands tel +31 (0) 182 649 107 fax +31 (0) 182 649 876 www.mgts.nl Report R16050_FB2110 Revision Date Description Author Checked: 0 4 Augustus 2016 First edition ir. M. Bakker CTS is ISO 9001 and SHE system (VCA**) certified by Lloyd s Register

Content Summary... 3 General data... 4 Design life and consequence class... 4 Materials... 4 Wind class... 4 Characteristic values of actions... 4 Dead Load... 4 Live Load... 4 Internal vacuum... 5 Internal pressure... 5 Water accumulation... 5 Snow loads... 5 Wind loads... 6 Load combinations... 7 Structural analysis... 7 Conversion factors... 7 Critical strut selection... 8 Forces and moments according to Eurocode... 8 Classification of cross-sections... 8 Local buckling resistance... 9 Resistance of cross-sections... 10 Flexural buckling resistance... 10 Lateral torsional buckling resistance... 10 Combined buckling criterion... 11 Conclusion... 11 Appendix A... 12 2

Summary This report discusses the structural analysis of an aluminium dome roof for tank FB 2110 with diameter 60,7 m. The analysis is carried out according to the following applicable Eurocodes with Dutch national appendices: EN 1990: EN 1991-1-1: EN 1991-1-3: EN 1991-1-4: EN 1999-1-1: Basis of structural design Densities, self-weight, imposed loads for buildings General actions - Snow loads General actions - Wind actions Design of aluminium structures General structural rules The goal is to translate the current dome calculations prepared according to the American code API 650 to the European Eurocode standards listed above in order to ease interpretation for classification societies. The analyses in this report are solely based on data presented in CST project No 216197, attached in Appendix A. It is concluded that all struts in the aluminium dome roof for tank FB 2110 with diameter 60,7 m, specified in Appendix A, comply with the conditions and criteria set out in the Eurocode EN 1990, 1991, and 1999. 3

General data Design life and consequence class The dome roof is classified to have an indicative design working life of 50 years according to design working life category 3 in Table 2.1 of EN 1990. Furthermore, the dome roof is categorised under consequence class CC1 according to Table B1 of EN 1990. The accompanying partial safety factors according to Table NB.5 of NEN EN 1990 NB are: =1.20 max (0.90 where unfavourable) combined with, =1.10 max (0.90 where unfavourable) combined with and, =1.35 max (0.00 where unfavourable) Materials The dome roof is made of aluminium 6061-T6 with properties according to Table 3.2b of EN 1999-1-1, which are: 6061-T6 Density [kg/m 3 ] 2700 Young s modulus [MPa] 70000 Poisson s ratio [-] 0.33 Yield stress [MPa] 240 Buckling class [-] class A Partial safety factor [-] 1.10 Partial safety factor [-] 1.25 table 1: Material properties Wind class The dome roof will be installed in Amsterdam, The Netherlands. This site is located in wind area I according to Figure NB.1 of NEN EN 1991-1-4. Characteristic values of actions The following actions are taken into account for the dome roof analysis. Loads acting downward are taken positive, loads acting upwards are taken negative. Dead Load The total dead load is equal to (Appendix A, page 4): = 0.142 kn/m 2 Live Load The dome roof is classified under category H: roofs according to Table 6.9 of NEN EN 1991-1-1. According to Table 6.10 and Appendix A, page 4 the associated total live load is equal to: The accompanying factors for category H buildings are: = 0.718 kn/m 2 =0, =0, =0 4

Internal vacuum There is no internal vacuum applied to the tank. Internal pressure There is no internal pressure applied to the tank. Water accumulation Water accumulation is not a factor due to the slope of the dome roof. Snow loads The snow loads are computed according to EN 1991-1-3, which states: = with = 1 is the exposure coefficient, = 1 is the thermal coefficient. Parameter is the characteristic value of snow load on the ground. According to NEN EN 1991-1-3 NB paragraph 4.1 all sites in The Netherlands should use a value of = 0.7 kn/m 2. As stated by EN 1991-1-3 the shape coefficient for cylindrical roofs are given in the following expressions: >60 =0 60 =0.2+10 h/ with =2.0 These expressions and associated parameters are visualised in Figure 5.5 and 5.6 from EN 1991-1-3 as shown below. The maximum roof inclination angle is given by the cut-off angle 1 2 = 3.6 in Appendix A, page 4. With a dome rise h = 3 = 12.07 m and an anchor bolt diameter = = 60.67 m, both taken from Appendix A, page 4, it is found that: = 2.189 As shown in the figure above it is required to consider two cases: the undrafted load arrangement (case i) and the drifted load arrangement (case ii). These cases result in: Case i: =0.8 = 0.560 Case ii: 0.5 = 1.095.5 = 0.766 = 2.189. = 1.533 A conservative estimate of the average load for the full roof surface area is given by the maximum of either or. /2, given by: = =max,. = 0.766 kn m2 2 According to NEN EN 1990 NB the accompanying factors for snow loads concerning category H buildings are: =0, =0.20, =0 5

Wind loads The wind loads are computed according to EN 1991-1-4. The expression for the wind load is: = where is the peak velocity pressure as a function of the dome roof height. The current dome roof height is equal to =29,6 m. Interpolation in Table NB.5 of NEN EN 1991-1-4 NB for wind area I, without buildings provides a peak velocity pressure of: = 1.42 kn/m 2 The dome roof does not have a dominant size and is fully closed, i.e. there are no openings. Therefore, the internal pressure coefficient should be taken equal to: = 0.20 The external pressure coefficient will be determined by means of Figure 7.12 of EN 1991-1-4, given below. With a dome rise = 3 = 12.07 m, a diameter = 4 / = 60.67 m, and a tank height of h = = 29.6 m the following ratios are obtained:, = 0.99, h/ = 0.488 Linear interpolation of these ratios in the figure above results in the following external pressure coefficients for locations A, B, and C: Substituting these values into the expression for gives: = -0.96, = -1.036, = -0.479 = cos 1 2 = cos 1 2 = -.1.20 kn/m 2 = = = -1.761 kn/m 2 = cos 1 2 = cos 1 2 = -0.701 kn/m 2 where cos transforms the normal pressures to vertical pressure components. For locations A and C the angle corresponds to the cut-off angle in Appendix A, page 4. For location B the normal pressure is already directed vertically, giving a zero angle, resulting in cos 0 =1. For the analysis, the following average wind load will be used: = +2 + 4 = -1.356 kn/m 2 6

According to NEN EN 1990 NB the accompanying factors for category H buildings are: =0, =0.20, =0 Load combinations In the previous section the following actions have been determined (downward positive, upward negative): Value [kn/m 2 ] Dead load total 0.142 Live load total 0.718 Internal vacuum 0 Internal pressure -0 Snow load 0.766 Wind load -1.356 table 2: Characteristic values of actions Given these actions, three load combinations will be considered: 1 = 1.2 = 0.17 kn/m 2 2 = 1.1 + 1.35 + 0.4 6 = 1.19 kn/m 2 3 = 0.9 + 1.35 + 0.4 = -1.70 kn/m 2 Load combination ULS2 is the critical downward combination and ULS3 is the critical upward combination. Please note that the internal vacuum and internal pressure loads are multiplied by a ratio of 0.4, which is the ratio between normal operating pressure and design pressure of the American code API 650. Not applying this ratio factor would result in double built-in conservatism, both from the American as well as the European code. Structural analysis The structural analysis of the dome roof, as presented in Appendix A, is executed by the TEMCOR computational software. Both the input load combinations as well as the resulting stresses can be found in Appendix A. In this report no check will performed on the correctness of input or output data in Appendix A. It is assumed that the dome plate material attachment to the struts is strong enough, such that buckling about the minor axis is prevented and that the compressed upper flanges are not sensitive to lateral torsional buckling. Conversion factors The critical downward and upward load combinations in Appendix A are: Case 2: Dome dead load + dome live load = 0.86 kn/m 2 Case 4: Dead + ASCE wind case A = -1.04 kn/m 2 According to the Eurocode the critical downward and upward load combinations (from the previous section) are: ULS2: 1.19 kn/m 2 ULS3: -1.70 kn/m 2 This means that the output forces and moments for the critical downward and upward load cases from Appendix A need to be multiplied by the following conversion factors in order to correspond to the load combinations stated by the Eurocode:. 0,12 =1.3.. 0, = 1.64 7

Critical strut selection With the conversion factors known, the next step is to make a selection of critical struts from the consolidated stress summary in Appendix A. The consolidated stress summary contains the most critical load case for each strut group. Further selection is based on: 1. the combined stress ratio 2. presence of compressive forces and consequently sensitive to buckling 3. the cross-sectional strut type dimensions 4. the strut group length Not every strut type is necessarily considered. For example, if it is clear that the most critical force and moment for strut type E-123 are equal or lower than that of strut type E-456, when at the same time cross-sectional thicknesses of strut type E-456 are larger, or the length is lower, than it is obvious that the latter strut is less critical. Based on the above selection criteria, the following struts are selected from Appendix A: Strut type and group Length [mm] Critical load case E-609 #7 3355.4 Case 2: Dome dead load + dome live load E-614 #29 3410.8 Case 2: Dome dead load + dome live load COMP01 #30 5143.4 Case 4: Dead + ASCE wind case A table 3: Strut selection Forces and moments according to Eurocode Subsequently, the forces and moments for these strut groups will be multiplied by their corresponding factors determined above, resulting in the following forces (compression positive) and moments. Strut type and group [kn] [knm] E-609 #7 114.07 2.44 E-614 #29 118.72 17.17 COMP01 #30 972.88 9.46 table 4: Strut forces and moments according to Eurocode These forces and moments will then be tested according to EN 1999-1-1. Classification of cross-sections The role of cross-section classification is to identify the extent to which the resistance and rotation capacity of cross-sections is limited by its local buckling resistance. The classification of parts of cross-sections is linked to the values of the slenderness parameter as follows for beams: : class 1 < : class 2 < : class 3 : class 4 Parameters for internal (I) and external (SO) parts, as illustrated below, are: Internal parts: = 11. 11.23, = 16 = 16.33, = 22 = 22.45 External parts: = 3 = 3.062, = 4.5 = 4.593, = 6 = 6.124 with = 250/ = 1.021, and = 240 MPa. The above values for are valid for class A material without welds. 8

Using the parameters in the figure above the values for can be derived as follows: Pure compression: Pure bending: Internal parts: = / External parts: = / Internal parts: =0.4 / External parts: = / Given the fact that the beam loads in the dome roof are dominated by compression, rather than bending, is conservatively taken as: Internal parts: = / External parts: = / Based on the cross-sectional dimensions given in Appendix A, the struts considered obtain the following classification: Strut type and group Class for Class for Class for E-609 #7 4 4 4 E-614 #29 4 4 4 COMP01 #30 4 4 4 table 5: Classification of parts of cross-sections Local buckling resistance Local buckling in class 4 members is generally allowed for by replacing the true section by an effective section. The effective section is obtained by employing a local buckling factor to factor down the thickness. is applied to any uniform thickness class 4 part that is wholly or partly in compression. The factor is given by the expressions below, separately for different parts of the section, in terms of the ratio /, where and are defined above and the constants and are: Internal parts: =32, =220 External parts: =10, =24 The above values for and are valid for class A material without welds. Based on the cross-sectional dimensions given in Appendix A, the struts considered obtain the following local buckling factors: Strut type and group for for for E-609 #7 0.422 0.649 0.685 E-614 #29 0.969 0.811 0.811 COMP01 #30 0.999 0.885 0.885 table 6: Local buckling factors Applying the local buckling factors to the cross-sectional properties in Appendix A results into the following reduced cross-sectional properties: 9

Strut type and group E-609 #7 E-614 #29 COMP01 #30 Effective area [mm] 1163 3476 9291 Effective x-axis MOI [mm 4 ] 9343922 23950930 83439571 Effective section modulus 1, [mm 3 ] 80900 224891 927106 Effective section modulus 2, [mm 3 ] 106544 247683 737099 table 7: Reduced cross-sectional properties Resistance of cross-sections For compression and bending the following design resistances are defined for class 4 cross-sections: = / =, / where and are given in table 1. These equations result in the following design resistances for the struts considered: Strut type and group E-609 #7 E-614 #29 COMP01 #30 [kn] 253.84 758.49 2027.03 [knm] 17.65 49.07 160.82 table 8: Design resistances Flexural buckling resistance Members in compression are prone to flexural buckling. The flexural buckling reduction factor can be computed by the following expression: where: 1 =, but <1.0 + = 0.5 1 + + with =.0.2, = 0,1 for class A materials = with = /, is the strut length Based on the cross-sectional dimensions given in Appendix A, reduced cross-sectional properties given in table 7, strut lengths given in table 3, and material properties given in table 1, the struts considered obtain the following flexural buckling reduction factors: Strut type and group E-609 #7 0.877 E-614 #29 0.829 COMP01 #30 0.670 table 9: Flexural buckling reduction factors Lateral torsional buckling resistance Members is bending are prone to lateral torsional buckling. The lateral torsional buckling reduction factor can be computed by the following expression: 1 =, but <1.0 + where: = 0.5 1 +, + with =.0.2,, = 0.4 for class 3 and 4 cross-sections =, 10

with: = / and =0.90 0.03 +0.04, =0.05 0.010 1 and =,, = 0.422 where h is the section depth, is the flange width, is the flange thickness, and is the web thickness, all to be found in Appendix A. Based on these and other cross-sectional dimensions given in Appendix A, reduced cross-sectional properties given in table 7, strut lengths given in table 3, and material properties given in table 1, the struts considered obtain the following lateral torsional buckling reduction factors: Strut type and group E-609 #7 0.763 E-614 #29 0.917 COMP01 #30 0.918 table 10: Lateral torsional buckling reduction factors Combined buckling criterion The buckling criterion for members in compression and bending is given by: + 1.00 where = 0.8 and 0 = = 1 for beam-columns without localized welds and with equal end moments. Based on the applied forces and moments and given in table 4, the design resistances and given in table 8, and the buckling reduction factors given in table 9 and table 10 the struts considered show the following buckling criterion results: Strut type and group Buckling criterion E-609 #7 0.767 E-614 #29 0.645 COMP01 #30 0.830 table 11: Buckling criterion results of struts All struts satisfy the buckling criterion as for all struts it is smaller than 1.00. Conclusion It is concluded that all struts in the aluminium dome roof for tank FB 2110 with diameter 60.7 m, specified in Appendix A, comply with the conditions and criteria set out in the Eurocode EN 1990, 1991, and 1999. 11

Appendix A 12

Phone: (713)290-9944 Fax: (936)539-5355 498 N Loop 336 E Conroe, Texas 77301 USA STRUCTURAL ANALYSIS AND DESIGN SUMMARY CST COVERS ALUMINUM DOME FOR (1) 60.7m I.D. TANK FB 2110 AMSTERDAM, THE NETHERLANDS (CST COVERS JOB No. 216197) ENGR: MWS CHCKD: FEA DATE: JUL. 27, 2016 PAGES: 1 THROUGH: 71

NOTATION f = Maximum member stress. F = Member allowable stress. F-X,F-Y,F-Z = Reaction forces acting in the indicated direction, in the global or local coordinate system. C-s = Roof slope factor. P-s = Sloped roof snow load. P-f = Flat roof snow load. K-z = Velocity pressure exposure coefficient. Q-z = Velocity pressure. G-h = Gust response factor. Y-BAR = Distance from the bottom flange to the neutral axis Rv = Maximum vertical (downward) reaction at the shoe. Rd = Maximum lateral reaction at the shoe. Rl = Maximum vertical (upward) reaction at the shoe. Sheet No. 2

ANALYSIS PROCEDURE This structure was analyzed on CST Covers proprietary dome analysis program using the stiffness method of analysis. The dome struts are modeled using three dimensional beam elements which consider torsion, bending about two axes, axial and shear deformation. Panel loads are transformed into triangular beam loads equal to the load times one third the adjacent panel area normal to the load. These beam loads are then transformed into components parallel and perpendicular to the plane of the beam web. Member dead load is applied as a uniform beam load along the length of the member using the strut area times the density of the specified material times a factor which accounts for the batten. Panel dead load is treated as another panel load. In addition to the beam loads, loads may be applied to the nodes if required. The program will handle multiple load combinations with each combination composed of multiple load types. The maximum member stresses have been calculated from individual member equilibrium equations using the member end forces obtained from the stiffness analysis procedure and the applied beam loads. Each beam is divided into 20 increments and forces and corresponding stress are calculated for each increment. Member allowable stresses are also calculated at each increment and compared to the computed stresses. Allowable stresses are computed in accordance with the formulas specified by the "Specifications for Aluminum Structures - Allowable Stress Design" (Sixth Edition, October 1994) as published by the Aluminum Association, Inc., Washington, D.C.. All the dome frame struts, tension ring and gussets are aluminum alloy 6061-T6 unless otherwise noted. All fasteners are either aluminum or stainless steel as specified. Sheet No. 3

DESIGN PARAMETER DESIGN LOADS REF. POINT DIAMETER : 60.33 meters (D r ) ANCHOR BOLT DIAMETER : 60.67 meters (D a ) DOME RISE : 12.07 meters (H) CUTOFF ANGLE : 43.60 degrees ( b ) SPHERICAL RADIUS : 43.74 meters (R) NUMBER OF DOME SHOES : 36 DESIGN CODE : API 650 12TH ED. DEAD LOAD : 0.142 kpa LIVE LOAD : 0.718 kpa SNOW LOAD : 0.359 kpa WIND LOAD : 193.1 KPH WIND EXPOSURE : C In addition to the applied loads listed above, seismic effects have also been considered in the structural analysis. The degree to which seismic effects have an impact upon a structure's design depends most significantly on the structure's density. Due to the low mass to volume ratio of the aluminum dome, seismic effects do not control the dome design, nor the base shear reactions. Rather, applied wind loading on the large surface area on the dome results in the largest horizontal shear reactions. Therefore, wind load cases are presented in these Design Calculations. Other applied load cases and load combinations have been considered in the design; however, only the controlling load combinations are included in the following Design Calculations. Sheet No. 4

Sheet No. 5

EXTRUSION SECTION PROPERTIES E-609 : DOME STRUT #1 THROUGH DOME STRUT #26 DOME STRUT #28 1. GEOMETRIC PROPERTIES CROSS SECTIONAL AREA = 1759.4 mm 2 Y-BAR = 115.5 mm DEPTH = 203.2 mm TOP FLANGE DIMENSIONS = 4.3 X 101.6 (mm) BOT FLANGE DIMENSIONS = 4.0 X 101.6 (mm) WEB DIMENSIONS = 194.9 X 2.8 (mm) 2. ELASTIC PROPERTIES TORSIONAL MOMENT OF INERTIA = 6250.7 mm 4 Y AXIS MOMENT OF INERTIA = 779601.4 mm 4 X AXIS MOMENT OF INERTIA = 13190789.0 mm 4 Sheet No. 6

E-638 : DOME STRUT #27 1. GEOMETRIC PROPERTIES EXTRUSION SECTION PROPERTIES CROSS SECTIONAL AREA = 2281.3 mm 2 Y-BAR = 110.9 mm DEPTH = 203.2 mm TOP FLANGE DIMENSIONS = 6.0 X 101.6 (mm) BOT FLANGE DIMENSIONS = 6.0 X 101.6 (mm) WEB DIMENSIONS = 191.3 X 3.8 (mm) 2. ELASTIC PROPERTIES TORSIONAL MOMENT OF INERTIA = 17930.8 mm 4 Y AXIS MOMENT OF INERTIA = 1099683.4 mm 4 X AXIS MOMENT OF INERTIA = 17009298.0 mm 4 Sheet No. 7

E-614 : PERIM DIAG #29 1. GEOMETRIC PROPERTIES EXTRUSION SECTION PROPERTIES CROSS SECTIONAL AREA = 3957.4 mm 2 Y-BAR = 106.5 mm DEPTH = 203.2 mm TOP FLANGE DIMENSIONS = 7.9 X 146.1 (mm) BOT FLANGE DIMENSIONS = 7.9 X 146.1 (mm) WEB DIMENSIONS = 187.5 X 7.9 (mm) 2. ELASTIC PROPERTIES TORSIONAL MOMENT OF INERTIA = 78037.0 mm 4 Y AXIS MOMENT OF INERTIA = 4074905.5 mm 4 X AXIS MOMENT OF INERTIA = 28252538.0 mm 4 Sheet No. 8

COMP01 : TENS STRUT #30 EXTRUSION SECTION PROPERTIES 1. GEOMETRIC PROPERTIES I SECTION T SECTION CROSS SECTIONAL AREA = 6703.2 mm 2 Y-BAR = 103.9 mm 74.2 mm DEPTH = 203.2 mm 88.9 mm TOP FLANGE DIMENSIONS = 12.7 X 203.2 (mm) 12.7 X 203.2 (mm) BOT FLANGE DIMENSIONS = 12.7 X 203.2 (mm) WEB DIMENSIONS = 177.8 X 7.9 (mm) 76.2 X 7.9 (mm) 2. ELASTIC PROPERTIES TORSIONAL MOMENT OF INERTIA = 457554.5 mm 4 Y AXIS MOMENT OF INERTIA = 26310402.0 mm 4 X AXIS MOMENT OF INERTIA = 88923256.0 mm 4 AREA OF COMPOSITE SECTION = 9885.1 mm^2 Y-BAR OF COMPOSITE SECTION = 4090.6 mm^2 Sheet No. 9

E-705 : SHOE STRUT #31 1. GEOMETRIC PROPERTIES EXTRUSION SECTION PROPERTIES CROSS SECTIONAL AREA = 6703.2 mm 2 Y-BAR = 103.9 mm DEPTH = 203.2 mm TOP FLANGE DIMENSIONS = 12.7 X 203.2 (mm) BOT FLANGE DIMENSIONS = 12.7 X 203.2 (mm) WEB DIMENSIONS = 177.8 X 7.9 (mm) 2. ELASTIC PROPERTIES TORSIONAL MOMENT OF INERTIA = 306420.8 mm 4 Y AXIS MOMENT OF INERTIA = 17427608.0 mm 4 X AXIS MOMENT OF INERTIA = 52220392.0 mm 4 Sheet No. 10

FASTENER INFORMATION NOMINAL BODY TENSION SHEAR FASTENER TYPE SIZE(mm) DIA (mm) (kn) (kn) STANDARD 300 series CW stainless steel OD PITCH (690 MPa minimum Ftu) 9.5-1.59 9.5 14.72 12.59 BOLTS (Ft = 294.6 MPa) 13-1.95 12.7 26.96 22.38 (Fv = 176.6 MPa) 16-2.31 15.9 42.93 34.92 AND (586 MPa minimum Ftu) 19-2.54 19.1 53.91 42.84 (Ft = 250.5 MPa) 22-2.82 22.2 74.60 58.32 NUTS (Fv = 150.4 MPa) 25-3.18 25.4 97.86 76.16 305 stainless steel 9.5 9.70 13.35 17.79 (C6LBHS-U12/3LC-F12) LOCK 316 stainless steel 9.5 9.70 9.34 13.35 (C6LB316-U12/3LC-F12) BOLTS 7075-T73 aluminum 9.5 9.70 8.01 8.90 (C6LB-E12/3LC-F12) DRIVE RIVETS Aluminum body - 5056 9.5 9.4 2.67 4.45 SPECIAL Pin - 2117 FASTENER MAGNA-TITE Aluminum body - 5056 5 5.1 2.00 2.80 Pin - 2024 NOTES: 1. Shear strengths are based on the threads outside of the shear plane 2. Lockbolt values are based on the manufacturers guaranteed minimum values. 3. Safety factors are: = 2.34 for bolt tension = 2.34 for bolt shear Sheet No. 11

BASIC LOAD CASE NO. 1 DOME DEAD LOAD X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000-1.313 PANEL DEAD LOAD 0.000 0.000-0.035 (kpa) FULL DOME LIVE LOAD 0.000 0.000 0.000 (kpa) HALF DOME LIVE LOAD 0.000 0.000 0.000 (kpa) GROUND SNOW LOAD - TOTAL DOME = 0.000 (kpa) GROUND SNOW LOAD - DRIFT = 0.000 (kpa) WIND LOAD - DYNAMIC PRESSURE = 0.000 (kpa) INTERNAL PRESSURE LOAD = 0.000 (kpa) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. C.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. C.) ALLOWABLE STRESS FACTOR 1.000 Sheet No. 12

BASIC LOAD CASE NO. 2 DOME DEAD LOAD + DOME LIVE LOAD 0.718 KPA LIVE LOAD ON DOME X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000-1.313 PANEL DEAD LOAD 0.000 0.000-0.035 (kpa) FULL DOME LIVE LOAD 0.000 0.000-0.718 (kpa) HALF DOME LIVE LOAD 0.000 0.000 0.000 (kpa) GROUND SNOW LOAD - TOTAL DOME = 0.000 (kpa) GROUND SNOW LOAD - DRIFT = 0.000 (kpa) WIND LOAD - DYNAMIC PRESSURE 0.000 (kpa) INTERNAL PRESSURE LOAD = 0.000 (kpa) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. C.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. C.) ALLOWABLE STRESS FACTOR 1.000 Sheet No. 13

BASIC LOAD CASE NO. 3 DOME DEAD LOAD + DOME UNBALANCED LIVE LOAD 0.359 KPA LIVE LOAD ON DOME X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000-1.313 PANEL DEAD LOAD 0.000 0.000-0.035 (kpa) FULL DOME LIVE LOAD 0.000 0.000 0.000 (kpa) HALF DOME LIVE LOAD @ 90.0 DEG 0.000 0.000-0.359 (kpa) GROUND SNOW LOAD - TOTAL DOME = 0.000 (kpa) GROUND SNOW LOAD - DRIFT = 0.000 (kpa) WIND LOAD - DYNAMIC PRESSURE = 0.000 (kpa) INTERNAL PRESSURE LOAD = 0.000 (kpa) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. C.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. C.) ALLOWABLE STRESS FACTOR 1.000 Sheet No. 14

BASIC LOAD CASE NO. 4 DEAD + ASCE WIND CASE A 193.1 KPH PER API 650 12TH ED. X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000-1.313 PANEL DEAD LOAD 0.000 0.000-0.035 (kpa) FULL DOME LIVE LOAD 0.000 0.000 0.000 (kpa) HALF DOME LIVE LOAD 0.000 0.000 0.000 (kpa) GROUND SNOW LOAD - TOTAL DOME = 0.000 (kpa) GROUND SNOW LOAD - DRIFT = 0.000 (kpa) WIND LOAD - DYNAMIC PRESSURE FROM 270.0 DEG 1.790 (kpa) INTERNAL PRESSURE LOAD = 0.000 (kpa) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. C.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. C.) ALLOWABLE STRESS FACTOR 1.000 WIND LOAD FACTORS: (ASCE7-02, CASE A) (INPUT) VELOCITY 53.645 (m/s) IMPORTANCE FACTOR : 1.000 EXPOSURE CATEGORY C CURB HEIGHT 17.505 (meters) TANK HEIGHT : 17.069 (meters) TOPOGRAPHIC FACTOR Kzt : 1.000 DIRECTIONALITY FACTOR Kd : 0.950 (CALCULATED) DOME RISE-TO-SPAN RATIO : 0.200 APEX ROOF HEIGHT 29.570 (meters) TANK HEIGHT / DIAMETER RATIO : 0.283 POWER LAW CONSTANT ALPHA : 9.500 GRADIENT HEIGHT Z-g 274.320 (meters) K-z : 1.258 Q-z : 2.109 (kpa) GUST RESPONSE FACTOR G-h 0.849 (Eq. 6-4) TURBULENCE INTENSITY I-z : 0.182 (Eq. 6-5) BACKGROUND RESPONSE Q : 0.839 (Eq. 6-6) BUILDING LENGTH B 60.325 (meters) LENGTH SCALE OF TURBULENCE L-z : 170.718 (meters)(eq. 6-7) INTEGRAL LENGTH SCALE FACTOR l : 152.400 (meters) INTEGRAL LENGTH SCALE POWER EXP.: 1/5.0 EQUIVALENT STRUCTURE HT. Z_bar : 17.742 (meters) MINIMUM HEIGHT Z_min : 4.572 (meters) CONSTANT A (Figure 6-7) -0.70620 CONSTANT B (Figure 6-7) : -0.84961 CONSTANT C (Figure 6-7) : -0.28295 THETA-25 : 23.982 Degrees Sheet No. 15

BASIC LOAD CASE NO. 5 DEAD + ASCE WIND CASE B 193.1 KPH PER API 650 12TH ED. X Y Z DIRECTION DIRECTION DIRECTION FRACTION OF GRAVITY 0.000 0.000-1.313 PANEL DEAD LOAD 0.000 0.000-0.035 (kpa) FULL DOME LIVE LOAD 0.000 0.000 0.000 (kpa) HALF DOME LIVE LOAD 0.000 0.000 0.000 (kpa) GROUND SNOW LOAD - TOTAL DOME = 0.000 (kpa) GROUND SNOW LOAD - DRIFT = 0.000 (kpa) WIND LOAD - DYNAMIC PRESSURE FROM 270.0 DEG 1.790 (kpa) INTERNAL PRESSURE LOAD = 0.000 (kpa) TEMPERATURE CHANGE - TOP FLANGE = 0.000 (Deg. C.) TEMPERATURE CHANGE - BTM FLANGE = 0.000 (Deg. C.) ALLOWABLE STRESS FACTOR 1.000 WIND LOAD FACTORS: (ASCE7-02, CASE B) (INPUT) VELOCITY 53.645 (m/s) IMPORTANCE FACTOR : 1.000 EXPOSURE CATEGORY C CURB HEIGHT 17.505 (meters) TANK HEIGHT : 17.069 (meters) TOPOGRAPHIC FACTOR Kzt : 1.000 DIRECTIONALITY FACTOR Kd : 0.950 (CALCULATED) DOME RISE-TO-SPAN RATIO : 0.200 APEX ROOF HEIGHT 29.570 (meters) TANK HEIGHT / DIAMETER RATIO : 0.283 POWER LAW CONSTANT ALPHA : 9.500 GRADIENT HEIGHT Z-g 274.320 (meters) K-z : 1.258 Q-z : 2.109 (kpa) GUST RESPONSE FACTOR G-h 0.849 (Eq. 6-4) TURBULENCE INTENSITY I-z : 0.182 (Eq. 6-5) BACKGROUND RESPONSE Q : 0.839 (Eq. 6-6) BUILDING LENGTH B 60.325 (meters) LENGTH SCALE OF TURBULENCE L-z : 170.718 (meters)(eq. 6-7) INTEGRAL LENGTH SCALE FACTOR l : 152.400 (meters) INTEGRAL LENGTH SCALE POWER EXP.: 1/5.0 EQUIVALENT STRUCTURE HT. Z_bar : 17.742 (meters) MINIMUM HEIGHT Z_min : 4.572 (meters) CONSTANT A (Figure 6-7) -0.70620 CONSTANT B (Figure 6-7) : -0.84961 CONSTANT C (Figure 6-7) : -0.28295 THETA-25 : 23.982 Degrees Sheet No. 16

R E A C T I O N S U M M A R Y BASIC LOAD CASE No 1 DOME DEAD LOAD MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kn) (kn) (kn) _ 0.0 0.0 11.4 x-max 0.0 0.0 11.4 x-min 0.0 0.0 11.4 y-max 0.0 0.0 11.4 y-min 0.0 0.0 11.4 z-max 0.0 0.0 11.4 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kn) (kn) (kn) 0.0 0.0 409.9 Sheet No. 17

R E A C T I O N S U M M A R Y BASIC LOAD CASE No 2 DOME DEAD LOAD + DOME LIVE LOAD 0.718 KPA LIVE LOAD ON DOME MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kn) (kn) (kn) _ 0.0 0.2 68.1 x-max 0.0-0.2 68.1 x-min 0.0 0.4 68.1 y-max 0.0-0.4 68.1 y-min 0.0-0.2 68.1 z-max 0.0 0.2 68.1 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kn) (kn) (kn) 0.0 0.0 2452.3 Sheet No. 18

R E A C T I O N S U M M A R Y BASIC LOAD CASE No 3 DOME DEAD LOAD + DOME UNBALANCED LIVE LOAD 0.359 KPA LIVE LOAD ON DOME MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kn) (kn) (kn) _ 0.0 0.4 14.8 x-max 0.0 0.5 36.4 x-min 0.0 4.3 27.8 y-max 0.0-4.3 27.8 y-min 0.0-0.5 36.4 z-max 0.0-0.4 14.8 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kn) (kn) (kn) 0.0 0.0 920.5 Sheet No. 19

R E A C T I O N S U M M A R Y BASIC LOAD CASE No 4 DEAD + ASCE WIND CASE A 193.1 KPH PER API 650 12TH ED. MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kn) (kn) (kn) _ 0.0-0.5-92.6 x-max 0.0-2.2-62.1 x-min 0.0 26.5-78.4 y-max 0.0-26.5-78.4 y-min 0.0-2.2-62.1 z-max 0.0 4.5-93.7 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kn) (kn) (kn) 0.0 265.6-2964.8 Sheet No. 20

R E A C T I O N S U M M A R Y BASIC LOAD CASE No 5 DEAD + ASCE WIND CASE B 193.1 KPH PER API 650 12TH ED. MAXIMUM AND MINIMUM REACTIONS: RADIAL TANGENTIAL VERTICAL DIRECTION (kn) (kn) (kn) _ 0.0 1.2-90.5 x-max 0.0-2.2-61.6 x-min 0.0 25.8-77.7 y-max 0.0-25.8-77.7 y-min 0.0-2.2-61.6 z-max 0.0-8.7-92.2 z-min TOTAL MODEL REACTIONS: GLOBAL-X GLOBAL-Y GLOBAL-Z (kn) (kn) (kn) 0.0 243.9-2908.9 Sheet No. 21

BASIC LOAD CASE No: 1 DOME DEAD LOAD S T R E S S S U M M A R Y CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 1 through 1) FORCE 5.85 0.21 0.21 0.00 0.00 0.05 STRSS 3.33 1.87-1.42 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.03 0.02 0.01 0.00 0.00 E-609 (Struts 2 through 2) FORCE 8.82 0.15 0.15-0.02-0.02 0.06 STRSS 5.01 1.32-1.00 0.13-0.17 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.04 0.01 0.01 0.00 0.00 E-609 (Struts 3 through 3) FORCE 5.91 0.13 0.13-0.17-0.17 0.04 STRSS 3.36 1.18-0.89 1.13-1.49 ALLOW 111.08 112.50 134.36 146.26 134.36 f/f 0.03 0.01 0.01 0.01 0.01 E-609 (Struts 4 through 4) FORCE 9.28 0.22 0.22-0.11-0.11 0.06 STRSS 5.28 1.96-1.49 0.74-0.98 ALLOW 114.97 112.50 134.36 146.26 134.36 f/f 0.05 0.02 0.01 0.01 0.01 E-609 (Struts 5 through 5) FORCE 8.16 0.22 0.22-0.05-0.05 0.06 STRSS 4.64 1.89-1.44 0.34-0.45 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.04 0.02 0.01 0.00 0.00 E-609 (Struts 6 through 6) FORCE 2.74 0.19 0.19-0.16-0.16 0.03 STRSS 1.56 1.62-1.23 1.06-1.40 ALLOW 105.55 112.50 134.36 146.26 134.36 f/f 0.01 0.01 0.01 0.01 0.01 E-609 (Struts 7 through 7) FORCE 10.09 0.20 0.20-0.14-0.14 0.07 STRSS 5.74 1.78-1.35 0.96-1.27 ALLOW 114.88 112.50 134.36 146.26 134.36 f/f 0.05 0.02 0.01 0.01 0.01 Sheet No. 22

BASIC LOAD CASE No: 1 DOME DEAD LOAD S T R E S S S U M M A R Y CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 8 through 8) FORCE 7.72 0.19 0.19-0.13-0.13 0.06 STRSS 4.39 1.67-1.27 0.84-1.11 ALLOW 113.06 112.50 134.36 146.26 134.36 f/f 0.04 0.01 0.01 0.01 0.01 E-609 (Struts 9 through 9) FORCE 3.08 0.10 0.10-0.18-0.18 0.03 STRSS 1.75 0.91-0.69 1.20-1.59 ALLOW 105.84 112.50 134.36 146.26 134.36 f/f 0.02 0.01 0.01 0.01 0.01 E-609 (Struts 10 through 10) FORCE 7.97 0.16 0.16-0.13-0.13 0.05 STRSS 4.53 1.44-1.09 0.89-1.17 ALLOW 113.44 112.50 134.36 146.26 134.36 f/f 0.04 0.01 0.01 0.01 0.01 E-609 (Struts 11 through 11) FORCE 2.38 0.11 0.11-0.18-0.18 0.02 STRSS 1.35 1.00-0.76 1.16-1.54 ALLOW 106.14 112.50 134.36 146.26 134.36 f/f 0.01 0.01 0.01 0.01 0.01 E-609 (Struts 12 through 12) FORCE 6.84 0.17 0.17-0.16-0.16 0.05 STRSS 3.89 1.45-1.10 1.07-1.41 ALLOW 113.98 112.50 134.36 146.26 134.36 f/f 0.03 0.01 0.01 0.01 0.01 E-609 (Struts 13 through 13) FORCE 2.72 0.08 0.08-0.21-0.21 0.02 STRSS 1.55 0.68-0.52 1.42-1.87 ALLOW 106.67 112.50 134.36 146.26 134.36 f/f 0.01 0.01 0.00 0.01 0.01 E-609 (Struts 14 through 14) FORCE 6.91 0.05 0.05-0.23-0.23 0.04 STRSS 3.93 0.45-0.34 1.55-2.04 ALLOW 114.07 112.50 134.36 146.26 134.36 f/f 0.03 0.00 0.00 0.01 0.02 Sheet No. 23

BASIC LOAD CASE No: 1 DOME DEAD LOAD S T R E S S S U M M A R Y CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 15 through 15) FORCE 3.57 0.09 0.09-0.18-0.18 0.03 STRSS 2.03 0.76-0.58 1.20-1.58 ALLOW 114.56 112.50 134.36 146.26 134.36 f/f 0.02 0.01 0.00 0.01 0.01 E-609 (Struts 16 through 16) FORCE 7.56 0.20 0.20 0.00 0.00 0.05 STRSS 4.30 1.72-1.31 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.04 0.02 0.01 0.00 0.00 E-609 (Struts 17 through 17) FORCE 6.64 0.18 0.18-0.03-0.03 0.05 STRSS 3.77 1.58-1.20 0.22-0.30 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.03 0.01 0.01 0.00 0.00 E-609 (Struts 18 through 18) FORCE 5.10 0.13 0.13-0.09-0.09 0.04 STRSS 2.90 1.13-0.85 0.58-0.76 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.03 0.01 0.01 0.00 0.01 E-609 (Struts 19 through 19) FORCE 7.29 0.17 0.17 0.00 0.00 0.05 STRSS 4.14 1.50-1.14 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.04 0.01 0.01 0.00 0.00 E-609 (Struts 20 through 20) FORCE 6.97 0.14 0.14-0.03-0.03 0.05 STRSS 3.96 1.19-0.91 0.21-0.27 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.03 0.01 0.01 0.00 0.00 E-609 (Struts 21 through 21) FORCE 7.00 0.07 0.07-0.11-0.11 0.04 STRSS 3.98 0.62-0.47 0.71-0.94 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.03 0.01 0.00 0.00 0.01 Sheet No. 24

BASIC LOAD CASE No: 1 DOME DEAD LOAD S T R E S S S U M M A R Y CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 22 through 22) FORCE 2.42 0.04 0.04-0.15-0.15 0.02 STRSS 1.38 0.32-0.24 0.97-1.28 ALLOW 112.54 112.50 134.36 146.26 134.36 f/f 0.01 0.00 0.00 0.01 0.01 E-609 (Struts 23 through 23) FORCE 7.67 0.19 0.19 0.00 0.00 0.05 STRSS 4.36 1.69-1.28 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.04 0.02 0.01 0.00 0.00 E-609 (Struts 24 through 24) FORCE 0.34 0.14 0.14-0.08-0.08 0.01 STRSS 0.20 1.25-0.95 0.55-0.73 ALLOW 109.82 112.50 134.36 146.26 134.36 f/f 0.00 0.01 0.01 0.00 0.01 E-609 (Struts 25 through 25) FORCE 8.69 0.23 0.23 0.00 0.00 0.06 STRSS 4.94 2.06-1.56 0.00 0.00 ALLOW 115.31 112.50 134.36 0.00 0.00 f/f 0.04 0.02 0.01 0.00 0.00 E-609 (Struts 26 through 26) FORCE 2.12 0.15 0.15-0.08-0.08 0.02 STRSS 1.20 1.32-1.00 0.56-0.73 ALLOW 107.21 112.50 134.36 146.26 134.36 f/f 0.01 0.01 0.01 0.00 0.01 E-638 (Struts 27 through 27) FORCE 10.40 0.20 0.20-0.43-0.43 0.06 STRSS 4.56 1.34-1.11 2.36-2.83 ALLOW 114.42 143.81 134.36 146.26 134.36 f/f 0.04 0.01 0.01 0.02 0.02 E-609 (Struts 28 through 28) FORCE 2.89 0.13 0.13-0.11-0.11 0.03 STRSS 1.64 1.17-0.89 0.71-0.93 ALLOW 104.72 112.50 134.36 146.26 134.36 f/f 0.02 0.01 0.01 0.00 0.01 Sheet No. 25

BASIC LOAD CASE No: 1 DOME DEAD LOAD S T R E S S S U M M A R Y CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-614 (Struts 29 through 29) FORCE 12.43 0.00 0.00-2.12-2.12 0.08 STRSS 3.14 0.00 0.00 7.26-7.99 ALLOW 101.82 0.00 0.00 146.26 134.36 f/f 0.03 0.00 0.00 0.05 0.06 COMP01 (Struts 30 through 30) FORCE -66.95 0.00 0.00-0.97-0.97 0.07 STRSS -6.77 0.00 0.00 1.54-1.76 ALLOW 134.36 0.00 0.00 146.26 134.36 f/f 0.05 0.00 0.00 0.01 0.01 E-705 (Struts 31 through 31) FORCE 8.83 0.00 0.00-2.03-2.03 0.04 STRSS 1.32 0.00 0.00 3.86-4.04 ALLOW 122.73 0.00 0.00 146.26 134.36 f/f 0.01 0.00 0.00 0.03 0.03 Sheet No. 26

S T R E S S S U M M A R Y BASIC LOAD CASE No: 2 DOME DEAD LOAD + DOME LIVE LOAD 0.718 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 1 through 1) FORCE 46.36 1.97 1.97 0.00 0.00 0.38 STRSS 26.35 17.25-13.09 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.23 0.15 0.10 0.00 0.00 E-609 (Struts 2 through 2) FORCE 72.36 1.43 1.43-0.21-0.21 0.47 STRSS 41.13 12.50-9.48 1.37-1.81 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.36 0.11 0.07 0.01 0.01 E-609 (Struts 3 through 3) FORCE 47.13 1.19 1.19-1.47-1.47 0.33 STRSS 26.79 10.43-7.91 9.75-12.85 ALLOW 111.08 112.50 134.36 146.26 134.36 f/f 0.24 0.09 0.06 0.07 0.10 E-609 (Struts 4 through 4) FORCE 75.58 1.89 1.89-1.10-1.10 0.52 STRSS 42.96 16.59-12.58 7.28-9.60 ALLOW 114.97 112.50 134.36 146.26 134.36 f/f 0.37 0.15 0.09 0.05 0.07 E-609 (Struts 5 through 5) FORCE 67.88 1.89 1.89-0.53-0.53 0.50 STRSS 38.59 16.55-12.55 3.53-4.65 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.33 0.15 0.09 0.02 0.03 E-609 (Struts 6 through 6) FORCE 22.23 1.53 1.53-1.53-1.53 0.24 STRSS 12.63 13.39-10.16 10.15-13.38 ALLOW 105.55 112.50 134.36 146.26 134.36 f/f 0.12 0.12 0.08 0.07 0.10 E-609 (Struts 7 through 7) FORCE 82.18 1.76 1.76-1.43-1.43 0.54 STRSS 46.71 15.46-11.73 9.53-12.57 ALLOW 114.88 112.50 134.36 146.26 134.36 f/f 0.41 0.14 0.09 0.07 0.09 Sheet No. 27

S T R E S S S U M M A R Y BASIC LOAD CASE No: 2 DOME DEAD LOAD + DOME LIVE LOAD 0.718 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 8 through 8) FORCE 63.19 1.61 1.61-1.25-1.25 0.46 STRSS 35.92 14.08-10.68 8.28-10.91 ALLOW 113.06 112.50 134.36 146.26 134.36 f/f 0.32 0.13 0.08 0.06 0.08 E-609 (Struts 9 through 9) FORCE 18.77 1.35 1.35-1.36-1.36 0.21 STRSS 10.67 11.81-8.96 9.05-11.94 ALLOW 105.84 112.50 134.36 146.26 134.36 f/f 0.10 0.10 0.07 0.06 0.09 E-609 (Struts 10 through 10) FORCE 62.93 1.41 1.41-1.30-1.30 0.44 STRSS 35.77 12.31-9.34 8.64-11.39 ALLOW 113.44 112.50 134.36 146.26 134.36 f/f 0.32 0.11 0.07 0.06 0.08 E-609 (Struts 11 through 11) FORCE 18.75 0.93 0.93-1.56-1.56 0.18 STRSS 10.66 8.17-6.20 10.37-13.67 ALLOW 106.14 112.50 134.36 146.26 134.36 f/f 0.10 0.07 0.05 0.07 0.10 E-609 (Struts 12 through 12) FORCE 51.11 1.36 1.36-1.47-1.47 0.37 STRSS 29.05 11.94-9.06 9.75-12.85 ALLOW 113.98 112.50 134.36 146.26 134.36 f/f 0.25 0.11 0.07 0.07 0.10 E-609 (Struts 13 through 13) FORCE 20.65 0.64 0.64-1.80-1.80 0.18 STRSS 11.74 5.64-4.28 11.94-15.73 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.10 0.05 0.03 0.08 0.12 E-609 (Struts 14 through 14) FORCE 56.80 0.55 0.55-1.94-1.94 0.37 STRSS 32.29 4.83-3.66 12.92-17.04 ALLOW 114.07 112.50 134.36 146.26 134.36 f/f 0.28 0.04 0.03 0.09 0.13 Sheet No. 28

S T R E S S S U M M A R Y BASIC LOAD CASE No: 2 DOME DEAD LOAD + DOME LIVE LOAD 0.718 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 15 through 15) FORCE 22.72 0.71 0.71-1.55-1.55 0.19 STRSS 12.91 6.23-4.72 10.29-13.57 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.11 0.06 0.04 0.07 0.10 E-609 (Struts 16 through 16) FORCE 58.78 1.65 1.65 0.00 0.00 0.43 STRSS 33.41 14.48-10.99 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.29 0.13 0.08 0.00 0.00 E-609 (Struts 17 through 17) FORCE 53.05 1.48 1.48-0.24-0.24 0.39 STRSS 30.16 12.97-9.84 1.58-2.08 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.26 0.12 0.07 0.01 0.02 E-609 (Struts 18 through 18) FORCE 40.44 1.06 1.06-0.68-0.68 0.29 STRSS 22.99 9.31-7.06 4.51-5.94 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.20 0.08 0.05 0.03 0.04 E-609 (Struts 19 through 19) FORCE 54.36 1.52 1.52 0.00 0.00 0.40 STRSS 30.90 13.35-10.13 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.27 0.12 0.08 0.00 0.00 E-609 (Struts 20 through 20) FORCE 53.03 1.17 1.17-0.24-0.24 0.36 STRSS 30.15 10.24-7.77 1.63-2.14 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.26 0.09 0.06 0.01 0.02 E-609 (Struts 21 through 21) FORCE 55.54 0.56 0.56-0.87-0.87 0.33 STRSS 31.57 4.88-3.70 5.78-7.62 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.27 0.04 0.03 0.04 0.06 Sheet No. 29

S T R E S S S U M M A R Y BASIC LOAD CASE No: 2 DOME DEAD LOAD + DOME LIVE LOAD 0.718 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 22 through 22) FORCE 11.81 0.23 0.23-1.19-1.19 0.12 STRSS 6.71 2.02-1.53 7.92-10.44 ALLOW 112.54 112.50 134.36 146.26 134.36 f/f 0.06 0.02 0.01 0.05 0.08 E-609 (Struts 23 through 23) FORCE 57.87 1.63 1.63-0.10-0.10 0.42 STRSS 32.89 14.25-10.81 0.69-0.91 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.28 0.13 0.08 0.00 0.01 E-609 (Struts 24 through 24) FORCE -8.63 1.16 1.16-0.51-0.51 0.10 STRSS -4.90 10.15-7.70 3.37-4.44 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.04 0.09 0.06 0.02 0.03 E-609 (Struts 25 through 25) FORCE 64.27 1.66 1.66-0.05-0.05 0.45 STRSS 36.53 14.55-11.04 0.31-0.41 ALLOW 115.31 112.50 134.36 146.26 134.36 f/f 0.32 0.13 0.08 0.00 0.00 E-609 (Struts 26 through 26) FORCE -1.19 1.11 1.11-0.63-0.63 0.10 STRSS -0.68 9.76-7.40 4.17-5.49 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.01 0.09 0.06 0.03 0.04 E-638 (Struts 27 through 27) FORCE 74.67 1.37 1.37-2.34-2.34 0.37 STRSS 32.73 8.91-7.42 12.71-15.26 ALLOW 114.42 143.81 134.36 146.26 134.36 f/f 0.29 0.06 0.06 0.09 0.11 E-609 (Struts 28 through 28) FORCE -0.05 0.95 0.95-0.77-0.77 0.09 STRSS -0.03 8.29-6.29 5.09-6.71 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.00 0.07 0.05 0.03 0.05 Sheet No. 30

S T R E S S S U M M A R Y BASIC LOAD CASE No: 2 DOME DEAD LOAD + DOME LIVE LOAD 0.718 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-614 (Struts 29 through 29) FORCE 85.53 0.00 0.00-12.37-12.37 0.51 STRSS 21.61 0.00 0.00 42.37-46.62 ALLOW 101.82 0.00 0.00 146.26 134.36 f/f 0.21 0.00 0.00 0.29 0.35 COMP01 (Struts 30 through 30) FORCE -469.82 0.00 0.00-4.38-4.38 0.54 STRSS -47.53 0.00 0.00 6.93-7.94 ALLOW 134.36 0.00 0.00 146.26 134.36 f/f 0.35 0.00 0.00 0.05 0.06 E-705 (Struts 31 through 31) FORCE 52.90 0.00 0.00-12.18-12.18 0.23 STRSS 7.89 0.00 0.00 23.17-24.22 ALLOW 122.73 0.00 0.00 146.26 134.36 f/f 0.06 0.00 0.00 0.16 0.18 Sheet No. 31

S T R E S S S U M M A R Y BASIC LOAD CASE No: 3 DOME DEAD LOAD + DOME UNBALANCED LIVE LOAD 0.359 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 1 through 1) FORCE 16.43 0.68 0.68 0.00 0.00 0.17 STRSS 9.34 5.92-4.49 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.08 0.05 0.03 0.00 0.00 E-609 (Struts 2 through 2) FORCE 54.26 0.63 0.63-0.32-0.32 0.32 STRSS 30.85 5.49-4.17 2.10-2.76 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.27 0.05 0.03 0.01 0.02 E-609 (Struts 3 through 3) FORCE 38.27 0.78 0.78-0.76-0.76 0.27 STRSS 21.76 6.81-5.17 5.08-6.69 ALLOW 111.08 112.50 134.36 146.26 134.36 f/f 0.20 0.06 0.04 0.03 0.05 E-609 (Struts 4 through 4) FORCE 52.10 0.77 0.77-0.49-0.49 0.33 STRSS 29.61 6.71-5.09 3.29-4.33 ALLOW 114.97 112.50 134.36 146.26 134.36 f/f 0.26 0.06 0.04 0.02 0.03 E-609 (Struts 5 through 5) FORCE 54.23 1.14 1.14-0.47-0.47 0.37 STRSS 30.83 9.99-7.58 3.12-4.12 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.27 0.09 0.06 0.02 0.03 E-609 (Struts 6 through 6) FORCE 26.10 0.90 0.90-0.80-0.80 0.22 STRSS 14.84 7.90-5.99 5.33-7.03 ALLOW 105.55 112.50 134.36 146.26 134.36 f/f 0.14 0.07 0.04 0.04 0.05 E-609 (Struts 7 through 7) FORCE 58.18 0.76 0.76-0.80-0.80 0.36 STRSS 33.07 6.64-5.03 5.32-7.01 ALLOW 114.88 112.50 134.36 146.26 134.36 f/f 0.29 0.06 0.04 0.04 0.05 Sheet No. 32

S T R E S S S U M M A R Y BASIC LOAD CASE No: 3 DOME DEAD LOAD + DOME UNBALANCED LIVE LOAD 0.359 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 8 through 8) FORCE 49.95 1.05 1.05-0.76-0.76 0.35 STRSS 28.39 9.21-6.99 5.04-6.65 ALLOW 113.06 112.50 134.36 146.26 134.36 f/f 0.25 0.08 0.05 0.03 0.05 E-609 (Struts 9 through 9) FORCE 20.22 0.81 0.81-0.71-0.71 0.17 STRSS 11.49 7.09-5.38 4.69-6.19 ALLOW 105.84 112.50 134.36 146.26 134.36 f/f 0.11 0.06 0.04 0.03 0.05 E-609 (Struts 10 through 10) FORCE 47.66 0.79 0.79-0.75-0.75 0.31 STRSS 27.09 6.92-5.25 5.01-6.60 ALLOW 113.44 112.50 134.36 146.26 134.36 f/f 0.24 0.06 0.04 0.03 0.05 E-609 (Struts 11 through 11) FORCE 18.54 0.61 0.61 0.00 0.00 0.15 STRSS 10.54 5.33-4.04 0.00 0.00 ALLOW 106.14 112.50 134.36 0.00 0.00 f/f 0.10 0.05 0.03 0.00 0.00 E-609 (Struts 12 through 12) FORCE 39.47 0.77 0.77-0.87-0.87 0.26 STRSS 22.44 6.71-5.09 5.77-7.61 ALLOW 113.98 112.50 134.36 146.26 134.36 f/f 0.20 0.06 0.04 0.04 0.06 E-609 (Struts 13 through 13) FORCE 19.81 0.60 0.60 0.00 0.00 0.15 STRSS 11.26 5.22-3.96 0.00 0.00 ALLOW 106.67 112.50 134.36 0.00 0.00 f/f 0.11 0.05 0.03 0.00 0.00 E-609 (Struts 14 through 14) FORCE 26.75 0.38 0.38-1.10-1.10 0.18 STRSS 15.20 3.29-2.49 7.34-9.68 ALLOW 114.07 112.50 134.36 146.26 134.36 f/f 0.13 0.03 0.02 0.05 0.07 Sheet No. 33

S T R E S S S U M M A R Y BASIC LOAD CASE No: 3 DOME DEAD LOAD + DOME UNBALANCED LIVE LOAD 0.359 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 15 through 15) FORCE 20.95 0.39 0.39-0.92-0.92 0.15 STRSS 11.91 3.39-2.57 6.09-8.03 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.10 0.03 0.02 0.04 0.06 E-609 (Struts 16 through 16) FORCE 34.80 0.98 0.98 0.00 0.00 0.25 STRSS 19.78 8.56-6.49 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.17 0.08 0.05 0.00 0.00 E-609 (Struts 17 through 17) FORCE 29.98 0.87 0.87-0.11-0.11 0.22 STRSS 17.04 7.66-5.81 0.71-0.93 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.15 0.07 0.04 0.00 0.01 E-609 (Struts 18 through 18) FORCE 21.15 0.49 0.49 0.00 0.00 0.16 STRSS 12.02 4.25-3.23 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.10 0.04 0.02 0.00 0.00 E-609 (Struts 19 through 19) FORCE 38.80 0.91 0.91 0.00 0.00 0.27 STRSS 22.06 7.94-6.02 0.00 0.00 ALLOW 115.64 112.50 134.36 0.00 0.00 f/f 0.19 0.07 0.04 0.00 0.00 E-609 (Struts 20 through 20) FORCE 42.59 0.64 0.64-0.12-0.12 0.27 STRSS 24.21 5.62-4.26 0.83-1.09 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.21 0.05 0.03 0.01 0.01 E-609 (Struts 21 through 21) FORCE 39.21 0.42 0.42-0.40-0.40 0.23 STRSS 22.29 3.67-2.79 2.66-3.50 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.19 0.03 0.02 0.02 0.03 Sheet No. 34

S T R E S S S U M M A R Y BASIC LOAD CASE No: 3 DOME DEAD LOAD + DOME UNBALANCED LIVE LOAD 0.359 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 22 through 22) FORCE 13.53 0.13 0.13-0.70-0.70 0.10 STRSS 7.69 1.10-0.83 4.68-6.17 ALLOW 112.54 112.50 134.36 146.26 134.36 f/f 0.07 0.01 0.01 0.03 0.05 E-609 (Struts 23 through 23) FORCE 46.52 0.55 0.55-0.35-0.35 0.27 STRSS 26.45 4.85-3.68 2.31-3.05 ALLOW 115.64 112.50 134.36 146.26 134.36 f/f 0.23 0.04 0.03 0.02 0.02 E-609 (Struts 24 through 24) FORCE 3.91 0.63 0.63-0.39-0.39 0.07 STRSS 2.22 5.50-4.17 2.62-3.45 ALLOW 109.82 112.50 134.36 146.26 134.36 f/f 0.02 0.05 0.03 0.02 0.03 E-609 (Struts 25 through 25) FORCE 48.43 0.56 0.56-0.38-0.38 0.29 STRSS 27.53 4.94-3.75 2.55-3.37 ALLOW 115.31 112.50 134.36 146.26 134.36 f/f 0.24 0.04 0.03 0.02 0.03 E-609 (Struts 26 through 26) FORCE 6.79 0.66 0.66-0.35-0.35 0.09 STRSS 3.86 5.78-4.39 2.33-3.08 ALLOW 107.21 112.50 134.36 146.26 134.36 f/f 0.04 0.05 0.03 0.02 0.02 E-638 (Struts 27 through 27) FORCE 53.35 0.65 0.65-1.31-1.31 0.25 STRSS 23.39 4.24-3.53 7.11-8.54 ALLOW 114.42 143.81 134.36 146.26 134.36 f/f 0.20 0.03 0.03 0.05 0.06 E-609 (Struts 28 through 28) FORCE 6.87 0.57 0.57-0.43-0.43 0.09 STRSS 3.90 4.97-3.77 2.85-3.76 ALLOW 104.72 112.50 134.36 146.26 134.36 f/f 0.04 0.04 0.03 0.02 0.03 Sheet No. 35

S T R E S S S U M M A R Y BASIC LOAD CASE No: 3 DOME DEAD LOAD + DOME UNBALANCED LIVE LOAD 0.359 KPA LIVE LOAD ON DOME CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-614 (Struts 29 through 29) FORCE 46.66 0.00 0.00-6.82-6.82 0.28 STRSS 11.79 0.00 0.00 23.35-25.69 ALLOW 101.82 0.00 0.00 146.26 134.36 f/f 0.12 0.00 0.00 0.16 0.19 COMP01 (Struts 30 through 30) FORCE -243.55 0.00 0.00-2.55-2.55 0.30 STRSS -24.64 0.00 0.00 4.03-4.62 ALLOW 134.36 0.00 0.00 146.26 134.36 f/f 0.18 0.00 0.00 0.03 0.03 E-705 (Struts 31 through 31) FORCE 27.36 0.00 0.00-6.30-6.30 0.13 STRSS 4.08 0.00 0.00 11.98-12.53 ALLOW 122.73 0.00 0.00 146.26 134.36 f/f 0.03 0.00 0.00 0.08 0.09 Sheet No. 36

S T R E S S S U M M A R Y BASIC LOAD CASE No: 4 DEAD + ASCE WIND CASE A 193.1 KPH PER API 650 12TH ED. CONTROLLING MEMBER STRESSES(MPa) AND FORCES(kN, kn-m) EXTRUSION TYPE AXIAL BENDING COMBINED (+)MOMENT (-)MOMENT STRESS COMP TENS COMP TENS RATIO E-609 (Struts 1 through 1) FORCE -66.41 0.00 0.00-1.45-1.45 0.38 STRSS -37.75 0.00 0.00 9.62-12.68 ALLOW 134.36 0.00 0.00 146.26 134.36 f/f 0.28 0.00 0.00 0.07 0.09 E-609 (Struts 2 through 2) FORCE -81.10 0.45 0.45-0.84-0.84 0.40 STRSS -46.10 3.95-3.00 5.58-7.36 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.34 0.04 0.02 0.04 0.05 E-609 (Struts 3 through 3) FORCE -60.07 1.12 1.12-1.57-1.57 0.38 STRSS -34.15 9.77-7.41 10.41-13.72 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.25 0.09 0.06 0.07 0.10 E-609 (Struts 4 through 4) FORCE -81.56 0.94 0.94-2.11-2.11 0.49 STRSS -46.36 8.19-6.21 14.02-18.48 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.35 0.07 0.05 0.10 0.14 E-609 (Struts 5 through 5) FORCE -77.84 0.55 0.55-1.52-1.52 0.43 STRSS -44.24 4.78-3.63 10.12-13.35 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.33 0.04 0.03 0.07 0.10 E-609 (Struts 6 through 6) FORCE -34.79 1.79 1.79-2.21-2.21 0.30 STRSS -19.77 15.67-11.88 14.72-19.40 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.15 0.14 0.09 0.10 0.14 E-609 (Struts 7 through 7) FORCE -88.45 1.05 1.05-1.92-1.92 0.51 STRSS -50.28 9.17-6.96 12.77-16.84 ALLOW 134.36 112.50 134.36 146.26 134.36 f/f 0.37 0.08 0.05 0.09 0.13 Sheet No. 37