EE247 Lecture 10. Switched-Capacitor Integrator C

Similar documents
Summary of last lecture

ECEN620: Network Theory Broadband Circuit Design Fall 2018

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

EECS240 Spring Lecture 13: Settling. Lingkai Kong Dept. of EECS

EE C245 ME C218 Introduction to MEMS Design

Digital Control System

EE105 - Fall 2005 Microelectronic Devices and Circuits

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Follow The Leader Architecture

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

55:041 Electronic Circuits

Question 1 Equivalent Circuits

Design of Digital Filters

Lecture 10 Filtering: Applied Concepts

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

MAE140 Linear Circuits Fall 2012 Final, December 13th

Lecture 6: Resonance II. Announcements

Digital Signal Processing

HIGHER-ORDER FILTERS. Cascade of Biquad Filters. Follow the Leader Feedback Filters (FLF) ELEN 622 (ESS)

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

LRA DSP. Multi-Rate DSP. Applications: Oversampling, Undersampling, Quadrature Mirror Filters. Professor L R Arnaut 1

Reference:W:\Lib\MathCAD\Default\defaults.mcd

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

Active Filters an Introduction

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

5.5 Application of Frequency Response: Signal Filters

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

Active Filters an Introduction

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Chapter 17 Amplifier Frequency Response

Lecture #9 Continuous time filter

Design By Emulation (Indirect Method)

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Switched Capacitor Filters (SCF)

Chapter 2: Problem Solutions

System on a Chip. Prof. Dr. Michael Kraft

The Measurement of DC Voltage Signal Using the UTI

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing.

Lectures on APPLICATIONS

Sampling and the Discrete Fourier Transform

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

Homework Assignment No. 3 - Solutions

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

ME 375 FINAL EXAM Wednesday, May 6, 2009

Lecture 5 Frequency Response of FIR Systems (III)

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Roadmap for Discrete-Time Signal Processing

Sample-and-Holds David Johns and Ken Martin University of Toronto

Discrete-Time Filter (Switched-Capacitor Filter) IC Lab

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Frequency Dependent Aspects of Op-amps

Lecture 8 - SISO Loop Design

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Physics 212. Lecture 8. Today's Concept: Capacitors. Capacitors in a circuits, Dielectrics, Energy in capacitors. Physics 212 Lecture 8, Slide 1

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

RaneNote BESSEL FILTER CROSSOVER

Chapter 2 Switched-Capacitor Circuits

Data Converters. Introduction. Overview. The ideal data converter. Sampling. x t x nt x t t nt

EE40 Lec 13. Prof. Nathan Cheung 10/13/2009. Reading: Hambley Chapter Chapter 14.10,14.5

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits

ECEN 325 Electronics

ELEN 610 Data Converters

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

388 Facta Universitatis ser.: Elec. and Energ. vol. 14, No. 3, Dec A 0. The input-referred op. amp. offset voltage V os introduces an output off

Liquid cooling

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

s 0.068μ s Rearrange the function into a more convenient form and verify that it is still equal to the original.

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

Digital Control System

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

RC Circuits. Equipment: Capstone with 850 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 3 leads V C = 1

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

ECEN 610 Mixed-Signal Interfaces

HOMEWORK ASSIGNMENT #2

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Appendix A Butterworth Filtering Transfer Function

ELECTRONIC FILTERS. Celso José Faria de Araújo, M.Sc.

Lecture 5 Introduction to control

EE 508 Lecture 29. Integrator Design. Metrics for comparing integrators Current-Mode Integrators

General Topology of a single stage microwave amplifier

Designing Circuits Synthesis - Lego

MM1: Basic Concept (I): System and its Variables

Second-order filters. EE 230 second-order filters 1

EE482: Digital Signal Processing Applications

SWITCHED CAPACITOR AMPLIFIERS

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

Transcription:

EE247 Lecture 0 Switched-apacitor Filter Switched-capacitor integrator DDI integrator LDI integrator Effect of paraitic capacitance Bottom-plate integrator topology Reonator Bandpa filter Lowpa filter Termination implementation Tranmiion zero implementation Switched-capacitor filter deign conideration Switched-capacitor filter utilizing double ampling technique Effect of non-idealitie EES 247 Lecture 0: S Filter 2005 H. K. Page Switched-apacitor Integrator f I f 2 V - f f 2 f f 2 f lock V EES 247 Lecture 0: S Filter 2005 H. K. Page 2

DDI Switched-apacitor Integrator f I f 2 - f f f 2 f f 2 f lock V EES 247 Lecture 0: S Filter 2005 H. K. Page 3 DDI Switched-apacitor Integrator (n-3/2)t (n-)t (n-/2)t nt (n/2)t (n)t f f 2 f f 2 f lock V Φ Q [(n-)t ]= V i [(n-)t ], Q I [(n-)t ] = Q I [(n-3/2)t ] Φ 2 Q [(n-/2) T ] = 0, Q I [(n-/2) T ] = Q I [(n-3/2) T ] Q [(n-) T ] Φ _ Q [nt ] = V i [nt ], Q I [nt ] = Q I [(n-) T ] Q [(n-) T ] Since V o = - Q I / I & V i = Q / I V o (nt ) = I V o [(n-) T ] - V i [(n-) T ] EES 247 Lecture 0: S Filter 2005 H. K. Page 4

DDI Switched-apacitor Integrator Output Sampled on φ f I f 2 - f V(nT) I o = V I o (n )T V in (n )T V o(nt) = (n )T V I in (n )T V(Z) o = Z V(Z) o Z V I in (Z) V o Z (Z) = I Z V in DDI (Direct-Tranform Dicrete Integrator) EES 247 Lecture 0: S Filter 2005 H. K. Page 5 z-domain Frequency Repone LHP ingularitie in -plane map into inide of unit-circle in Z domain RHP ingularitie in -plane map imag. axi in into outide of unit-circle in Z domain domain The jω axi map onto the unit circle Particular value: f = 0 z = f = f /2 z = - The frequency repone i obtained f = f by evaluating H(z) on the unit circle /2 at z = e jωt = co(ωt)jin(ωt) Once z=- (f /2) i reached, the frequency repone repeat, a expected The angle to the pole i equal to 360 (or 2π radian) time the ratio of the pole frequency to the ampling frequency LHP in domain (co(wt),in(wt)) 2pf f S f = 0 EES 247 Lecture 0: S Filter 2005 H. K. Page 6

Switched-apacitor Direct-Tranform Dicrete Integrator f I f 2 - f V o V in (Z) = Z I Z I Z = EES 247 Lecture 0: S Filter 2005 H. K. Page 7 Z-=0 Z= on unit circle DDI Integrator Pole-Zero Map in z-plane f z-plane Pole from f 0 in -plane mapped to z= A frequency increae z domain pole move on unit circle (W) Once pole get to (Z=- ),(f=f /2), frequency repone repeat f = f /2 f increaing (Z-) EES 247 Lecture 0: S Filter 2005 H. K. Page 8

DDI Switched-apacitor Integrator f I f 2 - f Z jωt (Z) =, Z = e I V Z in e jωt/2 = = I jωt I jωt/2 jωt/2 e e e jωt/2 = j e I 2in( ωt/2) ωt/2 jωt/2 = e I jω T in( ωt/2) Ideal Integrator) Magnitude Error Phae Error EES 247 Lecture 0: S Filter 2005 H. K. Page 9 DDI Switched-apacitor Integrator f I f 2 - f Example: Mag. & phae error for: - f / f=/2 Mag. Error = % or 0.dB Phae error=5 degree Q intg = -3.8 2- f / f=/32 Mag. Error=0.6% or 0.04dB Phae error=5.6 degree Q intg = -0.2 DDI Integrator magnitude error no problem phae error major problem EES 247 Lecture 0: S Filter 2005 H. K. Page 0

jω Switched apacitor Filter Build with DDI Integrator jω ω -plane oare View -plane Fine View σ σ -ω Example: 5th Order Elliptic Filter Singularitie puhed toward RHP due to integrator exce phae Pole Zero EES 247 Lecture 0: S Filter 2005 H. K. Page H( jω) Paband Peaking Switched apacitor Filter Build with DDI Integrator S DDI baed Filter Zero lot! f /2 ontinuou-time Prototype Frequency (Hz) f 2f f EES 247 Lecture 0: S Filter 2005 H. K. Page 2

Switched-apacitor Integrator Output Sampled on φ2 f I f 2 - f 2 2 Sample output ½ clock cycle earlier Sample output on f 2 EES 247 Lecture 0: S Filter 2005 H. K. Page 3 (n-3/2)t Switched-apacitor Integrator Output Sampled on φ2 (n-)t (n-/2)t nt (n/2)t f f 2 f f 2 f (n)t lock V 2 Φ Q [(n-)t ]= V i [(n-)t ], Q I [(n-)t ] = Q I [(n-3/2)t ] Φ 2 Q [(n-/2) T ] = 0, Q I [(n-/2) T ] = Q I [(n-3/2) T ] Q [(n-) T ] Φ _ Q [nt ] = V i [nt ], Q I [nt ] = Q I [(n-) T ] Q [(n-) T ] Φ 2 Q [(n/2) T ] = 0, Q I [(n/2) T ] = Q I [(n-/2) T ] Q [n T ] EES 247 Lecture 0: S Filter 2005 H. K. Page 4

Switched-apacitor Integrator Output Sampled on φ2 (n-3/2)t (n-)t (n-/2)t nt (n)t f f 2 f f 2 f lock V Q I [(n/2) T ] = Q I [(n-/2) T ] Q [n T ] V o2 = - Q I / I & V i = Q / I V o2 [(n/2) T ] = I V o2 [(n-/2) T ] - V i [n T ] Uing the z operator rule: V o2 I V o2 Z /2 = I V o2 Z -/2 Z /2 - V (Z) = i I V Z in EES 247 Lecture 0: S Filter 2005 H. K. Page 5 LDI Switched-apacitor Integrator LDI (Lole Dicrete Integrator) ame a DDI but output i ampled ½ clock cycle earlier LDI f I f 2 - f 2 2 V o2 Z /2 (Z) =, Z = e jωt I V Z in e jωt/2 = = I jωt I jωt/2 jωt/2 e e e = j I 2in( ωt/2) = I jωt Ideal Integrator ωt/2 in( ωt/2) Magnitude Error No Phae Error! For ignal at frequencie << ampling freq. Magnitude error negligible EES 247 Lecture 0: S Filter 2005 H. K. Page 6

Frequency Warping Frequency repone ontinuou time (-plane): imaginary axi Sampled time (z-plane): unit circle ontinuou to ampled time tranformation Should map imaginary axi onto unit circle How do S integrator map frequencie? H S ( z) = 2 z z = int int 2 j inπft EES 247 Lecture 0: S Filter 2005 H. K. Page 7 T S Integrator omparion T Integrator H R ( ) = τ = 2π jf R τ H S Integrator S ( z) = 2 z z = int int 2 j inπf S T Identical time contant: τ = R = int f ompare: H R (f R ) = H S (f S ) f R f = π π in f f S EES 247 Lecture 0: S Filter 2005 H. K. Page 8

0.9 LDI Integration f R f = π π in f f S f S /f 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 0 0 0.05 0. 0.5 0.2 0.25 0.3 0.35 f R /f /π R frequencie up to f /π map to phyical (real) S frequencie Frequencie above f /π do not map to phyical frequencie Mapping i ymmetric about f /2 (aliaing) Accurate only for f R << f EES 247 Lecture 0: S Filter 2005 H. K. Page 9 H( jω) Switched-apacitor Filter Built with LDI Integrator Zero Preerved f /2 Frequency (Hz) f 2f f EES 247 Lecture 0: S Filter 2005 H. K. Page 20

Switched-apacitor Integrator Paraitic Senitivity f f 2 I p2 p3 p - Effect of paraitic capacitor: - p - driven by opamp o.k. 2- p2 - at opamp virtual gnd o.k. 3- p3 harge to & dicharge into I Problem paraitic enitivity EES 247 Lecture 0: S Filter 2005 H. K. Page 2 Paraitic Inenitive Bottom-Plate Switched-apacitor Integrator Senitive paraitic cap. p rearrange circuit o that p doe not charge/dicharge f= p grounded f2= p at virtual ground f f 2 I Vi p p2 - Vi- Solution: Bottom plate capacitor integrator EES 247 Lecture 0: S Filter 2005 H. K. Page 22

Vi Bottom Plate Switched-apacitor Integrator f f 2 I f - f 2 2 Input/Output z-tranform Note: Delay from Vi and Vi- to output i different Special attention needed to input/output connection Vi on f Vi- Vion f2 2 on f on f2 z z 2 z z z 2 z z EES 247 Lecture 0: S Filter 2005 H. K. Page 23 Bottom Plate Switched-apacitor Integrator z-tranform Model Vi f f I 2 z -z 2 z z z 2 Input/Output z-tranform z z Vif f 2 2 Vi Vi- I I z 2 2 z z z 2 2 LDI EES 247 Lecture 0: S Filter 2005 H. K. Page 24

LDI Switched-apacitor Ladder Filter - τ 3 τ 4 τ 5 - - z 2 z 2 I I 2 z z 2 z 2 I z 2 z z 2 z z z 2 I z 2 I I Delay around integ. Loop i (Z -/2. Z /2 =) LDI function EES 247 Lecture 0: S Filter 2005 H. K. Page 25 Switched-apacitor LDI Reonator Reonator Signal Flowgraph ω f f 2 ω2 f f 2 ω f = = R eq 2 2 ω f 3 2 = = R eq3 4 4 EES 247 Lecture 0: S Filter 2005 H. K. Page 26

Fully Differential Switched-apacitor Reonator f f 2 f f 2 EES 247 Lecture 0: S Filter 2005 H. K. Page 27 Switched-apacitor LDI Bandpa Filter Utilizing ontinuou-time Termination Bandpa Filter Signal Flowgraph ω0 V i -/Q V o2 Q V o ω0 3 ω f 0 = = 4 2 Q = 2 Q V o2 V i EES 247 Lecture 0: S Filter 2005 H. K. Page 28

-Plane veru z-plane Example: 2 nd Order LDI Bandpa Filter -plane jw z-plane EES 247 Lecture 0: S Filter 2005 H. K. Page 29 Switched-apacitor LDI Bandpa Filter ontinuou-time Termination f f 0 = 2 π 2 f f = 0 Q Q = f 2π 2 4 Both accurately determined by cap ratio & clock frequency 0-3dB Magnitude (db) Df f 0 Frequency 0. 0 EES 247 Lecture 0: S Filter 2005 H. K. Page 30

Fifth Order All-Pole LDI Low-Pa Ladder Filter omplex onjugate Termination Termination Reitor Termination Reitor omplex conjugate termination (alternate phae witching) Ref: Tat. hoi, "High-Frequency MOS Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, May 983 (ERL Memorandum No. UB/ERL M83/3). EES 247 Lecture 0: S Filter 2005 H. K. Page 3 Fifth-Order All-Pole Low-Pa Ladder Filter Termination Implementation Ref: Tat. hoi, "High-Frequency MOS Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, May 983 (ERL Memorandum No. UB/ERL M83/3). EES 247 Lecture 0: S Filter 2005 H. K. Page 32

Sixth-Order Elliptic LDI Bandpa Filter Ref: Tranmiion Zero Tat. hoi, "High-Frequency MOS Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, May 983 (ERL Memorandum No. UB/ERL M83/3). EES 247 Lecture 0: S Filter 2005 H. K. Page 33 Ue of T-Network Ref: High Q filter large cap. ratio for Q & tranmiion zero implementation To reduce large ratio required T-network utilized Tat. hoi, "High-Frequency MOS Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, May 983 (ERL Memorandum No. UB/ERL M83/3). EES 247 Lecture 0: S Filter 2005 H. K. Page 34

Sixth Order Elliptic Bandpa Filter Utilizing T-Network Q implementation Zero T-network utilized for: Q implemention Tranmiion zero implementation Ref: Tat. hoi, "High-Frequency MOS Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, May 983 (ERL Memorandum No. UB/ERL M83/3). EES 247 Lecture 0: S Filter 2005 H. K. Page 35 Switched-apacitor Reonator Regular ampling Each opamp buy ettling only during one of the clock phae Idle during the other clock phae EES 247 Lecture 0: S Filter 2005 H. K. Page 36

Switched-apacitor Reonator Uing Double- Sampling Double-ampling: 2 nd et of witche & ampling cap added to all integrator While one et of witche/cap ampling the other et tranfer charge into the intg. cap Opamp buy during both clock phae Effective ampling freq. twice clock freq. while opamp bandwidth requirement remain the ame EES 247 Lecture 0: S Filter 2005 H. K. Page 37 Double-Sampling Iue f clock f = 2f clock Iue to be aware of: - Jitter in the clock - Unequal clock phae -Mimatch in ampling cap. paraitic paband Ref: Tat. hoi, "High-Frequency MOS Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, May 983 (ERL Memorandum No. UB/ERL M83/3). EES 247 Lecture 0: S Filter 2005 H. K. Page 38

Double-Sampled Fully Differential S.. 6 th Order All-Pole Bandpa Filter Ref: Tat. hoi, "High-Frequency MOS Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, May 983 (ERL Memorandum No. UB/ERL M83/3). EES 247 Lecture 0: S Filter 2005 H. K. Page 39 Sixth Order Bandpa Filter Signal Flowgraph γ γ V out ω 0 ω 0 Q ω0 ω0 ω0 ω0 Q γ γ EES 247 Lecture 0: S Filter 2005 H. K. Page 40

Double-Sampled Fully Differential 6 th Order S.. All-Pole Bandpa Filter -ont. time termination (Q) implementation -Folded-acode opamp with f u = 00MHz ued -enter freq. 3.MHz, filter Q=55 -lock freq. 2.83MHz effective overampling ratio 8.27 -Meaured dynamic range 46dB (IM3=%) Ref: B.S. Song, P.R. Gray "Switched-apacitor High-Q Bandpa Filter for IF Application," IEEE Journal of Solid State ircuit, l. 2, No. 6, pp. 924-933, Dec. 986. EES 247 Lecture 0: S Filter 2005 H. K. Page 4 Effect of Opamp Nonidealitie on Switched apacitor Filter Behaviour Opamp finite gain Opamp finite bandwidth Finite lew rate of the opamp EES 247 Lecture 0: S Filter 2005 H. K. Page 42

Effect of Opamp Non-Idealitie Finite D Gain f f 2 I H() f I f I a ωo H() ω o a a ω Q ωo Vi - D Gain = a Input/Output z-tranform Q a Finite D gain ame effect in S.. filter a for.t. filter EES 247 Lecture 0: S Filter 2005 H. K. Page 43 Vi Vi- Vi- f f 2 Effect of Opamp Non-Idealitie Finite Opamp Bandwidth I - Unity-gain-freq. Input/Output z-tranform = f t V o f 2 ettling error T=/f time Aumption- Opamp doe not lew (will be reviited) Opamp ha only one pole exponential ettling Ref: K.Martin, A. Sedra, Effect of the OPamp Finite Gain & Bandwidth on the Performance of Switched- apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. EES 247 Lecture 0: S Filter 2005 H. K. Page 44

Vi Vi- f f 2 Effect of Opamp Non-Idealitie Finite Opamp Bandwidth I - Unity-gain-freq. Input/Output z-tranform = f t k k I H actual (Z) H e e Z ideal(z) I where k = π I ft I f ft Opamp unity gain frequency, f lock frequency Ref: V o f 2 ettling error T=/f K.Martin, A. Sedra, Effect of the OPamp Finite Gain & Bandwidth on the Performance of Switched- apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. time EES 247 Lecture 0: S Filter 2005 H. K. Page 45 Effect of Opamp Finite Bandwidth on Filter Magnitude Repone Τ non-ideal / Τ ideal (db) Magnitude deviation due to finite opamp unity-gainfrequency Active R f c /f =/32 f c /f =/2 Example: 2 nd order bandpa with Q=25 Ref: f c /f t K.Martin, A. Sedra, Effect of the OPamp Finite Gain & Bandwidth on the Performance of Switched- apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. EES 247 Lecture 0: S Filter 2005 H. K. Page 46

Effect of Opamp Finite Bandwidth on Filter Magnitude Repone Τ non-ideal / Τ ideal Example: For db magnitude repone deviation: - f c /f =/2 f c /f t ~0.04 f t >25f c 2- f c /f =/32 f c /f t ~0.022 f t >45f c (db) Active R f c /f =/32 f c /f =/2 3- ont.-time f c /f t ~/700 f t >700f c fc /f t Ref: K.Martin, A. Sedra, Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. EES 247 Lecture 0: S Filter 2005 H. K. Page 47 Effect of Opamp Finite Bandwidth Maximum Achievable Q Max. allowable biquad Q for peak gain change <0% Overampling Ratio.T. filter Ref: f c /f t K.Martin, A. Sedra, Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. EES 247 Lecture 0: S Filter 2005 H. K. Page 48

Example: For Q of 40 required Max. allowable biquad Q for peak gain change <0% - f c /f =/32 f c /f t ~0.02 f t >50f c 2- f c /f =/2 f c /f t ~0.035 f t >28f c 3- f c /f =/6 f c /f t ~0.05 f t >20f c Ref: Effect of Opamp Finite Bandwidth Maximum Achievable Q.T. filter f c /f t K.Martin, A. Sedra, Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. EES 247 Lecture 0: S Filter 2005 H. K. Page 49 Effect of Opamp Finite Bandwidth on Filter ritical Frequency ω c /ω c ritical frequency deviation due to finite opamp unity-gainfrequency Example: 2 nd order filter Active R f c /f =/32 f c /f =/2 f c /f t Ref: K.Martin, A. Sedra, Effect of the OPamp Finite Gain & Bandwidth on the Performance of Switched- apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. EES 247 Lecture 0: S Filter 2005 H. K. Page 50

Effect of Opamp Finite Bandwidth on Filter ritical Frequency Example: For maximum critical frequency hift of <% - f c /f =/32 f c /f t ~0.028 f t >36f c 2- f c /f =/2 f c /f t ~0.046 f t >22f c ω c /ω c Active R f c /f =/32 f c /f =/2 3- Active R f c /f t ~0.008 f t >25f c Ref:.T. filter f c /f t K.Martin, A. Sedra, Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-apacitor Filter," IEEE Tran. ircuit Syt., vol. AS-28, no. 8, pp. 822-829, Aug 98. EES 247 Lecture 0: S Filter 2005 H. K. Page 5 Source of Ditortion in Switched- apacitor Filter Ditortion induced by finite lew rate of the opamp Opamp output/input tranfer function nonlinearity apacitor non-linearity Ditortion incurred by finite etting time of the opamp Ditortion due to witch clock feed-through and charge injection EES 247 Lecture 0: S Filter 2005 H. K. Page 52

What i Slewing? I f 2 - I V o L f 2 Vi- Vi Aume opamp i of a imple differential pair cla A tranconductance type I EES 247 Lecture 0: S Filter 2005 H. K. Page 53 What i Slewing? I o I V o Slope ~ g m V max V in f 2 I o L I max =I Vi- Vi I V c > V max Output current contant I o =I Slewing After Vc i dicharged enough to have V c <V max Linear ettling EES 247 Lecture 0: S Filter 2005 H. K. Page 54

Ditortion Induced by Opamp Finite Slew Rate EES 247 Lecture 0: S Filter 2005 H. K. Page 55 Ideal Switched-apacitor Output Waveform f - I lock f f 2 I f 2 - Vc f 2 High harge tranferred from to I EES 247 Lecture 0: S Filter 2005 H. K. Page 56

Slew Limited Switched-apacitor Output Settling lock f f 2 -ideal -real Slewing Linear Settling Slewing Linear Settling EES 247 Lecture 0: S Filter 2005 H. K. Page 57 Ditortion Induced by Finite Slew Rate of the Opamp Ref: K.L. Lee, Low Ditortion Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, Feb. 986 (ERL Memorandum No. UB/ERL M86/2). EES 247 Lecture 0: S Filter 2005 H. K. Page 58

Ditortion Induced by Opamp Finite Slew Rate Error due to exponential ettling change linearly with ignal amplitude Error due to lew-limited ettling change non-linearly with ignal amplitude (doubling ignal amplitude X4 error) For high-linearity need to have either high lew rate or non-lewing opamp ω ( o ) T 2 V 8 o in HD 2 k = ST r π k ( k 2 4 ) 2 8( ot o in ω V 2 ) HD3 = ST r 5 π Ref: K.L. Lee, Low Ditortion Switched-apacitor Filter," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, Feb. 986 (ERL Memorandum No. UB/ERL M86/2). EES 247 Lecture 0: S Filter 2005 H. K. Page 59 Ditortion Induced by Opamp Finite Slew Rate Example -20-40 HD3 [db] -60-80 V o =V f / f =/32 V o =2V f / f =/2 V o =V V o =2V -00-20 0 00 000 (Slew-rate / f ) [V] EES 247 Lecture 0: S Filter 2005 H. K. Page 60

Ditortion Induced by Finite Slew Rate of the Opamp Note that for a high order witched capacitor filter only the lat tage lewing will affect the output linearity (a long a the previou tage ettle to the required accuracy) an reduce lew limited linearity by uing an amplifier with a higher lew rate only for the lat tage an reduce lew limited linearity by uing cla A/B amplifier Even though the output/input characteritic i non-linear the ignificantly higher lew rate compared to cla A amplifier help improve lew rate induced ditortion In cae where the output i ampled by another ampled data circuit (e.g. an AD or a S/H) no iue with the lewing of the output a long a the output ettle to the required accuracy & i ampled at the right time EES 247 Lecture 0: S Filter 2005 H. K. Page 6 More Realitic Switched-apacitor ircuit Slew Scenario f 2 - I L f 2 I L t=0 At the intant connect to input of opamp (t=0) Opamp not yet active at t=0 due to finite opamp delay Feedforward path from input to output generate a voltage pike at the output Eventually, opamp become active & tart lewing EES 247 Lecture 0: S Filter 2005 H. K. Page 62

More Realitic S Slew Scenario -ideal -real -real Including t=0 pike Slewing Linear Settling Slewing Linear Settling Spike generated at t=0 Slewing Linear Settling Slewing Ref: R. atello, Low ltage, Low Power Switched-apacitor Signal Proceing Technique," U.. Berkeley, Department of Electrical Engineering, Ph.D. Thei, Aug. 84 (ERL Memorandum No. UB/ERL M84/67). EES 247 Lecture 0: S Filter 2005 H. K. Page 63