EE415/515 Fundamentals of Semiconductor Devices Fall 2012

Similar documents
Photo-Voltaics and Solar Cells. Photo-Voltaic Cells

Photodiodes. 1. Current and Voltage in an Illuminated Junction 2. Solar Cells

Nonequilibrium Excess Carriers in Semiconductors

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

Basic Physics of Semiconductors

Basic Physics of Semiconductors

5.1 Introduction 5.2 Equilibrium condition Contact potential Equilibrium Fermi level Space charge at a junction 5.

p/n junction Isolated p, n regions: no electric contact, not in equilibrium E vac E i E A E F E V E C E D

Solar Photovoltaic Technologies

Introduction to Semiconductor Devices and Circuit Model

Carriers in a semiconductor diffuse in a carrier gradient by random thermal motion and scattering from the lattice and impurities.

Semiconductors. PN junction. n- type

Nanomaterials for Photovoltaics (v11) 6. Homojunctions

SOLUTIONS: ECE 606 Homework Week 7 Mark Lundstrom Purdue University (revised 3/27/13) e E i E T

Introduction to Microelectronics

Overview of Silicon p-n Junctions

EE105 Fall 2015 Microelectronic Devices and Circuits. pn Junction

ECE606: Solid State Devices Lecture 9 Recombination Processes and Rates

Diode in electronic circuits. (+) (-) i D

Digital Integrated Circuit Design

FYS Vår 2016 (Kondenserte fasers fysikk)

Complementi di Fisica Lecture 24

IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE of the JUNCTION V. FORWARD BIAS, REVERSE BIAS

Excess carrier behavior in semiconductor devices

Chapter 2 Motion and Recombination of Electrons and Holes

Lecture 10: P-N Diodes. Announcements

Chapter 2 Motion and Recombination of Electrons and Holes

Photodetectors; Receivers

Lecture 2. Dopant Compensation

Bipolar Junction Transistors

Quiz #3 Practice Problem Set

Theoretical models and simulation of optoelectronic properties of a-si-h PIN photosensors

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

1. pn junction under bias 2. I-Vcharacteristics

Monolithic semiconductor technology

Heterojunctions. Heterojunctions

MOSFET IC 3 V DD 2. Review of Lecture 1. Transistor functions: switching and modulation.

Lecture 3-7 Semiconductor Lasers.

ELECTRICAL PROPEORTIES OF SOLIDS

Mark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University

ECE606: Solid State Devices Lecture 8

Schottky diodes: I-V characteristics

ECE 442. Spring, Lecture - 4

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

Doped semiconductors: donor impurities

Electrical Resistance

Introduction to Solid State Physics

EECS130 Integrated Circuit Devices

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 3. Electron and Hole Transport in Semiconductors

Two arbitrary semiconductors generally have different electron affinities, bandgaps, and effective DOSs. An arbitrary example is shown below.

Semiconductors a brief introduction

Lecture 5: HBT DC Properties. Basic operation of a (Heterojunction) Bipolar Transistor

Valence band (VB) and conduction band (CB) of a semiconductor are separated by an energy gap E G = ev.

Complementi di Fisica Lectures 25-26

Solid State Device Fundamentals

Summary of pn-junction (Lec )

Chapter 5 Carrier transport phenomena

Intrinsic Carrier Concentration

ECE606: Solid State Devices Lecture 14 Electrostatics of p-n junctions

Phys 102 Lecture 25 The quantum mechanical model of light

Forward and Reverse Biased Junctions

Why? The atomic nucleus. Radioactivity. Nuclear radiations. The electrons and the nucleus. Length scale of the nature

MODULE 1.2 CARRIER TRANSPORT PHENOMENA

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Ray Optics Theory and Mode Theory. Dr. Mohammad Faisal Dept. of EEE, BUET

Lecture #25. Amplifier Types

Digital Integrated Circuits. Inverter. YuZhuo Fu. Digital IC. Introduction

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus

Digital Integrated Circuits

Electrical conductivity in solids. Electronics and Microelectronics AE4B34EM. Splitting of discrete levels (Si) Covalent bond. Chemical Atomic bonds

Regenerative Property

Monograph On Semi Conductor Diodes

PHYS-3301 Lecture 7. CHAPTER 4 Structure of the Atom. Rutherford Scattering. Sep. 18, 2018

INF-GEO Solutions, Geometrical Optics, Part 1

Why? The atomic nucleus. Radioactivity. Nuclear radiations. Length scale of the nature. The electrons and the nucleus

Name Solutions to Test 2 October 14, 2015

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Bohr s Atomic Model Quantum Mechanical Model

Semiconductor Electronic Devices

Digital Integrated Circuits

Modeling and Simulation of Metal-Semiconductor-Metal Photodetector using VHDL-AMS

ECE606: Solid State Devices Lecture 19 Bipolar Transistors Design

Exercises and Problems

Repetition: Refractive Index

Solid State Device Fundamentals

Hole Drift Mobility, Hall Coefficient and Coefficient of Transverse Magnetoresistance in Heavily Doped p-type Silicon

Section 19. Dispersing Prisms

Section 19. Dispersing Prisms

CHAPTER 3 DIODES. NTUEE Electronics L.H. Lu 3-1

Nanostructured solar cell

Hot electrons and curves of constant gain in long wavelength quantum well lasers

Cork Institute of Technology Bachelor of Science (Honours) in Applied Physics and Instrumentation-Award - (NFQ Level 8)

Semiconductor Statistical Mechanics (Read Kittel Ch. 8)

Electronics and Semiconductors

ELECTRONICS AND COMMUNICATION ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I

Experimental Fact: E = nhf

Quantitative assessment of electrical, optical and recombination losses in heterojunction CdS/CdTe solar cells

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

Waves and rays - II. Reflection and transmission. Seismic methods: Reading: Today: p Next Lecture: p Seismic rays obey Snell s Law

Transcription:

11/18/1 EE415/515 Fudametals of Semicoductor Devices Fall 1 ecture 16: PVs, PDs, & EDs Chater 14.1-14.6 Photo absortio Trasaret or oaque Photo eergy relatioshis c hc 1.4 m E E E i ev 11/18/1 ECE 415/515 J. E. Morris 1

11/18/1 Photo absortio Eergy absorbed i elemet d I d di I d I. d I d di Hece I d di d I l I l I l I I I I l I e d 11/18/1 ECE 415/515 J. E. Morris 3 Photo absortio coefficiet α 11/18/1 ECE 415/515 J. E. Morris 4

11/18/1 E 14.1 For 5µm thick Si, determie the % of hoto eergy which will ass through for hoto wavelegths λ a.8μm & b.6μm. 11/18/1 ECE 415/515 J. E. Morris 5 E 14. A hoto flu of itesity I ν =.1W/cm at wavelegth λ=1μm is icidet o a Si surface. Neglectig ay reflectio from the surface, determie the EHP geeratio rate at deths of a =5µm ad b =µm below the surface. Electro - hole air geeratio rate g / I h 11/18/1 ECE 415/515 J. E. Morris 6 3

11/18/1 Solar Cells At zero bias : Built - i field EHPs geerated by icidet light reverse curret Reverse curret I Total curret V a forward bias I R i load R I I Short circuit curret : I I Oe circuit curret : oc I V F I sc I I I I kt I l 1 e I S I S S ev e 1 kt ev e kt oc 1 11/18/1 ECE 415/515 J. E. Morris 7 11/18/1 ECE 415/515 J. E. Morris 8 4

11/18/1 E 14.3 A aas juctio solar cell has N a =1 17 /cc, N d =1 16 /cc, D =19cm /s, D =1cm /s, τ =1-7 s, τ =1-8 s. Assume a hotocurret desity J =ma/cm is geerated i the solar cell. Calculate a V OC ad b V OC /V bi. 11/18/1 ECE 415/515 J. E. Morris 9 Zero bias: -ve accetor ios i P, +ve door ios i N: elec field N P i deletio regio Reverse bias: Field icreased I o =qag o + +W.. EHP geeratio: W, electros withi of deletio edge i P Reverse bias: EHP i deletio regio holes to P, e-s to N icr reverse curret I=I th e qv/kt -1-I o =qa /τ + /τ e qv/kt -1-qAg o + +W V=, I sc = - I o, & I=, V oc = kt/ql1+i o /I th > Photovoltaic Effect 11/18/1 ECE 415/515 J. E. Morris 1 5

11/18/1 V oc = kt/ql1+i o /I th > Photovoltaic Effect Ma qv oc = qv Elec field: electros to N, holes to P Forward bias develos 11/18/1 ECE 415/515 J. E. Morris 11 Oeratig coditios Covetioal Photodiode Solar cell diode oeratio c.f. battery 11/18/1 ECE 415/515 J. E. Morris 1 6

11/18/1 Solar cell ower ev oad ower P IV I V I S e 1V kt dp For ma load ower set dv ev ev e I I S e 1 I SV e kt kt kt at V where ev e m ev 1 m I I S I S kt kt ev e m ev 1 m I 1 kt kt I S Pm I mvm Coversio efficiecy 1% 1% P P where P is the icidet otical ower 11/18/1 ECE 415/515 J. E. Morris 13 m i i i 4 th quadrat iverted Maimum ower oeratig oit I m,v m Fill factor =I m V m /I SC V OC 11/18/1 ECE 415/515 J. E. Morris 14 7

11/18/1 Solar sectrum If hc/λ < E g o absortio If hc/λ > E g eergy > E g dissiates as heat Note Si, aas bad gas Air mass zero sectrum outside earth atmoshere Air mass oe sectrum at earth surface at oo Cocetratio: I sc icr liearly with C, V oc icr little 11/18/1 ECE 415/515 J. E. Morris 15 Solar cell desig: N regio: Juctio ear surface d< Miimizes hole loss by recombiatio before reachig juctio. P regio: Need otical absortio deth 1/α < d+ < Miimize resistace: P: large area to back cotact arge V heavy doig imited by log lifetimes requiremet N: Cotact figers for short aths 11/18/1 ECE 415/515 J. E. Morris 16 8

11/18/1 No-uiform absortio Photo absortio rate at deth where is the icidet otical where all arameters vary with. EHP geeratio deth varies with, i.e. e flu at the surface Also iclude surface reflectio coefficiet R, so : EHP geeratio rate assumig oe EHP/hoto is..[1 R ].e 11/18/1 ECE 415/515 J. E. Morris 17 Heterojuctios ead the absortio eergy rage N regio absorbs hν>e gn regio absorbs E gn >hν>e g Similarly 11/18/1 ECE 415/515 J. E. Morris 18 9

11/18/1 1 Amorhous Si solar cells more ecoomic tha sigle crystal 11/18/1 ECE 415/515 J. E. Morris 19 Short rage order; CVD at 6 C; hydrogeated daglig bods; low mobility i bad ga, high >E c & <E v ; high otical absortio ~1μm thk film Al back cotact reflects residual hotos back ito cell Photocoductor 11/18/1 ECE 415/515 J. E. Morris times hotoelectro flows aroud circuit before recombiatio umber of 1 charge geeratio otical Rate of charge collectio at cotacts Rate of Photocoductor gai 1, with trasit time or, ad hotocurret so curret desity ad hotocoductivity ] [ &, tye, For EHP geeratio i - ] [ With otical ecess carriers At thermal equilibrium h s s t t A e I A t e t A e I E t AE e E A A J I E J J J e e e e e e

11/18/1 11 E 14.4 For a N-tye Si hotocoductor of legth =1µm, c/s area A=1-7 cm, & miority carrier lifetime τ =1-6 s. Determie the hotocurret if =1 1 /cc-s ad E=1V/cm. Assume µ =1cm /v-s & µ =4cm /v-s. 11/18/1 ECE 415/515 J. E. Morris 1 Photodiode reverse bias 11/18/1 ECE 415/515 J. E. Morris h h h e e A Ae Ae Be Ae t W e d e J / ad similarly ad Hece sice ad D D solutio : Particular as for fiite Homogeeous solutio : D For steady state : D Ambiolar trasort equatio : "romt"curret Resods quickly to illumiatio costat over deletio width W if bias deletio regio Photocurret from EHP geeratio i rev - / 1

11/18/1 1 Photodiode cot d 11/18/1 ECE 415/515 J. E. Morris 3 the "delayed"hotocurret is where so steady state hotocurret J J Similarly reverse saturatio curret hotocurret : Diffusio curret due to miority electros at 1 1 1 1 1 e W e J J J ed e ed e ed e d d ed d d ed J E 14.5 Calculate a the steady hotocurret desity ad b the ratio of romt hotocurret to steady-state hotocurret i a reverse-biased log Si diode with V R =5V ad =1 1 /cc-s, assumig N a =N d =1 15 /cc, D =5cm /s, D =1cm /s, τ =51-7 s, τ =1-7 s. 11/18/1 ECE 415/515 J. E. Morris 4

11/18/1 Photodiode/Photodetector 3 rd quadrat I OP roortioal to g OP, ~ideedet of V Carriers geerated i eutral regios withi of deletio regio: Diffusio rocess slow Hece large deletio regio width W; electric field drift resose fast arge W for ma sesitivity absortio, limited by resose seed required Wide W, low C -i- detector : i itrisic or high ρ arge W: rev bias all across i regio If τ s>>τ t, the 1 eh/hoto Eteral quatum efficiecy : η Q =carriers/hoto =J OP /q/p OP /hυ 1 Icrease η Q gai Oerate at avalache Avalache hotodiode 11/18/1 ECE 415/515 J. E. Morris 5 PIN hotodiode Oly the fast "romt" curret is of icrease the deletio regio width W PIN diode with itrisic "i" regio iterest & J For hoto flu Φ Φ e α e e W W e d Φ e α. d 1 e W eglectig recombiatio ad small W, the 11/18/1 ECE 415/515 J. E. Morris 6 13

11/18/1 E 14.6 Calculate the hotocurret desity for a Si PIN diode with a itrisic regio width of W=μm at a hoto flu of 1 17 /cm -s for hoto absortio coefficiets a α=1 /cm ad b α=1 4 /cm. 11/18/1 ECE 415/515 J. E. Morris 7 Avalache hotodiode 11/18/1 ECE 415/515 J. E. Morris 8 14

11/18/1 11/18/1 ECE 415/515 J. E. Morris 9 Phototrasistor High gai by trasistor actio EHP geeratio i large C - B juctio Photocurret I I C I E E αi I 1 I 1 E I 11/18/1 ECE 415/515 J. E. Morris 3 15

11/18/1 Photolumiescece & electrolumiescece umiescece whe recombiatio light Photolumiescece whe ecess carriers geerated by hoto-absortio Electrolumiescece whe ecess carriers due to electrical curret alied field a Basic iterbad trasitios: ii ad iii cause emissio sectrum/badwidth b Imurity/defect states [iv dee tra recombiatio] c Auger o-radiative trasitios Sotaeous emissio rate:- I h E g h E e kt g 11/18/1 ECE 415/515 J. E. Morris 31 aas emissio sectra & lumiescet efficiecy Rr Quatum efficiecy q R Radiative recombiatio rate Total recombiatio rate r where τ Iterbad recombiatio rate R 6 B direct badga ~ 1 B idirect badga Tyically emitted hotos have radiative & o - radiative lifetimes 1 for τ very large so reabsortio ossible 11/18/1 ECE 415/515 J. E. Morris 3 r & τ r r r B hν E g r r 16

11/18/1 Direct ad idirect bad ga materials 11/18/1 ECE 415/515 J. E. Morris 33 Direct bad-ga Al a 1- As for otical devices: <<.45 E g = 1.44+1.47 ev for < <.35 11/18/1 ECE 415/515 J. E. Morris 34 17

11/18/1 aas 1- P : Direct ga for <<.45 11/18/1 ECE 415/515 J. E. Morris 35 Comositio affects bad ga ad color 11/18/1 ECE 415/515 J. E. Morris 36 18

11/18/1 E 14.7 Determie the outut wavelegths of aas 1- P materials for mole fractios a =.15 ad b =.3. 11/18/1 ECE 415/515 J. E. Morris 37 ight-emittig diode ED: ight emissio from forward biased juctio λ=hc/e g =1.4/E g μm with E g i ev 11/18/1 ECE 415/515 J. E. Morris 38 19

11/18/1 Iteral quatum efficiecy where J J J J R eiw ev e 1 is o - radiative mid - ga tras kt For : J J J R is fractio of diode curret that roduces lumiescece ad make J R small at sufficiet forward bias, so 1 Rr ad Rr for electros ijected ito - regio, r r so total recombiatio rate R Rr Rr r r 1 Rr r Radiative efficiecy Rr N t tra site desity R 1 1 r Rr r Iteral quatum efficiecy i r 11/18/1 ECE 415/515 J. E. Morris 39 r Eteral quatum efficiecy: Fractio of geerated hotos actually emitted 1. eometry ad re-absortio. Fresel loss at the air iterface Reflectio coefficiet 1 1 1, refractive idices 11/18/1 ECE 415/515 J. E. Morris 4

11/18/1 Eteral quatum efficiecy 3. Total iteral reflectio for 1 1 c si 11/18/1 ECE 415/515 J. E. Morris 41 E 14.8 At wavelegth λ=.7μm, the ide of refractio for aas is =3.8 ad for ap is =3.. Cosider a aas 1- P material with =.4. Assumig the ide of refractio is a liear fuctio of, determie the reflectio coefficiet, Γ, at the aas.6 P.4 -air iterface. 11/18/1 ECE 415/515 J. E. Morris 4 1

11/18/1 E 14.9 Calculate the critical agle betwee aas.6 P.4 ad air. 11/18/1 ECE 415/515 J. E. Morris 43 Physical costructio for efficiecy 11/18/1 ECE 415/515 J. E. Morris 44

11/18/1 ED brightess & heterostructures Photos emitted by electros ijected ito arrow-ga -tye ot absorbed by wide-ga -tye i.e. as a fuctio of 11/18/1 ECE 415/515 J. E. Morris 45 ED materials ad develomet 11/18/1 ECE 415/515 J. E. Morris 46 3

11/18/1 Fiber-Otic trasmissio 11/18/1 ECE 415/515 J. E. Morris 47 Atteuatio I=I e -α α is frequecy deedet fuctio of material Atomic vibratios Rayleigh scatterig: Radom refractive ide variatios ~λ Miimum absortio here ~1.55μm IR laser 11/18/1 ECE 415/515 J. E. Morris 48 4

11/18/1 11/18/1 ECE 415/515 J. E. Morris 49 Assigmet 8b 14.4 14.11 14.16 14.19 11/18/1 ECE 415/515 J. E. Morris 5 5